Supplementary Material

Impact of chiral ligands on photophysical and electro-optical properties of β-diketonate Europium complexes in circularly polarized OLEDs

Francesco Zinna,^[a] Mariacecilia Pasini,^[b] Matteo Cabras,^[b] Guido Scavia,^[b] Chiara Botta,^[b] Lorenzo Di Bari,^{*[a]} Umberto Giovanella^{*[b]}

^aDipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy. ^bCNR-SCITEC via A. Corti 12, 20133, Milano, Italy.

Figure S1. Spectral overlapping between PL of the CBP:OXD-7 matrix and absorption of the complexes that favour a resonant energy transfer (FRET) from the energy donor host matrix to the Eu-complex acceptor.

Figure S2. PL decays of PMMA films embedding (a) $Eu(TTA)_3^{i}PrPyBox$ excited at 350 nm, emission at 619 nm, biexponential fit with parameters (0.14) 237 µs, (0.86) 713 µs, Adj. R-Square 0,99994, average lifetime 689 µs; (b) $Eu(TTA)_3$ Phen excited at 350nm, emission at 611 nm, biexponential fit with parameters (0.53) 443 µs, (0.47) 870µs, Adj. R-Square 0,99995, average lifetime 712 µs.

Figure S3. Emission intensity of $Eu(TTA)_3^i PrPyBox$ toluene solution periodically decreases and increases in response to the angle θ of the easy axis of the rotating QWP with respect to the axis of the fixed LP.

Figure S4. Films of CPB:OXD-7 blends embedding 6 wt.% of (a) $Eu(TTA)_3^i$ PrPyBox and (b) $Eu(TTA)_3$ Phen deposited over a PVK-covered substrate, shows similar topography (2 μ m x 2 μ m) with surface root mean square roughness (RMS) in the range of 0.21-0.24 nm.

Table S1. Overall PLQY of all the complexes in solution [toluene, conc. 10^{-5} M], the relative integrated intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition with respect to that of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition band (A₂₁), ${}^{5}D_{0}$ lifetime (τ_{obs}), radiative (A_{RAD}) and nonradiative (A_{NR}) decay rates, intrinsic PLQY of Eu(III) (PLQY^{Eu}_{Eu}), and the energy transfer efficiencies (η_{sens}).

complex	A ₂₁	t _{obs} (µs)	A _{RAD} (s ⁻¹)	A _{NR} (s ⁻¹)	PLQY ^{Eu} Eu (%)	PLQY (%)	η _{sens} (%)
Eu(TTA)₃ ⁱ PrPyBox	16.30	574	874	868	50	30	60
Eu(TTA)₃Phen	15.63	710	702	707	50	48	96

Table S2. The EQEs of Eu-based OLEDs and CP-OLEDs reported in literature.

OLED structure	<i>V</i> on (V)	L _{max(} cd m⁻²)	EQE (%)	Ref.
ITO/PEDOT:PSS/PVK/CBP: Eu /TPBi/LiF/AI	12	620	6.1	1
ITO/Eu:polycarbonate (PC):TPD/PBD/Ca/Ag	١	١	5	2
ITO/PEDOT:PSS/PVK/CBP:PBD: Eu /TPBi/LiF/Al	١	١	5.3	3
ITO/PEDOT:PSS/PVK/PFO:PBD: Eu /Ba/Al	7.3	1381	2.5	4
ITO/PEDOT:PSS/PVK:OXD-7: Eu /Ba/Al	١	2.7	0.0042	5
ITO/PEDOT:PSS/TCTA:OXD-7: Eu /PolarP/Ba/Al	١	١	0.05	6
ITO/PEDOT:PSS/CBP:OXD-7: Eu /LiF/AI	4.90	1547	2.8	7
ITO/PEDOT:PSS/CBP:OXD-7: Eu /BCP/LiF/AI	6.7	1234	2.3	8

References

- 1. M. Pietraszkiewicz, M. Maciejczyk, I. D. W. Samuel, S. Zhang, J. Mater. Chem. C 2013, 1, 8028.
- 2. J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, Appl. Phys. Lett. 2005, 86, 241106.
- 3. S. Zhang, G. A. Turnbull, I. D. W. Samuel, Org. Electron. 2012, 13, 3091.
- 4. Y. Liu, Y. Wang, J. He, Q. Mei, K. Chen, J. Cui, C. Li, M. Zhu, J. Peng, W. Zhu, Org. Electron. 2012, 13, 1038.
- 5. F. Zinna, U. Giovanella, L. D. Bari, Adv. Mater. 2015, 27, 1791.
- 6. F. Zinna, M. Pasini, F. Galeotti, C. Botta, L. Di Bari, U. Giovanella, Adv. Funct. Mater. 2017, 27, 1603719.
- 7. S. Biju, L.-J. Xu, C.-Z. Sun, Z.-N. Chen, J. Mater. Chem. C 2015, 3, 5775.
- 8. S. Biju, L.-J. Xu, M. A. Hora Alves, R. O. Freire, Z.-N. Chen, New J. Chem. 2017, 41, 1687.