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It is widely recognized that earthquake clustering is a main feature of the seismicity and a seismic area 

can be affected by different types of earthquake clusters, such as aftershock sequences and swarms, 

due to its peculiar tectonic and volcanic environments. Different occurrence rates are expected to be 

observed in a sufficiently long period, each corresponding to and characterizing a different type of 

earthquake clusters.  

In this study we propose a probabilistic approach to model different types of earthquake clusters, also 

named states of the system, in order to identify and quantify them. To this end, we assume a state-

space model (X,Y) in which the states of the hidden (unobserved) process X drive different realizations 

of the observed process Y.    

The earthquakes (observations) are first associated with a state and, conditioned on that state, follow 

an ETAS (Epidemic-Type Afetrshock-Sequence) point process. The hidden state process X is assumed 

to be a pure jump Markov process and the hazard function ( )tt Hλ  of  the observed process Y  is 

given by the following relation: 

( ) ( ) ( )t s t s t

s S

t H t H Xλ λ δ
∈

=�  .                                                (1) 

where ( ) 1s tXδ =  if tX s=  and ( ) 0s tXδ = otherwise. 

The problem of the likelihood approximation is solved by particle filtering technique and parameter 

estimation is dealt with by Markov Chain Monte Carlo method in the Bayesian framework.  

We analyse two earthquake sequences: the former occurred off the east coast of Izu Peninsula (Japan) 

in 1998 and the latter started in 2011, a week after the Tohoku-Oki earthquake, Northwest of Lake 

Inawashiro. 
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INTRODUCTION

It is widely recognized that earthquake clustering is a main feature of the seismicity. A seismic area can be affected

by different types of earthquake clusters, such as aftershock sequences and swarms, due to its peculiar tectonic and

volcanic environments. Different occurrence rates are expected to be observed in a sufficiently long period, each

corresponding to and characterizing a different type of earthquake clusters. For this purpose we model seismic se-

quences by doubly stochastic Poisson processes. These processes belong to the family of the state-space models

and are such that the observed process of earthquake occurrence times is a point process whose conditional intensity

function is assumed to be dependent on both the past history and the current state. In particular we consider two

point processes drawn from the literature on statistical seismology: the simple Poisson model and the epidemic-type

aftershock-sequence model. The hidden state process is assumed to be a stationary Markov process so that the cur-

rent state depends only on the last visited state. Bayesian analysis of the 1998 Izu swarm is carried out: a sequential

Monte Carlo method is applied to approximate the likelihood function and Markov Chain Monte Carlo methods are

used for the parameter estimation.

THE PROPOSED STATE-SPACE MODEL

Let (X,Y) follow a continuous-time state-space model [4], in particular a doubly stochastic Poisson process [3]

defined as follows:

I the STATE PROCESS X = (Xt)t≥0 = (Sn, Jn)n∈N is a hidden (unobserved) pure jump Markov process such that it

visits the state Jn at the jump time Sn:

Xt = Jn for all t ∈ [Sn, Sn+1)

The state process X is completely defined by the initial probabilities {φi(0)}i∈X , where φi(0) = P (X0 = i), and by

the stationary transition kernel Q = (qij)i,j∈X , where qij ≥ 0 for i 6= j and qii = −
∑

j:j 6=i qij. This implies that:

– the transition probability from state i to state j is pij = P (Jn = j | Jn−1 = i) = −qij
qii

,

– the holding time Zn = Sn − Sn−1 in state Jn−1 = i is exponentially distributed with rate −qii.

In this application we assume three possible states, that is Jn ∈ {1, 2, 3} for all n.

I the OBSERVED PROCESS Y = (Yt)t≥0 = (tj,mj)j∈N is a marked point process, where tj denotes the occurrence

time of the jth earthquake in the region and mj the corresponding magnitude.

The observed process Y is completely defined by its hazard function conditionally on both the state Xt and the

observed history Y0:t up to time t:

λ(t | Xt, Y0:t) =



µ if Xt = 1

µ +
∑

j:t∗Sn≤tj<t

keγ2(mj−M0)

(t− tj + c)p
if Xt = 2

µ +
∑

j:t∗Sn≤tj<t

keγ3(mj−M0)

(t− tj + c)p
if Xt = 3

The first expression above corresponds to a stationary Poisson process, the others are versions of the well-known

Epidemic-Type Aftershock-Sequence (ETAS) models [1, 2]. We assume:

– γ2 < γ3, which implies that the efficiency of a shock in generating its aftershocks relative to its magnitude is

different when the system is in states 2 or 3;

– (t∗Sn,m
∗
Sn

) denotes the last earthquake occurred by the most recent state transition XSn with respect to time t.

This earthquake (red bar in Figure 1) is thought as the event triggering the subsequent cluster (green time interval in

Figure 1).
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Figure 1: Outline of the proposed state-

space process: observed process (upper

quadrant) and hidden state process (lower

quadrant).The event (red bar) triggers the

upcoming earthquake cluster covering the

time interval between the jump times Sn−1
and Sn (green line).

BAYESIAN INFERENCE

Let θ = (µ, k, γ2, γ3, c, p, p12, p21, p31, q11, q22, q33) be the vector of parameters to be estimated. The aim of the Bayesian

analysis is to estimate the POSTERIOR DISTRIBUTION of θ, that is expressed as follows:

p(θ | Y0:T ) ∝ L(Y0:T | θ)π0(θ) ,

where L(Y0:T | θ) and π0(θ) denote the likelihood function and the prior distribution of the parameters, respectively.

By applying a Markov chain Monte Carlo method based on the Metropolis-Hastings algorithm, a Markov chain of

parameter vectors {θr : r = 1, . . . , R} is generated. For large sample size R, this Markov chain turns out to approxi-

mate the posterior distribution of θ. A crucial issue in this procedure is how the likelihood function is evaluated.

The LIKELIHOOD ESTIMATION is performed by a sequential Monte Carlo method, known as Particle Filtering, which

works as follows. For every partition {τh}Hh=0 of the time interval [0, T ], it is proved that:

L(Y0:T | θ) =

H∏
h=1

∑
j∈X

ϕj(τh) ,

where ϕj(τh) = EX

[
L(Yτh−1:τh | Xτh−1:τh, θ)δj(Xτh)

]
is proportional to the filtering probabilities φj(τh) = P (Xτh = j |

Y0:τh, θ). For all h, the distribution p(X0:τh | Y0:τh, θ) is approximated by a weighted particle set {(x(i)0:τh, ω
(i)
h )}Pi=1 and the

unnormalised filtering probabilities by:

ϕj(τh) ≈
P∑
i=1

ω
(i)
h δj(x

(i)
τh

) .

Each particle is essentially composed by a possible state history x
(i)
0:τh

on the interval [0, τh] and by a probability

weight ω(i)
h . The particle set at time τh−1, updated through the observations in (τh−1, τh], produces the particle set at

time τh; this sequential procedure is called Particle Filtering and enables us to learn sequentially from the upcoming

data.

APPLICATION TO THE 1998 IZU SWARM

The Izu area is located at north of the Philippine and Pacific tectonic plates, the so-called Izu-Bonin-Mariana arc.

Its seismicity is typically associated with dike intrusion (shallow magmatic activity) around the active volcanos along

the plate tectonic convergent boundary.
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Figure 2: [Left] Map of the epicentre locations of the 1998 Izu swarm. [Right]

Cumulative number of events (stepwise line) and magnitude (vertical lines)

versus occurrence times.

A series of earthquake swarms off the

east coast of Izu Peninsula, central Japan,

has occurred intermittently in the last few

decades [1]. Looking through the 1998

swarms (Figure 2), the events seem prone

to occur in clusters: sometimes thick clus-

ters with low/moderate magnitude, some-

times more scattered clusters with mod-

erate/high magnitude. Nevertheless the

strongest events are frequently isolated in

time.

Table 1 shows the chosen prior and proposal distributions used to estimate the parameters of the state-space model

by the MCMC method. At each time t, the hazard function of Figure 3 is evaluated by replacing the parameters with

their ergodic means θ̂ and it is given by combining the three hazard functions of the considered Poisson and ETAS

models, weighted by the estimated filtering probabilities Φ̂j(t) in each state:

λ̂(t | Y0:t) =

3∑
j=1

Φ̂j(t)λ̂(t | Xt = j, Y0:t)

Figure 4 shows which is the most probable state (1 in red, 2 in green and 3 in blue) at each time t according to the

estimated filtering probabilities.

parameter prior distr. proposal distr. erg. mean (st.dev.)

µ Γ(0.05, 0.0016) logN(µ(r−1), 0.0004) 0.0165 (0.0096)

k Γ(1, 0.81) logN(k(r−1), 0.0015) 0.1915 (0.0344)

γ2 Γ(0.5, 0.16) logN(γ
(r−1)
2 , 0.1) 0.2498 (0.1652)

γ3 Γ(2, 2.25) logN(γ
(r−1)
3 , 1.2) 1.9778 (1.6255)

c Γ(0.5, 0.16) logN(c(r−1), 0.0025) 0.1705 (0.0518)

p Γ(1, 0.49) logN(p(r−1), 0.021) 1.4490 (0.0957)

p12 U(0, 1) B(p
(r−1)
12 ,

p
(r−1)
12 (1−p(r−1)12 )

2 ) 0.5195 (0.2911)

p21 U(0, 1) B(p
(r−1)
21 ,

p
(r−1)
21 (1−p(r−1)21 )

2 ) 0.5054 (0.2929)

p31 U(0, 1) B(p
(r−1)
31 ,

p
(r−1)
31 (1−p(r−1)31 )

2 ) 0.4529 (0.2794)

−q11 Γ(200, 30000) logN(−q(r−1)11 , 28000) 170.43 (164.60)

−q22 Γ(200, 30000) logN(−q(r−1)22 , 28000) 342.36 (191.19)

−q33 Γ(200, 30000) logN(−q(r−1)33 , 28000) 181.28 (157.78)
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Table 1: MCMC input-output for the state-

space model on Izu data.

Figure 3: Hazard function evaluated in

the ergodic means of the parameters.

Figure 4: Estimated maximum filter-

ing probabilities versus time and asso-

ciated states.

COMPARISON OF THE STATE-SPACE MODEL AND THE POISSON/ETAS MODELS

Both Poisson model and ETAS

model are fitted to Izu data in or-

der to compare their perfomance

with respect to the proposed state-

space model.

Figure 5 and Tables 2-3 show in-

put and output of the correspond-

ing Bayesian analyses.

Figure 5: Hazard function given the

ergodic means of the parameters for

Poisson (dashed black line) and ETAS

(red line) models.
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Table 2: MCMC input-output for the

Poisson model on Izu data.
parameter prior distr. proposal distr. erg. mean (st.dev.)

log µ Γ(−5.5, 6.25) logN(µ(i−1), 2) -0.9350 (0.0591)

µ 0.3933 (0.0232)

Table 3: MCMC input-output for the

ETAS model on Izu data.
parameter prior distr. proposal distr. erg. mean (st.dev.)

µ Γ(0.5, 0.16) logN(µ(i−1), 0.0009) 0.0261 (0.0121)

k Γ(5, 16) logN(k(i−1), 0.002) 0.2011 (0.0462)

γ Γ(10, 81) logN(γ(i−1), 0.1) 0.2946 (0.1929)

c Γ(1, 0.49) logN(c(i−1), 0.005) 0.2103 (0.0705)

p Γ(1, 0.49) logN(p(i−1), 0.04) 1.5360 (0.1258)

Table 4: Natural logarithm of the Bayes

factors and marginal likelihoods.
@

@
@
@

@
@

A

B
Poisson ETAS ln L̂(Y0:t | A)

Poisson - - -549.16

ETAS 387.98 - -161.18

State− space 400.31 12.33 -148.85

A criterion for Bayesian model selection is given by the Bayes factor

BAB =
L̂(Y0:t | A)

L̂(Y0:t | B)

that is the ratio between the marginal likelihoods of two competing models

A and B. According to the Jeffrey’s scale, there is a decisive evidence in

favour of MA if lnBAB is greater than 4.6. Therefore, as shown in Table 4,

the state-space model decisively has the best fit.
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