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Abstract: In Mediterranean countries, the use of copper-based fungicides in agriculture is causing
a concerning accumulation of copper in the upper layer (0–20 cm) of soils and water bodies.
Phytoremediation by energy crops offers the chance to associate the recovering of polluted
environments with the production of biomass for bioenergy purposes. The purpose of this work was
to evaluate the morpho-physiological response of giant reed (Arundo donax L.), a well-known energy
crop, when treated with increasing concentrations of Cu (0, 150, and 300 ppm) in a semi-hydroponic
growing system (mesocosm) for one month. The plant morphology (height and base diameter
of the stem, number of stems) was not affected by the treatments. The presence of Cu led to the
disequilibrium of Fe and Zn foliar concentration and caused an impairment of photosynthetic
parameters: at 150 and 300 ppm the chlorophyll content and the ETR were significantly lower than
the control. The study demonstrated that, although the presence of Cu may initially affect the plant
physiology, the Arundo plants can tolerate up to 300 ppm of Cu without any adverse effect on biomass
production, even when grown in semi-hydroponic conditions.

Keywords: phytoremediation; heavy metals; energy crops; pollution; water contamination;
chlorophyll fluorescence

1. Introduction

Soil contamination by heavy metals and organic pollutants is a major threat at both European and
national level [1–3]. In Italy, more than one million hectares (corresponding to about 3% of the national
territory), distributed in 57 different sites (sites of national interest, SIN) belong to the national list of
polluted sites. The SINs include all the main Italian industrial areas and, according to recent estimates,
their remediation should require 30 million € [4]. A recent European survey [2] reported that copper
(Cu), mercury (Hg), and lead (Pb) are the main metals diffused at critical levels in the first 20 cm of the
Italian farming soils.

The accumulation of copper in soils has mainly an anthropogenic origin as a result of mining or
agro-industrial activities. Inorganic copper is used as a broad-spectrum fungicide and bactericide
in horticulture and viticulture because it combines efficacy and low cost [5]. The use of products
containing copper salts (e.g., pesticides applied in vineyards and orchards) have caused high levels of
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accumulations in the upper layer (0–20 cm) of agricultural soils in Mediterranean countries (France,
Italy, Portugal, and Spain). Due to the long persistence in soil and the toxicity to aquatic and
terrestrial organisms, a regulatory process included the copper compounds among the candidates for
substitution [6].

Copper is an essential micronutrient for plant growth and development. It acts as a catalyst in
photosynthesis and respiration and plays an important role in the formation of lignin in the cell wall.
Nevertheless, at high concentrations copper can become extremely toxic for plants causing symptoms
such as chlorosis and necrosis, stunting, leaf discoloration, and inhibition of root growth [7,8]. In the
presence of copper excess, plants undergo oxidative stress due to the overproduction of reactive oxygen
species [5,9] resulting in the impairment of the main processes associated with photosynthesis [10,11].
Depending on the plant genotype and copper concentration, many plant species have been recognized
as a valuable biological tool for the phytoremoval of copper from contaminated soil and water [11,12].

Studies in controlled or semi-controlled conditions are the fundamental preliminary step to assess
the potential of plant for phytoremediation. The plant responses to heavy metal exposure are commonly
evaluated under hydroponic growth conditions or pot in growth chambers or greenhouse [13] and
mesocosms in an on-field environment [14]. Since the nutritional factors are maintained at optimal
levels for plant growth, such systems represent suitable tools to assess the physiological impact of
contaminants to define the maximum potential phytoremediation. The use of mesocosms offers some
advantages related to the absence of the buffering effect of the soil, the high volume available for the
growth of the rhizosphere, the complete availability, and readiness of the contaminant.

The giant reed (Arundo donax L.) has been proposed as a promising candidate for phytoremediation
due to its favorable characteristics as a biomass crop [15–19]: rapid growth and high production of
biomass; simple agronomic management and easy harvesting of biomass; good tolerance and ability
to assimilate the metals, preferably in the aboveground biomass [20,21]. The present work aimed
to evaluate the physiological response of Arundo in a semi-hydroponic growing system in on-field
environmental conditions (mesocosm) contaminated with different concentrations of Cu (0, 150, and
300 ppm). In Italian areas where vineyards and orchards are largely diffused, the Cu concentration
very often overcomes 200 mg kg−1 in the topsoil, exceeding the Italian threshold (120 mg kg−1) for
residential/recreational use [1,22]. The concentrations tested in the present study are higher than
these limits. Hence, the growth of the Arundo in a system where high amounts of Cu are freely
available, allowed us to test its tolerance capacity and to understand how to use the species in such
contaminated soils.

2. Materials and Methods

2.1. Plant Growth and Contamination

Arundo plants were grown under on-field environmental conditions in mesocosms (PVC) of 1 m3

(0.785 m2
× 1.3 m), filled with an upper layer (75 cm high) of perlite and a bottom layer (25 cm high)

of gravel (15–30 mm of diameter). The mesocosms were positioned on an external research platform
on a concrete basement and filled with 400 L of water (Figure 1). A recovery tank (50 L) collected
the drainage and transferred it, with a pump, on the surface of the substrate, through a tube in PVC
arranged in a ring and equipped with nebulizers. The solution drained again by gravity to the recovery
tank in 150 min. A 10 L tank, equipped with a floating and a water flow meter, adjustable in height,
allowed to fix and maintain the groundwater level.

Four homogeneous Arundo cuttings (considered as replicates) per mesocosm were transplanted
on October 2017 (Figure 2). The leaves of the plants were sprayed monthly from October to December
with a foliar fertilizer (P-K 30–20, plus negligible amounts of microelements from 0.1 to 0.05%).
The same fertilizer was dissolved also in the tank. In June, the developed plants underwent the
treatment with copper sulfate penta-hydrated (Carlo Erba Reagent, CAS 7758-99-8S). We compared
three concentrations: 0 (control), 150, and 300 ppm. Two mesocosms were chosen as controls, while
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the remaining two mesocosms were treated, respectively, with 150 and 300 ppm. The mesocosms
were randomly assigned to different treatments. The morphological, nutritional, and physiological
characterization of the plants took place at 7, 14, 21, and 28 days after the contamination. In Figure 3
the main meteorological variables of the period are shown.
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Figure 3. Rainfall, and the minimum and maximum temperature during the grown of Arundo plants. 
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2.2. Morphological Characterization of the Plants

The morphological traits measured at the scheduled time (7, 14, 21, and 28 days after the copper
contamination) were the height and the base diameter of the main stem, and the number of the stems
of each plant. The four plants of each mesocosm were treated as replicates.

2.3. Nutritional Characterization of the Plants

Leaf samples were collected at each time-interval to examine the content of Cu, Fe, and Zn at
the laboratory LAS-ER-B of CREA-IT (Monterotondo). For each treatment, one leaf per plant heavier
than one gram was analyzed. The samples were dried at 105 ◦C for 24 h and homogenized to have
a uniform distribution of the elements. At the end, about 0.5 g of each sample was weighed and placed
into a microwave Milestone START D with the addition of 6 ± 0.1 mL of HNO3 65% and 3 ± 0.1 mL of
H2O2 30%. The digestion was accomplished at 180 ◦C, 650 W for 42 min. In the end, the samples were
filtered and diluted with deionized water. Each sample was analyzed in triplicate and with a blank.
The content of microelements (mg kg−1 dry weight) was measured with ICP-MS (Agilent 7700).

2.4. Determination of Physiological Parameters

The leaf chlorophyll content was estimated at 7, 14, 21, and 28 days after the copper contamination
by a SPAD-502 Chlorophyll meter (Minolta Inc., Osaka, Japan), as reported by [14]. The measurements
were taken from at least two fully developed leaves per plant. Four SPAD readings were taken from the
widest portion of the leaf lamina while avoiding major veins. The four SPAD readings were averaged
to represent the SPAD value of each leaf. SPAD values were converted to chlorophyll content (µg cm−2)
using the equation [23]:

Chlorophyll content = (99 × SPAD value)/(144 − SPAD value) (1)

The chlorophyll fluorescence parameters were measured on the same leaves used for the
chlorophyll content. Chlorophyll a fluorescence transient measurement (OJIP transients) was carried
out using the PEA fluorimeter (Plant Efficiency Analyzer, Hansatech Instruments Ltd., King’s Lynn, UK).
Plant materials were dark-adapted (with leaf clips) for about 1 h before measurements. Chlorophyll
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fluorescence transient was induced by applying a pulse of saturating red light (peak at 650 nm,
3000 µmol m−2 s−1). Changes in fluorescence were measured for 1 s, starting from 50 µs after the onset
of illumination. During the first 2 ms changes were recorded every 10 µs and every 1 ms afterward.
The obtained data were used in the JIP test [24] to calculate several (the following) bioenergetic
parameters of PSII photochemistry (Table 1).

Table 1. Selected JIP-test parameters calculated on the basis of fast fluorescence kinetics.

Fluorescence Parameters Description

F0 fluorescence intensity at 50 µs (O step)
F300 fluorescence intensity at 300 µs
FJ fluorescence intensity at 2 ms (J step)
FI fluorescence intensity at 30 ms (I step)
Fm maximal fluorescence intensity (P step)

Fv = Fm − F0 maximal variable fluorescence
VJ = (FJ − F0)/(Fm − F0) variable fluorescence at J step;

M0 = 4 (F300 − F0)/(Fm − F0) approximated initial slope of the fluorescence transient, expressing the
rate of RCs’ closure

ABS/RC = M0 × (1/VJ) × [1/(Fv/Fm)] absorption per active reaction center
TR0/RC = M0 × (1/VJ) trapping per active reaction center

ET0/RC = M0 × (1/VJ) × (1 − VJ) electron transport per active reaction center
DI0/RC = (ABS/RC) − (TR0/RC) dissipation per active reaction center

TR0/ABS = Fv/Fm = ϕP0 = (Fm − F0)/Fm maximum quantum yield of PSII photochemistry

ET0/TR0 = ψ0 = (Fm − FJ)/(Fm − F0) probability that a trapped exciton moves an electron into the electron
transport chain beyond QA

ET0/ABS = ϕE0 = ϕP0 × ψE0 quantum yield of electron transport

Fv/F0 = TR0/DI0 = (Fm − F0)/F0
maximum ratio of quantum yields of photochemical and concurrent

non-photochemical processes in PSII
F0/Fm = DI0/ABS = ϕD0 maximum quantum yield for energy dissipation at the antenna level

PIABS = [ϕP0 (VJ/M0)] × [ϕP0/(1 − ϕP0)] × [ψE0/(1 − ψE0)] performance index (potential) for energy conservation from photons
absorbed by PSII to the reduction of intersystem electron acceptors

Moreover, always on the same leaves, the electron transport rate (ETR) was measured using the
MINI-PAM fluorimeter (Walz, Effeltrich, Germany) equipped with a leaf clip holder (Model 2030-B,
Walz). The electron transport rate (ETR) was determined by adapting the leaves for at least 10 min to
a photosynthetic photon flux density (PPFD) of 1000 µmol m−2 s−1. The value of ETR was calculated
as follows:

ETR = ΦPSII × PPFD × f × Abs, (2)

where ΦPSII is the quantum efficiency of PSII photochemistry in light-adapted leaves [25], f is a factor
that accounts for the partitioning of energy between PSII and PSI and is assumed to be 0.5, indicating
that excitation energy is distributed equally between the two photosystems [26] and Abs is the fraction
of PPFD absorbed by the leaf. The Abs value depended on the chlorophyll content (µg cm−2) and it
was calculated by applying the modified equation of [27] as follows:

Abs = Chl/(Chl + 6.66), (3)

where 6.66 is an empirical constant with the dimension of µg cm−2. The ETR value represents the
overall photosynthetic capacity in vivo and is used as a proxy for photosynthesis in field investigations.

2.5. Statistical Analysis

The PAST software (version 3.22, 2018, Øyvind Hammer, University of Oslo, Norway) was
used for the analysis of morphological characters. The data were verified for normality with
the Shapiro–Wilcoxon test and in case of deviation, they were analyzed with the non-parametric
Kruskal–Wallis test. With normally distributed and homoscedastic data we proceeded to Analysis of
variance ANOVA (one or two way). The separation of the means was performed using Tukey’s HSD
test unless otherwise stated. A principal component analysis (PCA) using the same software was run
on both the morphological data and the microelements content [28].
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3. Results and Discussion

3.1. Morphological Characterization

Copper plays a role in plant physiology and at low levels, (3–20 mg kg−1 DW), is required for
plant development [29,30]. It is a constituent of proteins and enzymes. These act in cell compartments
like endoplasmic reticulum, mitochondria, and chloroplasts [31]. The copper supplied to the substrate
favored the plant growth soon after treatment. In the present study, the height of the main stem
was always higher in the treated plants than in the control. But, at each time interval, the difference
was never significant (Table 2). The number of stems in plants grown on 300 ppm Cu was two-fold
higher than in control plants one week after treatment (Table 2). This was the only case where the
difference among treatments was significant. After 28 days, the gap between 300 ppm and the other
two treatments diminished.

The basal diameter of the main stem showed a similar trend (Table 2). The highest growth was
observed at 300 ppm during the first two weeks. Then, the diameter remained around 12 mm while in
the plants of the control and 150 ppm increased up to 11 mm. However, it should be stressed that the
percentage variation between the value of the variables at day 0 (starting of the contamination) and at
the end of the test was always higher in untreated than treated plants (Table 2). Therefore, this aspect
suggests that an inhibitory effect of copper on the growth rate of the plants occurred and that such
effect could be more evident in the long term. It is also possible that a part of Cu applied was no more
bioavailable due to precipitation of CuS or other compounds, but these have not been considered.

Table 2. Time course of the plant height (main stem length), the number of stems and the basal diameter
of the main stem in Arundo plants treated with different copper concentrations (0, 150, and 300 ppm)
for 28 days. The values represent means (n = 4) ± S.E., respectively. One-way ANOVA was applied,
and different letters indicate significant difference according to Tukey test (p ≤ 0.05).

Variable
Cu Level Day 0 Days after Contamination day28–day0

(%)(ppm) (Contamination Start) 7 14 21 28

Stem height
(cm)

0 44.8 ± 9.5 56.2 ± 7.2 67.1 ± 8.3 78.4 ± 12.4 110.7 ± 12.9 147.0
150 67.5 ± 3.5 75.0 ± 2.7 95.0 ± 7.3 99.2 ± 9.0 123.2 ± 9.6 82.5
300 71.5 ± 14.1 82.0 ± 11.5 100.7 ± 19.0 122.0 ± 18.4 143.5 ± 15.9 100.7

Basal diameter
(mm)

0 5.9 ± 2.4 8.9 ± 1.5 8.7 ± 0.6 11.4 ± 1.3 11.5 ± 1.6 94.9
150 9.5 ± 1.0 10.7 ± 1.1 11.0 ± 1.3 10.0 ± 0.7 11.0 ± 1.7 15.8
300 7.7 ± 1.9 10.7 ±0.9 13.7 ± 1.7 13.0 ± 1.1 12.2 ± 1.0 58.4

Number of
stems

0 2.9 ± 1.1 3.1 ± 0.6 b 4.3 ± 0.9 4.6 ± 1.3 5.5 ± 1.4 89.7
150 3.5 ± 0.6 4.2 ± 0.2 b 4.0 ± 0.4 4.5 ± 0.3 4.5 ± 0.3 28.6
300 4.2 ± 2.4 6.0 ± 1.1 a 5.5 ± 0.6 4.8 ± 0.7 5.3 ± 0.9 26.2

Elhawat et al. [32] observed a behavior resembling what observed in the present study. Arundo
plantlets of two ecotypes grown in vitro and exposed to increasing Cu levels (from 0 to 26.8 mg L−1)
did not show evident symptoms of Cu toxicity. At the highest concentration, the fresh mass of
the plant stems increased, but the root length and the number of new buds per plant were higher
in one genotype. This implied the activation of tolerance mechanisms slightly different among
genotypes [19,32]. In a study of rhizofiltration [30], the Arundo plants revealed a high efficiency in
removing the Cu from Cu-rich Bordeaux mixture effluents in pilot-scale constructed wetlands (CW).
After one month of exposure, the shoot and root dry weight increased on average by 47% and 23%.
The authors hypothesized that the Cu excess prompted some detoxification mechanisms, but the
metabolic cost lowered the efficiency of other processes like photosynthesis [30]. Our data are in accord
with such a hypothesis.

Regardless of the concentrations, a direct relation linked the stem height and the corresponding
basal diameter (Figure 4). The result was in agreement with other observations [33] in the
Italian environment.
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Figure 4. Correlation between height and basal diameter of the main stem measured on semi-hydroponic
grown Arundo donax plants.

Copper sulfate is a compound used to restrain several pathogens of vegetables, vineyard, and
orchard trees. In this study, the goal was to reproduce a condition of a farming system or an ecosystem
close to farming activities. In soil, the sulfate is not a limiting factor, as the plants absorb it from the
circulating solution or fertilizers. A direct involvement of the ion cannot be excluded but does not
appear so influential. On the other side, unless of lithological origin, the content of Cu must derive just
from farming activities. Within the range of the concentrations used in this work, the Cu may have
played a role in plant growth. Yet, a more in-depth analysis of the effect on the photosynthetic process
has shown a negative influence in the short period.

3.2. Nutritional Characterization

As described before, the contaminating solution in the tanks was pushed by a pump on the top
layer of perlite and entered again in the system. Within one week, the solution of the tanks re-circulated
(several times) in the complex root system-perlite. This explains the low concentration of Cu within
the treated tanks (Figure 5). The values reflected quite well the levels of the treatments, and hence
the correct application of the element to the substrates. The concentration of copper was significantly
higher in the tanks of the treated mesocosms than in the tank of control (Figure 5). Such a difference was
present both at the start and the end of the test. One week after the contamination the concentration of
copper inside the tanks of 300 ppm treatment was the highest. After 28 days, the difference between
the treated and the untreated mesocosms remained. But the copper concentration was comparable
in the tanks of 150 and 300 ppm. Thus, it is plausible to assume a greater absorption by the plants
exposed to 300 ppm Cu than those treated with 150 ppm Cu.

Net of copper found in the leaves, most of the element was probably accumulated at the root
level and hypothetically onto perlite. Many authors observed that the accumulation of metals in
Arundo occurs mainly in the roots and rhizomes [15,16,30]. Here, mechanisms to protect the plant from
heavy metal toxicity are present [34]. Other elements, like Zn, can move from the belowground to
aboveground organs [15,16]. Expanded and unexpanded perlite have some properties favoring the
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adsorption of metal ions [35–37]. The adsorption mechanism is a function of factors as pH, adsorbent
dosage, temperature, and contact time [37,38]. For Cu ions, the adsorption percentage on perlite or
expanded perlite may reach 80%–90%. This level required an adsorbent dosage greater than 15–20 g L−1,
a pH higher than 4, and a temperature between 20 and 30 ◦C [36–38]. Some works on constructed
wetlands (CW) supported the involvement of the substrate in the element removal. The unplanted
CW showed higher efficiency in removing the heavy metals compared to the CW units planted with
macrophyte [30,39–41].Water 2019, 11, x FOR PEER REVIEW 8 of 18 
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adsorbent dosage, temperature, and contact time [37,38]. For Cu ions, the adsorption percentage on 
perlite or expanded perlite may reach 80%–90%. This level required an adsorbent dosage greater 
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three weeks and dropped close to the control value at 28 days. Plants exposed to Cu activate a 
mechanism of detoxification to counteract the adverse effect of the oxidative stress [29,42]. The 
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Figure 5. Concentration (average ± S.E.) of copper (mg kg−1) in the collection tank. Different letters
indicate a statistically significant difference for p < 0.01 after Tukey test.

The copper concentrations in the tank were greatly lower than those at the leaf level (Figure 6).
This suggests that the plants adsorbed the element from the complex root system-perlite and transferred
it to the leaf (Figure 6). After 7, 21, and 28 days from the treatment, the amount of copper in the
treated plants was significantly higher than the control. Yet, the concentration of the element was
not dependent on the Cu dosages. After one and four weeks from the contamination, the Cu level
at 150 ppm Cu was higher than at 300 ppm Cu. During the study, the concentration of Cu in the
leaves of the control plants remained within the normal range (3–20 mg kg−1 DW) [29,30]. On the
other side, in the treated plants the Cu concentration overcome the upper threshold after one and three
weeks and dropped close to the control value at 28 days. Plants exposed to Cu activate a mechanism
of detoxification to counteract the adverse effect of the oxidative stress [29,42]. The reduction of the
oxidative damage allows recovering a steady growth as observed at the end of the study.

High Cu concentrations cause a competition at the rhizosphere level between Cu and other
elements, in particular, Fe and Zn [43]. Accordingly, a physiological imbalance induced by copper
was observed (Figure 7). One week after the treatment, the Fe content in the leaves at 300 ppm Cu
was the highest. In the following period, the Fe values in the control plants were always higher than
the treated plants. Similar behavior occurred for zinc (Figure 8). One week after the contamination,
the content of Zn in the leaves was significantly higher in the treated plants. At 150 ppm of Cu, the Zn
content in the leaves was twofold higher than the treatment with 300 ppm and about 3–4 times greater
than the control. In the following three weeks, the content of Zn in the leaves was always significantly
higher in the control plants.
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One-way ANOVA was applied and for a given duration different letters indicate significant 
difference according to Tukey test (p ≤ 0.01). 

High Cu concentrations cause a competition at the rhizosphere level between Cu and other 
elements, in particular, Fe and Zn [43]. Accordingly, a physiological imbalance induced by copper 
was observed (Figure 7). One week after the treatment, the Fe content in the leaves at 300 ppm Cu 
was the highest. In the following period, the Fe values in the control plants were always higher than 
the treated plants. Similar behavior occurred for zinc (Figure 8). One week after the contamination, 
the content of Zn in the leaves was significantly higher in the treated plants. At 150 ppm of Cu, the 
Zn content in the leaves was twofold higher than the treatment with 300 ppm and about 3–4 times 
greater than the control. In the following three weeks, the content of Zn in the leaves was always 
significantly higher in the control plants. 

Days after contamination
7 14 21 28

C
on

ce
nt

ra
tio

n 
of

 F
e 

(m
g 

kg
-1

 D
W

)

2

4

6

8

10

12
0 ppm
150 ppm
300 ppm

a

c

b

a

b

c

a

b

c

a

b

c

 
Figure 7. Time course of the iron concentration in the leaves of Arundo plants treated with different 
copper concentrations (0, 150, and 300 ppm) for 28 days. Data points and vertical bars represent 
means (n = 3) ± S.E., respectively (when not reported S.E. is smaller than symbol size). One-way 
ANOVA was applied and for a given duration different letters indicate significant difference 
according to Tukey test (p ≤ 0.01). 

Figure 6. Time course of the copper concentration in the leaves of Arundo plants treated with different
copper concentrations (0, 150, and 300 ppm) for 28 days. Data points and vertical bars represent means
(n = 3) ± S.E., respectively (when not reported S.E. is smaller than symbol size). One-way ANOVA was
applied and for a given duration different letters indicate significant difference according to Tukey test
(p ≤ 0.01).
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Figure 7. Time course of the iron concentration in the leaves of Arundo plants treated with different
copper concentrations (0, 150, and 300 ppm) for 28 days. Data points and vertical bars represent means
(n = 3) ± S.E., respectively (when not reported S.E. is smaller than symbol size). One-way ANOVA was
applied and for a given duration different letters indicate significant difference according to Tukey test
(p ≤ 0.01).
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In poplar [47] the supply of Cu decreased the Zn content and increased the Fe concentration. In this 
context, one of the most common responses in plants exposed to Cu excess is the hindrance of Fe and 
Zn uptake. Iron is known as an antagonist of Cu during the uptake [46]. Instead, Zn has a similar ion 
strength of Cu and it competes for the metal transporter molecules [45,46]. The outcome of the 
present work confirmed such behavior from 14th to 28th day, while in the first week Fe and Zn 
accumulated in the leaves. A contradictory behavior was observed also by Lequeux et al. [44] which 
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Lequeux et al. [44]. 

To better highlight the response at growth and nutritional level, a multivariate analysis was 
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Figure 8. Time course of the zinc concentration in the leaves of Arundo plants treated with different
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(n = 3) ± S.E., respectively (when not reported S.E. is smaller than symbol size). One-way ANOVA was
applied and for a given duration different letters indicate significant difference according to Tukey test
(p ≤ 0.01).

Excessive Cu uptake modifies the mineral homeostasis. The effects may vary in response to factors
as plant species, exposure time, and growth conditions [29]. According to Lequeux et al. [44], it can
be difficult to individuate a clear trend for some elements like Mg, S, Fe, and Zn. As observed by
Ambrosini et al. and Azez et al. [10,45], the presence of an increasing amount of Cu in the soil may
reduce the Fe and Zn availability. An excessive Cu uptake caused a decrease of Fe and Zn content in
plant tissues of Arundo [28], rapeseed and Indian mustard [46] in a short–medium period. In poplar [47]
the supply of Cu decreased the Zn content and increased the Fe concentration. In this context, one
of the most common responses in plants exposed to Cu excess is the hindrance of Fe and Zn uptake.
Iron is known as an antagonist of Cu during the uptake [46]. Instead, Zn has a similar ion strength
of Cu and it competes for the metal transporter molecules [45,46]. The outcome of the present work
confirmed such behavior from 14th to 28th day, while in the first week Fe and Zn accumulated in the
leaves. A contradictory behavior was observed also by Lequeux et al. [44] which reported an increase
in Fe and Zn concentrations in roots of Cu2+-treated plants of Arabidopsis grown hydroponically. In this
case, the author hypothesized the effect of Fe–EDTA in the nutrient solution. The displacement of Fe
by Cu ions from Fe–EDTA complexes could allow a higher availability of Fe ions [44]. Thus, in our
case, the substrate (which, as discussed previously, could not be completely inert) might have played
a role in the first phases after the contamination. An alteration of the adsorption of metal ions may
have led to the increase of Fe and Zn similarly to what observed by Lequeux et al. [44].

To better highlight the response at growth and nutritional level, a multivariate analysis was
conducted (Figure 9). The PCA showed a clear differentiation between the Cu-treated and the control
plants. The areas of the Cu treatments partially overlapped in the upper quadrants. Instead, the area
of the control plants was in the opposite quadrants. The first component accounted for a large part of
the morphological traits. These, in turn, were influenced by the highest Cu concentration (300 ppm).
The second component was associated with microelement content. The Cu contamination caused
differentiation of Cu, Fe, and Zn content in the treated plants, with a specific effect on the plants grown
at 150 ppm Cu.
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Figure 9. Scores and loadings of principal component analysis (PCA) carried out on the set of plant
morphological data and microelements present in the leaves (Cu, Fe, and Zn) collected over a period of
28 days from Cu contamination.

3.3. Determination of Physiological Parameters

The leaf chlorophyll content is one of the most important factors determining the photosynthetic
potential and primary production [48]. It can be also used as an indicator of phytotoxicity, allowing
to analyze the effect of pollutants on photosynthetic and respiratory rates [49,50]. Figure 10 shows
the chlorophyll content along the experimental time-course. Increasing the concentration of copper
caused a reduction of the chlorophyll content. The greatest decrease was registered after the first
week (around 57%–65%), while in the following weeks the treated plants recovered at least in part.
At 28 days, the difference with the control was around 30% (150 ppm) and 40% (300 ppm).

The negative effect on chlorophyll content of Cu excess has been reported for different species,
growth system, and Cu concentrations [10,30,42,51,52]. As observed by Oustriere et al. [30], the metabolic
cost for detoxifying and limiting the adverse effects of Cu can reduce the resources for other physiological
processes. Copper interferes with chlorophyll organization and functionality. Structural damages of the
photosynthetic apparatus involved the thylakoid component [29]. Our data confirmed the influence
that an unbalanced Cu uptake has on chlorophyll content. Plants exposed to copper show leaf chlorosis
and, with increased exposure, necrosis can appear in the leaf tips and margins [32,47,52]. Even so,
no necrotic spots appeared during the experiment on leaves of Cu-treated plants. Thus, from one side
the growth was not affected or slightly affected by the presence of Cu at 150 and 300 ppm (Table 2).
On the other side, the Cu treatments reduced the efficiency of the photosynthetic process (Figure 10 and
following). The existence of a threshold of toxic concentration (variable for species and growth system)
appears plausible. Below a certain value of Cu, the synthesis of low molecular weight stress proteins
reinforced the action of the antioxidant enzymes [52]. The homeostatic control of copper excess limited
the damages and maintained a normal growth rate.
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Figure 10. Time course of the chlorophyll content in Arundo plants treated with different copper 
concentrations (0, 150, and 300 ppm) for 28 days. Data points and vertical bars represent means (n = 
8) ± S.E., respectively. One-way ANOVA was applied and for a given duration different letters 
indicate significant difference according to LSD test (p ≤ 0.05). 
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(around 18%–21%). In the following weeks, the plants treated with Cu improved their ETR, showing 
at the 28th-day values around 5% (150 ppm) and 11% (300 ppm) lower than the control. 
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Figure 11. Time course of the electron transport rate (ETR) in Arundo plants treated with different 
copper concentrations (0, 150, and 300 ppm) for 28 days. Data of electron transport rate (ETR) 
measured at steady-state with a photosynthetic photon flux density (PPFD) of 1000 µmol m−2 s−1 is 
shown after 7, 14, 21, and 28 days after contamination. Data points and vertical bars represent means 
(n = 8) ± S.E., respectively. One-way ANOVA was applied and for a given duration different letters 
indicate significant difference according to LSD test (p ≤ 0.05). 

Figure 10. Time course of the chlorophyll content in Arundo plants treated with different copper
concentrations (0, 150, and 300 ppm) for 28 days. Data points and vertical bars represent means (n = 8)
± S.E., respectively. One-way ANOVA was applied and for a given duration different letters indicate
significant difference according to LSD test (p ≤ 0.05).

In Figure 11, the trend values of the electron transport rate (ETR) along the experimental
time-course are reported. ETR is an important parameter that refers to the apparent photosynthetic
electron transport rate. It reflects the efficiency of electron capture by the PSII reaction center giving
a clue of overall photosynthesis [26]. Deficiency or excess of copper alters the photosynthetic ETR [26,31].
Our data showed that, as in the chlorophyll content, ETR was transiently modified by copper treatments
(Figure 11). Even in this case, the highest ETR decrease occurred after the first week (around 18%–21%).
In the following weeks, the plants treated with Cu improved their ETR, showing at the 28th-day values
around 5% (150 ppm) and 11% (300 ppm) lower than the control.

Finally, we analyze the bioenergetic parameters obtained from the JIP-test. This provides
information about the effect of the treatment on the processes involved in the light absorption and its
conversion to biochemical energy. The measurements of structural and functional parameters were
normalized against the values of the control plants and reported in a radar plot (Figure 12). Chlorophyll
a fluorescence-transient analysis is an efficient tool for studying physiological aspects of structure and
activity, mainly in the PSII [24]. It has been widely used to assess the damages to the photosynthetic
system by various types of stress [26].

The exposure of plants to copper concentrations of 150 and 300 ppm caused an alteration of most
of the parameters analyzed except for F0 (Figure 12A–D). The absence of F0 variation indicates a good
ability of the treated plants to maintain the efficiency of energy transfer between the pigments of the
antenna and the PSII reaction center without structural damages at the photosystems level. In fact,
an increase in F0 can be interpreted as indicating irreversible damage to PSII caused by uncontrolled
dissipation of heat that produces an excess of excitation energy [53,54]. On the contrary, a decrease of
F0 is a symptom of a high-energy dissipation in the minor antenna [55]. The values of the chlorophyll
fluorescence followed those of the chlorophyll content and the ETR. After the first week, the treated
plants showed significant differences with the control plants. Thereafter, there was an improvement,
but in some cases, the difference remained significant until the end.
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shown after 7, 14, 21, and 28 days after contamination. Data points and vertical bars represent means 
(n = 8) ± S.E., respectively. One-way ANOVA was applied and for a given duration different letters 
indicate significant difference according to LSD test (p ≤ 0.05). 

Figure 11. Time course of the electron transport rate (ETR) in Arundo plants treated with different
copper concentrations (0, 150, and 300 ppm) for 28 days. Data of electron transport rate (ETR) measured
at steady-state with a photosynthetic photon flux density (PPFD) of 1000 µmol m−2 s−1 is shown after
7, 14, 21, and 28 days after contamination. Data points and vertical bars represent means (n = 8) ±
S.E., respectively. One-way ANOVA was applied and for a given duration different letters indicate
significant difference according to LSD test (p ≤ 0.05).

After a week, the treatment at 150 and 300 ppm determined an increase of the specific energy
fluxes, absorbed (ABS/RC), captured (TR0/RC), and dissipated (DI0/RC) from the active reaction centers
of PSII, and a reduction in the electron transport (ET0/RC) (Figure 12A). The increase in ABS/RC could
be attributed to the inactivation of reaction centers and a decrease in active QA reducing centers [56],
while the enhancement in TR0/RC resulted in higher inhibition of reoxidation of QA– to QA [57].
Consequently, the increased value of TR0/RC would result in lower electron transport per reaction
center (ET0/RC). Moreover, a reduction of the maximum quantum yield of primary photochemical
reactions (TR0/ABS) and the maximum quantum yield for electron transport (ET0/ABS) observed in
treated plants was associated with an increase of the maximum quantum yield for energy dissipation at
antenna level (F0/Fm) (Figure 12A). Similarly, the corresponding reduction of ET0/ABS and ET0/TR0 in
treated plants could probably be due to an inhibition of electronic transport beyond QA. Therefore, the
decrease in FV/F0 found after 7 days at 150 and 300 ppm of Cu, which indicates the efficiency of water
splitting (and consequently oxygen production) by the PSII, agrees with the data showing a reduced
photosynthetic activity. Finally, the sharp decrease in the PIABS viability index, confirms the inhibitory
effect on photochemical processes in Cu-treated plants [58] (Figure 12A). Our results are in line with
the literature reporting the effects of copper on different plant species [59–61]. Nevertheless, it should
be emphasized that the copper concentrations used in this study are notably higher than those usually
utilized in similar experiments.

During the following weeks (Figure 12B–D) the differences between Cu treated and control plants
were partially reduced, highlighting the ability to recover the efficiency of photosynthetic energy
conversion, especially in Arundo plants exposed to lower copper concentration (150 ppm). In general,
the exposure of Arundo plants at two concentrations of copper (150 and 300 ppm) led to a reduction of
the chlorophyll content as well as the parameters related to the photosynthetic activity, mainly after
the first week of treatment. However, starting from the following week (14 days) and up to the end of
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the experiment (28 days), these parameters showed an increase in their values resulting in a partial
recovery of the functionality of the photosynthetic apparatus and chlorophyll content, especially in the
plants treated with 150 ppm of copper.
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Figure 12. Changes in the shape of the radar plot JIP-test parameters induced by different copper
concentrations applied to Arundo plants and measured after 7 (A), 14 (B), 21, (C) and 28 (D) days of
treatment. The data are the average of eight replicates and report the values with respect to plants
grown in the absence of contamination (control = 1). Red and green asterisks indicate significant
differences (LSD test, p ≤ 0.05) between control plants (0 ppm) and those exposed to 150 or 300 ppm
copper, respectively.

Based on the results, it can be hypothesized that in plants of Arundo the high concentrations
of copper induced alterations in photochemical processes at the chloroplast level [62]. The initial
reduction of the chlorophyll content, observed in the treated plants, could be linked to reduced
absorption of iron with which the copper interferes [51]. At the same time, when the quantity of
light energy absorbed by the pigments exceeds that used for photosynthesis, the absorbed energy
accelerates the photoinhibition process (i.e., the inhibition of photosynthesis caused by excess light) [63].
To cope with excess light energy, plants have developed a protection mechanism that dissipates the
energy absorbed in the form of heat, counteracting its negative effects [64]. Therefore, reversible
photoinhibition is indicative of a protective mechanism aimed at dissipating excess light energy, while
irreversible photoinhibition indicates damage to the photosynthetic systems [65]. Our data highlighted
that the parameters directly related to the energy dissipation rate from the PSII (DI0/RC and F0/Fm),
showed an increase of the values, supporting the hypothesis that the treatment with copper induced
photoinhibition of photosynthesis, more pronounced during the first week of treatment. However,
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during the following weeks, the reduction of the differences in the parameters analyzed between Cu
treated and control plants showed that the defense mechanisms used to dissipate the excess energy
allowed the plants to recover, at least partially, their photosynthetic performances.

4. Conclusions

The work provided some evidence about the ability of Arundo plants to grow in the presence of
increasing concentrations of assimilable Cu supplied in semi-hydroponic conditions (mesocosm).

The physiological indexes associated with the photosynthetic machinery resulted altered within
the first week from the contamination. The supply of Cu at 150 and 300 ppm caused a sensible
decrease (around 57%–65%) of chlorophyll content and ETR (18%–21%). The assimilation of Cu
altered the uptake of Fe and Zn which increased their content, at least within the first week. One
of the key outcomes was the absence of phenotypic alteration. The plants did not show evident
symptoms of stress, and the values of height and basal diameter of the stem or the number of stems
were comparable among the control and the plants treated with 150 and 300 ppm. Thus, a sort of
counteracting mechanism seems to act at the studied conditions. Altered absorption of Cu affects
photosynthesis in a short time, but, below a Cu threshold, the antioxidative defense system may limit
the damaging effects and avoid the irreversible inactivation of the photosynthetic system. In this way,
even in the presence of lower photosynthetic efficiency, the biomass production and the plant growth
were poorly affected by the contamination.

The role played by the growth system used in this trial cannot be overlooked. The advantage of
mesocosms should rely on removing the buffering effect of the soil and in reproducing an environment
resembling channels, rivers, lakes, ponds, and marshes where the plant can find optimal growth
conditions. However, the role of the inert substrate should be carefully evaluated, because possible
interaction with the elements dissolved in the solution may alter their dynamics.

Based on such analysis, the data confirmed previous indications about the suitability of using the
Arundo species for phytoremediation. From a practical point of view, it must be considered that the
Italian law (DL 152/06) sets for Cu the limit of contamination for the soils of residential areas at the
concentration of 120 mg kg−1. Such a threshold appears compatible with the growth of Arundo plants
both in soil or in aquatic environments. However, the behavior of the plant in the long term should be
verified in further studies.
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