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Space agencies are working to establish a permanent human presence on the moon and

to reach Mars within the next few decades. In these missions, astronaut crew members

will be exposed tomoderate doses of the highly energetic particles that compose galactic

cosmic rays (GCR). GCR consist of alpha particles, protons, and high atomic number

ions, stripped of their electrons (HZE), which are relatively rare, but are also highly ionizing.

HZE are particularly damaging to biological tissues, because they can penetrate to much

deeper layers of shielding materials than gamma rays and x-rays and produce within

tissues long ionization tracks, with strongly clustered damage to information molecules.

The consequences of such damage to central nervous system health is a major concern.

A strong development of new knowledge and models, which may help to predict the

risk of individual astronauts, is an absolute requirement in this field. Genetically tractable

animal models offer unique opportunities to directly investigate the genetic and molecular

events that may affect the biological response to GCR and related radiation.
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INTRODUCTION

Compared to the terrestrial surface, space represents a hostile environment, characterized by the
combination of microgravity, and a peculiar radiative environment, which could lead to severe
health issues for astronaut crews engaged in long-term missions. Among these factors, exposure
to radiation dominated by particle shots and GCR of extremely high energy is of special concern
[1, 2]. Efficient shielding of such radiation is very difficult, considering the mass constraints
which spaceships need to respect. Therefore, it has been noted that “lack of knowledge about
the biological effects of, and responses to, space radiation is the single most important factor
limiting the prediction of radiation risk associated with human space exploration” [3, 4]. The
observations from the ExoMars Trace Gas Orbiter indicate that a 6-month mission to Mars would
imply a radiation dose equal to 60% of the limit which is commonly recommended for the full
career of an astronaut [5]. Without major technological leaps in shielding strategies [6], intrinsic
or induced biological resilience to space radiation chronic exposure will probably be among
the crucial factors to decide about risk acceptability. Individual sensitivity to acute or chronic
exposure to radiation is dependent on genetic background [7]. Following recent developments
in sequencing technologies, determination of individual genomes and acquisition of multi-omic
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information on individuals’ biological samples has become a
relatively low-cost routine. In theory, these resources could
allow for the screening of many crew candidates, to identify
those possessing particularly sensitive or resistant biological
backgrounds. However, our knowledge of the genetic and
biological traits associated with sensitivity to space radiation is
still very limited [7]. NASA has underscored four risks that may
imply important health concerns for astronauts: acute radiation
syndrome, carcinogenesis, degenerative tissue alterations, and
central nervous system (CNS) loss of performance [3]. Among
them, the latter is particularly difficult to understand and predict.
Nevertheless, recent reports have started to shed some light on
this issue [8, 9].

In this review, we will briefly summarize the peculiar features
of space radiation and the problems posed by its simulation. We
will then highlight established and more recent studies on the
impact of ionizing radiations and/or space conditions on CNS
structure and function, in humans and experimental models.
In particular, we will try to summarize the experiments that,
in our opinion, are more informative with regard to functional
CNS changes that may derive from the exposure of mammalian
brain to mission-relevant doses of HZE particles. For a deeper
perspective on these topics, the reader is referred to more
extensive surveys [10–12]. Afterwards, we will review the studies
on genetic factors affecting the general sensitivity to radiation.
Finally, we will highlight the experimental models that could
provide fundamental insight about genetic and biological factors
influencing the response of mature neural networks to space
radiation, with particular regard to C. elegans.

SPACE AND SPACE-RELEVANT
RADIATION

The 2006 report by the National Council on Radiation Protection
and Measurements (NCRP), concerning space missions beyond
low-earth orbit (LEO) [13], underscored that “current space
radiation guidelines pertain only to missions in LEO and are not
considered relevant for missions beyond LEO. The acceptable
levels of risk for space exploration beyond LEO have not been
defined at this time and need to be dealt with before sending
manned missions to colonize the moon or to deep space, such
as a mission to Mars” [13]. Space environment beyond LEO is
characterized by a flux of ionizing radiation mostly composed
of protons and heavier nuclei stripped of their orbital electrons,
but also include a minority (2%) of electrons and positrons.
Mannedmissions beyond LEOwill face the challenge of radiation
from three different sources: solar particle events (SPE), galactic
cosmic radiation (GCR) and intra-vehicular secondary radiation.

SPE occur when protons emitted by the Sun become
accelerated, close to the Sun or in interplanetary space.
SPE frequency is correlated with sunspot activity and their
occurrences oscillate in phase with the solar cycle. SPE can
produce large quantities of protons with energies >30 MeV, at
fluences in excess of 109 protons/cm2 [8]. On missions outside
of LEO, SPE dose inside a spaceship can be as high as 100
mGy/h, but can reach peaks of 500 mGy/h during extravehicular

activity [14]. Due to the high flux and relatively low energy,
SPE radiation is absorbed by the most superficial tissues. Skin
lesions, hematological, and immunological dysfunctions are
therefore the main consequences. For the same reason, shielding
is an effective counter-measure. Therefore, although they may
certainly contribute to cancer risk and tissues degeneration,
SPE are not expected to cause major direct alterations of
CNS function.

GCR is composed of nuclei accelerated to relativistic speeds,
originating from outside our solar system (Figure 1). Electrons
and positrons are of minor concern, because they are stopped by
modest shielding. GCR nuclei span a wide range of energy and
linear energy transfer (LET). The major components consist of
hydrogen (87%), and helium (12%) nuclei, with the remaining
1–2% of particles are comprised from Z = 3 (Li) to Z = 28
(Ni) [15]. High-Z and energy particles (HZE), such as iron (Z =

26), are particularly challenging, because every particle can cause
damage to cellular DNA which is difficult to repair [16] and no
reasonable thickness of shielding material can safely stop them
[6]. GCR particle energy allows them to penetrate very deeply
into biological tissues, as well as other organic and inorganic
materials. In particular, HZE nuclei are an outstanding threat
to body cells, which may strongly contribute to the cumulative
equivalent dose absorbed by astronauts beyond LEO. Shielding
is only partially effective to reduce the doses experienced inside
a spacecraft [2, 6], but increasing shields’ thickness leads to the
production of high levels of secondary radiation, which can be
absorbed even more easily by biological tissues [17]. HZE nuclei
may strongly contribute to the carcinogenic risk to which crew
members are exposed. Indeed, even at relatively low energy,
iron ions are shown to be potent inducers of ovarian tumors
formation in rodents [18]. Due to their high penetration power,
GCR can efficiently reach CNS cells and pose a major risk to CNS
function. However, the effects of chronic exposure to this kind of
radiation on nervous system function and CNS cells’ survival, as
well as the factors that may protect from such damage, are still
not well-understood.

The interaction of energetic protons and HZE nuclei with
spacecraft structures can produce an additional intravehicular
radiation hazard. Secondary radiation includes beta particles, x-
rays, gamma rays, neutrons, protons, alpha particles, and heavy-
charged particles, mostly produced in nuclear fission reactions.
Secondary radiation has lower particle energy, but can be even
more disruptive to tissues than incident radiation particles,
delivering a significant fraction of the total dose absorbed during
missions. Although the capability of such radiation to deeply
penetrate into biological tissues is lower than incident GCR, it
can be sufficiently high enough to deliver a significant dose to
CNS cells.

On this basis, it should be evident that crew members
of missions aimed at the moon, asteroids or Mars will be
exposed to a very complex radiation environment, which can
significantly change qualitatively and quantitatively in space and
time. Predicting the equivalent dose associated to the different
conditions is an extremely difficult task [4]. Among the major
challenges, it is very problematic to understand the consequences
of chronic exposure to low doses of extremely energetic GCR,
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FIGURE 1 | Schematic representation of the main components of space radiation and of the principal model organisms used to study their effects on differentiated

neural tissues.

combined with the secondary radiation. High LET radiation is
very damaging to informational biomolecules, especially DNA.
Different gene expression programs and different sets of protein
phosphorylation events are produced when cells and tissues
are exposed to low vs. high doses of conventional radiations
[1]. So far, the strongest direct evidence about genotoxicity of
GCR in humans is the cytogenetic comparison of cells obtained
from Gemini vs. Apollo astronauts, showing a doubling in
chromosome breaks [19]. Many studies of high-LET radiation
effects have been so far performed on animal models, especially
rodents. However, these studies suffer major limitations [4]. They
have been limited to a maximal particle energy of 1 GeV/n,
thus excluding particles possessing the highest energy, which are
estimated to contribute to approximately half of the dose [4].
Moreover, they were conducted usingmono-energetic beams and
acute, single-ion exposures, instead of complex energy spectra

with diverse ion composition [4]. GCR simulation facilities, such
as the NASA Space Radiation Laboratory (NSRL) in the US
and the Facility for Antiproton Research (FAIR) in Europe are
constantly improving on this limitation, by increasing particles
energy and developing protocols for sequential exposure to
different ion beams. However, sequential beam exposures appear
to be not completely adequate in mimicking simultaneous
exposure to a wide spectrum of particles and energies, since
it has been shown that the order of delivered particles
can significantly modify the biological effects [20]. Moreover,
the dose-rate administered through accelerators will probably
remain higher than low fluency radiation occurring during real
missions [21, 22].

Non-linearity of biological effects of GCR could also depend
on adaptation mechanisms. After missions in ISS, astronauts’
lymphocytes showed complex chromosomal rearrangements,

Frontiers in Physics | www.frontiersin.org 3 October 2020 | Volume 8 | Article 362

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Onorato et al. Space Radiation Experimental Models

involving more than three chromosomes [23], which decreased
but did not reach control levels even after many years.
Nevertheless, controls performed after a second mission did
not show a proportional increase of chromosomal aberrations,
suggesting that an adaptive response may take place [23].
On this basis, it is evident that direct measurement of the
biological effectiveness of space radiation, using adequate
living experimental models, should be considered an inevitable
milestone of space exploration.

EFFECTS OF SPACE-RELEVANT
RADIATION ON MAMMALIAN CNS

In theory, human exploration of space may imply acute and
late radiation risks to the CNS [8, 24]. Acute CNS risks
include functional changes that may compromise astronauts’
performance during the mission, such as altered cognition
and mood, as well as abnormal motor coordination. Acute
effects could derive from exposure to SPE, that can reach
0.5Gy in the case of concomitant extra-vehicular activity
(EVA) or permanent spaces not properly shielded [25, 26].
However, the energies of SPE are usually limited to the 10–
100 MeV range, allowing efficient shielding and implying that
most energy is delivered to superficial tissues, especially skin.
In addition, it must be considered that doses of IR up to
2Gy are currently used in brain radiotherapy, with limited
immediate side effects. The concern about CNS functions is
much more related to the cumulative medium-term and long-
term alterations, produced by prolonged exposure to a low-
fluency (< 20 mGy/h) of protons, HZE nuclei and neutrons,
deriving from SPE flares, GCR, and their combinations in
time. Neural alterations induced by space flight may impact on
learning and memory, motor function, orientation, bio-rhythms
regulation, and neuro-psychological changes, such as emotional
control and risk evaluation [8, 27]. The latest possible effects are
neurodegenerative disorders, such as Alzheimer’s and Parkinson’s
diseases (AD and PD, respectively).

Direct evidence of CNS effects produced by moderate
radiation doses of (≤ 2Gy) derive from studies performed
on atomic bombs survivors and Chernobyl accident victims,
who showed memory and cognitive impairments, as well as
psychiatric disorders and altered electroencephalographic (EEG)
patterns [28, 29]. These studies are limited by uncertain
dosimetry, short exposure times, and radiation type. Additional
evidence has been obtained from radiotherapy patients, who
often show chronic fatigue, depression, and other behavioral
changes [30, 31]. However, administered doses are too high and
inhomogeneous to be fully relevant for the space environment.
This is particularly true for the few “opportunistic” studies
conducted on patients treated with protons and other charged
particle beams for different types of intracranial tumors [32–34]
and cerebrovascular disorders [35, 36]. Interestingly, many of
these studies have shown that cognitive impairment is not evident
in the first year but becomes detectable during long-term follow-
up. Importantly, brain MRI (magnetic resonance imaging)
surveys of 11 astronauts, involved in long LEO missions, clearly

showed that long-term microgravity can contribute to brain
changes caused by radiation exposure [37].

Data from non-human primates, irradiated with relatively
high doses in different experiments, mostly confirmed the
detrimental effects of radiation on the execution of different
behavioral tasks [8, 38]. Similar conclusions have been obtained
with pilot tests performed at much lower doses, which produced
changes in food preferences and degradation in test performance
[39]. However, a provocative study performed with doses on the
order of 1Gy suggests that chronic exposure to space-related
conditions can enhance some behavioral traits. A group of rhesus
monkey males were subjected to 20 to 40 exposures of fast
neutrons and gamma rays, achieving cumulative doses of up to
600 cGy [40, 41]. During the first six months of follow-up no
alterations were observed. However, behavioral tests performed
after 9–10 months were indicative of decreased distractibility in
the irradiated animals, with increased performance in attention
tests, which persisted at 14, 36, and 78 months.

Analyses of rodent models have provided the most extensive
evidence about the potential neurocognitive complications
caused by GCR (Table 1), which could affect skills critical for
missions, as well as long-term neuro-psychological health [8, 10,
24]. Low doses (5-20 cGy) of 1 MeV/n 56Fe particles lead to
severe deficits of mean spatial memory performance in rats, three
months after exposure [42–44]. Similar effects where obtained
by irradiating rats with low doses of 48Ti [65], supporting the
notion that LET-dependency of neurocognitive impairment may
be relatively independent of cell killing. RBE of HZE particles on
memory alteration was extremely high, if considering that x-ray
exposure can alter memory in rats only at doses as high as 10Gy
[66]. Since performance in the attentional set-shifting test was
also compromised [44], these experiments indicate that mission-
relevant exposure to HZE particles may decrease function in the
hippocampus and many other different brain regions, including
the prefrontal and cingulate cortex as well as the basal forebrain.
Similar effects were obtained in mice, exposed to 5–30 cGy
600 of MeV/n 48Ti and 16O [47]. Even though 48Ti was more
effective on disrupting recognition memory, significant long-
lasting alterations in novelty and temporal discrimination tests
were induced even by the lowest dose of 16O [47]. Moreover,
reduced fear extinction and increased anxiety were detected
[47]. Another crucial insight of studies in mice is that the
effects of GCR could be strongly influenced by sex and gender.
Adult male mice, exposed to simulated GCR (single doses, as
high as 50 cGy), showed long term effects like anxiety-related
phenotypes, reduced social interaction, and impaired memory
[48]. In contrast, female mice of the same age were largely
protected from these phenotypes [48].

Interestingly, the studies performed in rodents showed a high
inter-individual variability in HZE-induced neurobehavioral
deficits. In particular, in the low-range dosage, deficits were
particularly pronounced in a subgroup of poor-learner animals
[43]. This result strongly suggests the involvement of individual
genetic factors, although the specific involved loci were
not investigated.

The great sensitivity of CNS to HZE particles is related not
only to radiation-induced neuronal cell death, but may derive
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TABLE 1 | Summary table of the principal genes affecting response to space-relevant radiation in the principal experimental models, including the altered behavior and

functionality with the indicated radiation exposure.

Model organism Genetic background Radiation source Effect

Mouse/Rat Wild-type 5-20cGy of 1MeV/n 56Fe Spatial memory [42–44]

Anxiety [45]

Depression-like behavior [46]

5-30cGy of 600MeV/n 48Ti or
16O

Alteration of functions in hippocampus, cingulate cortex, and basal

forebrain [47]

Disruption of recognition memory [47]

GCR-like radiations Alteration of synapses and spine morphology in behaviorally-relevant

areas [12, 47]

Microglia activation and synapse loss in males [48]

Anxiety phenotypes in males [48]

Reduced social interactions in males [48]

Impaired memory in males [48]

ATM heterozygosity 1GeV 56Fe Unrepaired DNA DSB [49]

Neurological sensitivity [50, 51]

Transgenically expressed APP23

(AD model)

1-4Gy of 600MeV/n 56Fe Electrophysiological alterations in males [52]

Transgenically expressed ApoE3

(AD model)

2Gy 56Fe Impairment in spatial memory [53]

Transgenically expressed

APP/PSEN1 (AD model)

0.1-1Gy of 150MeV protons Amyloid Aβ deposition [54]

D. melanogaster Wild-type GCR-like radiations Alteration of immune response [55]

Deregulation of the expression of genes involved in metabolism and

lifespan regulation [56]

Extension of lifespan [56]

Low-dose-γ radiation Behavioral alterations [57]

C. elegans Wild-type GCR-like radiations Deletion mutations [58, 59]

Deregulation of neuromuscular and neuronal genes [58, 59]

Extension of lifespan due to the upregulation of daf-16 [60]

DNA DSB and deletion mutations [61]

Apoptosis and cell-cycle arrest in germ cells [61]

Alteration of fertility and embryos’ development [62]

Behavioral alterations [63, 64]

Transgenically expressed PolyQ in

muscle cells (Huntington model)

Accumulated aggregates [60]

from the alteration of different aspects of neuronal function
[42]. Irradiation reduced dendritic complexity and spine density
and altered the morphology of dendritic spine in behaviorally-
relevant areas [12, 47]. HZE particles were also capable of
disrupting synaptic integrity and inducing neuroinflammation,
which persisted for more than 6 months after exposure [47].
Microglia activation is mechanistically important in determining
the long-term synaptic and memory deficits, because these
phenotypes can be prevented by transiently depleting microglia
cells, through the administration of a CSFR-1 inhibitor 7 days
after irradiation [67, 68]. Even these phenotypes appear to be
sex-dependent, since microglia activation and synapse loss were
observed only in males, after exposure to GCR-like radiation
[48]. Irradiation produced many different neurophysiological
alterations, which have been well-measured in the perirhinal
cortex, including changes in both intrinsic and extrinsic neuronal
properties [69]. Studies in rodents also showed that the effects of

irradiation on CNS transcriptional activity and epigenetic state
can be potentiated by simulated microgravity [70].

GENETIC MODIFIERS OF SPACE
RADIATION IMPACT ON CNS

The studies discussed above provide strong evidence that the
deep space radiation environment may influence the function
and plasticity of neural networks controlling human behavior,
within mission time and beyond. An even more challenging
problem is to establish whether specific genetic variants or variant
combinations would make individuals particularly sensitive
or resilient to these hostile conditions. The identification
of relatively radiosensitive sub-populations within human
communities has important implications for space medicine,
because it would be unethical to expose radiosensitive individuals
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to conditions that may produce a severe clinical response.
Moreover, the existence of a significantly radiosensitive sub-
population would pose a big challenge to epidemiological studies
addressing dose-response relationships, because it would hamper
the conceptual assumptions necessary for linear extrapolations
from high to low doses [71].

A large body of knowledge is available about genetic
factors that may influence human sensitivity to radiations.
Not surprisingly, most of the strongest genetic players are
involved in some of the pathways that cope with DNA damage.
A better understood factor is the status of the ATM gene.
The encoded protein belongs to the PI3-kinase family and
responds to DNA damage, especially double strand breaks
(DSB), by phosphorylating a plethora of proteins playing critical
roles in DNA repair, as well as in the control of the cell
division cycle [72]. The inactivation of both ATM copies is
responsible for the ataxia-telangiectasia (AT) syndrome, which is
characterized by extreme radio-sensitivity, cancer predisposition,
and cerebellar neurodegeneration. A more relevant question for
space medicine is whether individuals heterozygous for ATM
mutations, who represent at least 1% of the US population
[73], are more radiosensitive than normal people. Studies
performed on small groups of patients, showing severe late
consequences of radiotherapy, revealed a disproportionate
frequency of ATM heterozygous mutations and also suggested
that other genetic factors are involved [71, 74]. The possibility
that ATM heterozygosity is an important susceptibility factor
to HZE effects was confirmed by studies on cultured human
cells [75] and on haplo-insufficient mice [50, 51]. Importantly,
the latter studies showed increased neurological sensitivity
of ATM heterozygous mice to relatively low doses of 1GeV
56Fe particles. Besides ATM, a number of other rare recessive
disorders are characterized by increased radio-sensitivity [76].
These include Fanconi anemia, Nijmegen breakage syndrome
(caused by mutation in NBS1 gene), MRE11 deficiency, and
other more rare disorders [76, 77]. All these conditions share
a deficiency in coping with the radiation-induced DSB, because
of reduced DSB sensing, impaired homologous recombination
(HR), or defective non-homologous end-joining (NHEJ). While
these diseases are not expected to be present in crew member
candidates, it is conceivable that heterozygous inactivation of
the same genes could increase the risk of abnormal radiation
sensitivity in apparently normal subjects. Besides ATM, modestly
increased sensitivity to x-ray has been demonstrated in NBS1
heterozygous mutant cells [78]. It is not known whether HZE
particles could unmask an even higher sensitivity in these
conditions. The potential consequences on CNS of heterozygous
mutations in crucial DSB repair genes are even more obscure.
Increased neurodegeneration occurring in homozygous patients
is suspected to derive from the accumulation of unrepaired
DNA DSB [49]. Indeed, defective DNA repair has also
been observed in neurodegenerative disorders associated with
aging, which include Alzheimer’s disease (AD), Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS) [79–82], and
epilepsy [83]. Although most studies linking DNA damage to
neurodegeneration are correlative [49], recent evidence obtained
on a mouse model of AD-like neurodegeneration indicates that

DSBs accumulate before the onset of neurodegeneration [84],
suggesting a causal link.

Genetic susceptibility factors to neurodegenerative disorders
may also synergistically interact with space-relevant radiation.
Irradiation of APP/PSEN1 transgenic mice with 0.1–1.0Gy of
150 MeV protons increased amyloid Aβ deposition, but did
not worsen the functional and biochemical alterations that
characterize this AD model [54].

In contrast, APP23 transgenic male mice, irradiated
with 1–4Gy of 600 MeV/n 56Fe, showed accelerated
electrophysiological alterations in the hippocampus [52].
Even at much lower doses (10 or 50 cGy) of 1 GeV/n 56Fe
ions showed genotype-specific changes in neuropathology and
behavior of AD-like transgenic mice [85]. Interestingly, even in
this case the phenotype showed complex differences between
males and females [85]. Transgenic mice expressing the E3
variant of ApoE were more sensitive to impairment in spatial
memory induced by 2Gy 56Fe irradiation, as compared to mice
expressing E2 or E4 variants [53].

Even less information is available about genetic conditions
that may increase radio-resistance, especially in the CNS. To this
regard, the best understood pathway is the one activated by the
p53 tumor suppressor TP53. However, although partial TP53 loss
of function may help cells to better survive, it would also increase
the risk of cancer [86].

Altogether, these studies strongly support the notion that
specific genetic factors may influence the effect of the space
radiation environment. However, they also underscore the
difficulties that the analysis of genomic data must face, in
order to predict the risks of a specific subject. These limits are
primarily due to our primitive understanding of the interaction
between HZE radiation and genetic susceptibility factors. A
second important problem is the likely polygenic nature of the
genetic susceptibility, requiring the elaboration of sophisticated
polygenic risk scores. It is unlikely that the latter could be
developed using standard genome wide association studies, when
considering the extremely small subjects’ number that direct
epidemiologic studies can reasonably include. A possible way
around this problem could be offered by astronaut-specific
induced pluripotent stem cells (iPSC). Thanks to the present
development of stem cell technologies, iPSC can be differentiated
in most of the relevant cell types, including CNS cells. The
direct determination of radio-sensitivity of astronaut-specific
cells could provide accurate predictive biomarkers, regardless of
the underlying genetic background [87]. Moreover, innovative
polygenic risk scores could be derived by better dissecting the
biological details of the interaction between HZE radiation and
genetically tractable animal models, which are relatively easy to
study in space-like and actual deep space conditions.

ROLE OF GENETICALLY TRACTABLE
MODELS IN THE STUDY OF BIOLOGICAL
EFFECTS OF SPACE RADIATION

The use of relatively simple and fully tractable experimental
models is pivotal to investigate the impact of deep space
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conditions on different aspects of multicellular organisms’
biology, including genome stability, behavior, and neuronal
survival. In this respect, a simpler vertebrate alternative is offered
by small fish models, such as Zebrafish and Medaka [88, 89].
However, the most flexible alternative to mammalian models
for studying the impact of space environment on adult neural
cells is offered by the invertebrates Drosophila melanogaster
and Caenorhabditis elegans (Figure 1 and Table 1). Indeed, they
have a very small size (3 and 1mm long, respectively), a very
short life cycle (2 and 0.5 weeks, respectively), and life span
(90 and 21 days, respectively), as well as a simple anatomy
including a nervous system; their entire genome, physiological,
and behavioral characteristics are well-understood [90]. Thanks
to the availability of thousands of genetically modified strains,
it is possible to assess the functional relevance of specific
genetic alterations and to test sophisticated genetic hypotheses.
Practically, thesemodels can allow for the screening ofmany gene
candidates, to identify those conferring particularly sensitive
or resistant biological backgrounds. Being invertebrates, they
both raise fewer concerns for experimentation, as compared
to vertebrates. However, considering their good genomic and
cell biology phylogenetic conservation, they have been and will
be fundamental for understanding the molecular mechanisms
and physiological processes which characterize more complex
organisms, such as humans. Multiple times the Nobel prize has
been awarded to researchers working with these twomodels, thus
acknowledging their fundamental contribution to understanding
details of the molecular processes underlying many human
diseases. In addition, they have been shown to be highly versatile
models in studies covering different topics highly relevant to
space biology and medicine, which include the genetics and
molecular biology of aging, development, muscle physiology, and
radiation response.

D. melanogaster has been used in space missions since 2015,
during the Fruit Fly Lab-01 (FFL-01), which provided housing for
fruit flies under conditions of microgravity and simulated Earth
gravity. Experiments revealed that ionizing space radiations
can alter innate immune responses [55]. Chronic low-dose-
γ radiation led to behavioral alteration in D. melanogaster,
inducing impaired climbing activity and exploratory movement
[57]. Low-dose radiation affects the expression of genes involved
in D. melanogaster metabolism and lifespan regulation, causing
a surprising extension [56]. However, it is still largely unknown
how this effect may occur.

Caenorhabditis elegans is a nematode with a defined number
of cells (959 somatic cells in the adult), among which 302
are neurons. It has proven to be a useful model organism
for investigating molecular and cellular aspects of neuron
development and neurodegeneration in numerous human
diseases, including PD and other neurodegenerative conditions
[91, 92]. Moreover, the degeneration of specific neuronal
populations, can be easily analyzed in living animals [93],
thanks to their transparency and the expression of fluorescent
proteins. The choice of C. elegans is specifically justified by the
following elements: a high resistance to extreme conditions (also
thanks to a cuticle); the possibility of hibernation (i.e., as dauer
larvae, a resistant larval stage) and of freezing; the self-fertilizing

hermaphroditism that avoid the need for crossings; a large
progeny (300 eggs per each animal); and the possibility to culture
them in microfluidic devices [94].

Caenorhabditis elegans has traveled 12 times in space and
experiments have been performed in the Space Shuttle and
on the ISS. Therefore, much information has been obtained,
which will not be discussed here [95]; in relation with the
focus of the present review, C. elegans explored space for
the first time on STS-42, allowing researchers to demonstrate
no alteration in males mating behavior during spaceflight
[96]. In the STS-76 mission, a high number of mutations
were shown as the direct effect of space radiation and not
microgravity. In particular, high-LET charged particles caused
deletion mutations [58, 59]. ICE-First (International C. elegans
Experiment-I) was the fifth spaceflight for the nematode,
and the first on-board the ISS [97]. Results from the space
flight experiment provided information on how radiation and
microgravity influences worm development throughout the life
cycle and worm muscle physiology, as well as which are
the changes in gene expression [97]. Interestingly, relevant
spaceflight-induced changes in expression of neuromuscular
and neuronal genes have been specifically determined [58, 59].
Moreover, genes involving lifespan extension, such as daf-16, are
upregulated after spaceflight, suggesting that space-flight might
increase nematodes’ survival [60]. These effects seem related to
the alteration of neuronal and endocrine signaling involved in
“longevity-promoting” processes, similar to those activated by
dietary-restriction signaling [60].

A model for Huntington’s and related neurodegenerative
disorders, transgenically expressing polyQ in muscle cells,
accumulates aggregates with aging. This accumulation was
suppressed in C. elegans after spaceflight and gene expression
analysis showed that aging in C. elegans may be slowed
through neuronal and endocrine adaptation to space-related
stressors [60].

Contrary to the abundant information on genome stability
and muscle physiology after spaceflights, less is known of the
neuron response, despite C. elegans being selected as an elective
model for neurobiology studies [98, 99]. More information has
been obtained on Earth, by studying the effects of radiation
on the nematode. Ionizing radiation induces several changes
in terms of biological and physiological processes [61]. As in
mammalian cells, they can induce DNA DSB and deletions,
leading to apoptosis and cell-cycle arrest. This occurs especially
in the germ cells in which, after irradiation, apoptosis and
cell-cycle arrests significantly increase [61]. Adult nematodes
tolerate both acute and chronic high-dose irradiation with minor
consequences, apart from a reduction of fertility, thus allowing
for studying the effects on adult animals. Parental exposure
leads to DNA damage in embryos, but the progeny maintains
high reproductive capacity, despite a reduction of somatic
growth [62]. Interestingly, the cell death pathway activated by
ionizing radiation in germ cells is different from the pathway
involved in physiological apoptosis [62]. Recently, transcriptome
sequencing revealed a series of novel ionizing radiation-response
genes [100]. Moreover, radiosensitive (e.g., rad-1 and rad-2) and
radioresistant (e.g., cdc-25.3) mutants have been identified [101,
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102]. Ionizing irradiations also have effects on learning behavior
and the locomotory rate. In particular, radiation affects salt
chemotaxis learning behavior, which is an associative learning
paradigm [63, 64]. This phenotype resembles the taste aversion
observed in the group of male rhesus monkeys described above
[40, 41], or in rodents [45]. Moreover, the altered learning
produced by radiation was inhibited in the gpc-1mutant, lacking
one gamma subunit of the heterotrimeric G-protein. The effects
of radiations on the locomotor behavior have also been studied.
The ionizing radiations induced a reduction of the locomotor
rate, mediated by a pathway different from the dopaminergic
pathway in place for bacterial mechano-sensing [63].

All these results explain how C. elegans offers potential for
the design of an innovative biological dosimeter. The frequency
and types of mutations generated and maintained in C. elegans
have been deeply assessed [103, 104]. An interesting step forward
will be to use C. elegans as an accumulating dosimeter for
neuronal defects. The possibility of phenotyping neural cells at
high resolution, in combination with the genetic tractability of
C. elegans could make the nervous system of this small organism
an excellent model to assess the consequences of chronic
exposure to relatively low doses of space-relevant radiations,
although it will be necessary to adapt the dose to its short lifespan
and high radio-resistance. Using standard and genetically
modified strains and dynamic microscopy, the phenotyping
could be done over multiple/daily treatments during life. The
following quantities can be measured and correlated with
the radiation dose: movement, chemotaxis, and expression of
fluorescent markers to monitor neurons morphology. Moreover,
thanks to its short life-cycle, the phenotyping could be done
in C. elegans over multiple generations in space, as NASA has
called for. The combination with sequencing technologies, which
have recently been implemented on board the ISS, will allow

analyses of space-induced genetic and epigenetic changes, in
strict correlation to phenotypic changes, during missions on
the ISS and beyond [105]. The peculiar features of C. elegans,
including the possibility of maintaining it in hibernation and
growing within microfluidic devices, would make it ideally
suited as an innovative bio-dosimeter for deep space missions,
including those conducted through micro-satellite platforms.
In summary, the resources, features, and knowledge offered by
genetically tractable animal models, in particular C. elegans,
make them excellent resources for studying the direct effects
of cosmic radiation on neuron survival and function, in
simulation experiments and, even more importantly, in real
spaceflight missions.
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