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A B S T R A C T   

The amount of liquid water (LWC) present in the snowpack is critical for predicting wet snow avalanches, 
forecasting meltwater release, and assessing water availability in river basins. However, measuring this variable 
using traditional in situ methods is challenging. Space imaging spectroscopy is emerging as a promising approach 
to map the spatial and temporal variations of snow parameters. While some studies suggest the potential of 
hyperspectral remote sensing to infer liquid water content, field validation is still lacking. In this context, we 
propose a new spectral index, namely Snow Surficial Water Index (SSWI), which is designed to be sensitive to the 
percentage of surficial liquid water content in snow. We developed the index using the BioSNICAR radiative 
transfer model and then we tested it on both field spectral data and satellite PRISMA imagery. Validation was 
performed using field data collected with a Snow Sensor during four campaigns in alpine environments, one of 
which simultaneously with PRISMA. Through a k-fold cross-validation analysis, we achieved a coefficient of 
determination of 0.7 and a Root Mean Square Error equal to 3%, demonstrating the effectiveness of the proposed 
index in retrieving LWC from field data and mapping LWC from PRISMA data. A spatial analysis at the catchment 
level reinforced the results, showing an LWC distribution consistent with orography. The proposed method can 
be easily applied to other space imaging spectroscopy missions.   

1. Introduction 

Understanding the spatial distribution and amount of liquid water 
(LWC) within a snowpack has substantial implications for snow hy-
drology and snowpack stability (Conway and Raymond, 1993). LWC 
plays a critical role in forecasting the start of meltwater runoff and in the 
effective management of water reservoirs (Brun et al., 1989; Kattelmann 
and Dozier, 1999). Indeed, the presence of water in snow is an indicator 
of the snowpack’s energy balance and provides information on the 
timing of snowmelt. Overall, the transition from snow to liquid water is 
due to the energy inputs to the snowpack from solar radiation, air 
temperature, or rain-on-snow events (Colombo et al., 2019; Mazurkie-
wicz et al., 2008). The melting process induces the formation of round- 

shaped grains, and the particle size increases further with each subse-
quent melt-freeze cycle (Fierz et al., 2009). If during melting the 
snowpack exhibits <3% water (wet snow), it can rise by capillarity and 
replace cohesion by sintering. On the contrary, if there is a higher 
amount of water (above about 8%), it leads to lubrication and fluid-
ization of the snowpack, which might result in discharge and high- 
density avalanches (Dingman, 2015; Fierz et al., 2009). 

The estimation of LWC in snow typically involves field-based mea-
surements for each snow layer. These measurements consist of manually 
compressing a snow sample and observing its behavior for the presence 
of liquid water. Different classification schemes can be used and 
guidelines are provided to ensure the replicability of these tests (Fierz 
et al., 2009). Nonetheless, the accurate estimation of LWC remains a 
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challenging task, even for experienced observers. Overall, the high dy-
namics in space and time of water flow within the snowpack make these 
measurements difficult to collect and interpret. Different instruments 
encompassing various techniques have been hence developed for 
measuring LWC in the field. The exploitation of the dielectric constant 
represents the most common approach (Lundberg, 1997). Other tech-
niques include dye tracers (Williams et al., 2010), centrifugal separation 
(Jones et al., 1983), imaging spectroscopy (Donahue et al., 2022), and 
freezing, melting, or alcohol calorimetry (Boyne and Fisk, 1987; Fisk, 
1986; Kawashima et al., 1998). 

Space imaging spectroscopy offers a promising perspective for 
mapping the spatial and temporal variability of surface parameters 
related to the cryosphere (Casey et al., 2012; Di Mauro et al., 2017; 
Engstrom et al., 2022). Different studies have highlighted the possibility 
to infer snow properties from hyperspectral data gathered from airborne 
campaigns (e.g., Donahue et al., 2023; Dozier and Painter, 2004; Naegeli 
et al., 2015; Painter et al., 2013). Current and future spaceborne mis-
sions, such as PRISMA (PRecursore IperSpettrale della Missione Appli-
cativa), ENMAP (Environmental Mapping and Analysis Program), 
CHIME (Copernicus Hyperspectral Imaging Mission for the Environ-
ment), SBG (Surface Biology and Geology), and EMIT (Earth surface 
Mineral dust source InvesTigation), can allow for more systematic and 
global mapping of snow parameters (Bohn et al., 2022; Di Mauro et al., 
2024; Kokhanovsky et al., 2022, 2023; Thompson et al., 2024). In the 
literature, LWC has been studied and derived from field, airborne, and 
satellite data using a variety of methods. The first studies by Green et al., 
2002, 2006 demonstrated the possibility of inferring LWC from airborne 
data by exploiting the spectral shift of the reflectance spectra of snow in 
terms of equivalent absorption path. This method was further used by 
Dumont et al. (2017) to distinguish between dry and wet snow. Shekhar 
et al. (2019) introduced a three-band ratio approach method to classify 
airborne hyperspectral data from AVIRIS (Airborne Visible/Infrared 
Imaging Spectrometer) into dry and wet snow classes. In recent years, 
Bohn et al. (2020) developed a retrieval approach to quantify the three 
phases of water (from Green et al., 2006) using a coupled radiative 
transfer model based on the Beer-Lambert Law. AVIRIS and PRISMA 
have been used to map the LWC, given their suitable spectral resolution 
(Bohn et al., 2021, 2022). These methodologies are based on a simul-
taneous retrieval of atmospheric and surface parameters using optimal 
estimation techniques. To incorporate the effect of LWC, the authors 
used the two-layer coated sphere Lorenz-Mie calculations models of 
Green et al. (2002). All these studies lack contemporary field validation, 
and only recently Donahue et al. (2022) performed a laboratory study to 
retrieve LWC with a Near InfraRed (NIR) hyperspectral camera, 
providing a validation with independent measurements. Passive mi-
crowave remote sensing and synthetic aperture radar (SAR) data also 
showed promising results in retrieving snow properties. Houtz et al., 
2019 proposed a method to retrieve LWC from the L-band radiometer 
data by using a physically deterministic emission model. Ma et al. 
(2020) derived the effective snowpack moisture using full-polarimetric 
SAR data, while Awasthi et al. (2022) proposed a novel modeling 
approach using hybrid polarimetric datasets. Synergies between 
different sensors can be pursued in the coming years, exploiting current 
and future space missions. 

In this study, we developed a remote sensing approach to obtain the 
spatial distribution of LWC in surficial snow. The objective of this study 
is the development and application of a hyperspectral index sensitive to 
LWC variations in surficial snow. The spectral index has been developed 
using simulations from the BioSNICAR radiative transfer model (Cook 
et al., 2020) and then tested on both field and PRISMA spectral data. 
Performance validation has been conducted using field data of LWC 
collected by the Snow Sensor (FPGA Company, 2018) in four field 
campaigns carried out over snow covered areas in the Italian Alps. 

2. Data and methods 

2.1. Study sites and ground-based data 

Field data of snow parameters and optical properties were collected 
in four campaigns at the following sites of the Italian Alps: Plateau Rosa, 
Laghi Cime Bianche, Formazza, and Stelvio (Fig. 1). 

Table 1 summarizes the site locations, the main characteristics of the 
snowpack, and the different measurements. Overall, a total of 52 LWC 
measurements were collected with LWC ranging from 0 to 15% and 
snow density from 250 to 411 kg/m3. The LWC measurements were 
taken using a Snow Sensor, a capacitance sensor that assesses the rela-
tive permittivity when placed on the snow (SLF Snow Sensor, FPGA 
Company, 2018). The instrument can measure snow moisture that 
ranges from 0 to 20 and directly provides LWC measurements in per-
centage units (of volume). LWC measurements were replicated three 
times at each point. The Snow Sensor requires the value of the dry snow 
density, which can be critical to know. In this work, we assumed the dry 
density as the first measurement of density in the morning, as suggested 
by the instrument manufacturers. The penetration of the electric field of 
the Snow Sensor into the snow is about 17 mm (Donahue et al., 2022). 
LWC measurements at Plateau Rosa were performed on the glacier 
covered by seasonal snow in a warm summer condition. The LWC data at 
Stelvio have been collected on the glacier tongue some days after an 
early snowfall event, when warm air temperatures forced the melting of 
the snow during the day, changing the LWC. 

Table 1 also shows information about the field spectroscopy mea-
surements and satellite data availability, which are fully described in 
Section 2.3. The campaign at Laghi Cime Bianche was conducted on the 
21st of February 2023, quasi-simultaneously with a PRISMA overpass at 
11.00 UTC. The PRISMA image covers an area of 30 by 30 km (cf. Fig. 1). 
We conducted LWC measurements in 9 different areas of about 30 m ×
30 m each (consistent with the PRISMA spatial resolution of 30 m). In 3 
of these areas, we also performed reflectance measurements. 

2.2. LWC modeling with BioSNICAR 

2.2.1. Model setting 
The spectral complex refractive index of ice (Picard et al., 2016; 

Warren and Brandt, 2008) and of water (Segelstein, 1981) are shown in 

Fig. 1. Investigated areas (Plateau Rosa, Formazza, and Stelvio) are depicted as 
red points. The yellow rectangle shows the area covered by the PRISMA satellite 
image. The campaign at the Laghi Cime Bianche site was conducted simulta-
neously with the PRISMA overpass, and it is depicted as a yellow point. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 2. Of the various properties of snow, the surficial liquid water 
content and the grain size affect the snow reflectance over a wide 
spectral range, from 800 to 2500 nm (Warren, 1982). Across this spec-
tral range, the imaginary component of the refractive index of both ice 
and water varies significantly and contains several local minima that are 
shifted relative to each other. As a result of this shift, there are also 
differences in the reflectance spectrum of dry and wet snow (Green et al., 
2002). 

The BioSNICAR radiative transfer model (Cook et al., 2020; Flanner 
et al., 2007) was used to evaluate the sensibility of surficial LWC to 
reflectance and to develop a new spectral index sensitive to LWC vari-
ations. The rationale for building the spectral index from a physical 
model is that since the reflectance is affected by the physical properties 
of the snow, these can be predicted by establishing a functional rela-
tionship between snow properties and surface spectral reflectance. The 
BioSNICAR simulates the Bi-Hemispherical Reflectance Factor (BHRF, 
Schaepman-Strub et al., 2006) with a two-stream approach (Flanner 
et al., 2021) in a wide spectral range, from ultraviolet (200 nm) to mid- 
wave infrared (5000 nm), with a resolution of 10 nm. The model inputs 
include the illumination conditions (e.g., solar zenith angle - SZA - and 
the atmospheric profile from seven different locations on the Earth), the 
snow layer structure (e.g., number and thickness of layers, density, grain 
size, and LWC), and the type and the concentration of organic/inorganic 
impurities externally mixed with the snow or ice. In this model, the snow 
is represented as a bulk medium of air with discrete grains represented 
as spheres. We used the Mie theory since the melting process induces the 
formation of round grains (Fierz et al., 2009). During periods of high 
radiation and near-freezing temperatures (as in our study), small ice 
grains likely melt from their surface, forming water-coated grains or 
clusters of well-rounded grains. Therefore, we simulated the interstitial 
melt water as liquid water coatings around ice grains (Green et al., 
2002), although different conditions exist, as described in Colbeck 
(1980); Donahue et al. (2022). 

Under these assumptions, we modeled the snowpack as two layers (5 
cm and 60 cm in depth, respectively), where only in the first one LWC is 
generated and produced. This approach should allow to be consistent 
with field spectral data. The simulation of spectral data was performed 
at the BioSNICAR spectral resolution of 10 nm. We created a library of 
1743 reflectance simulations, varying the grain size values from 100 to 
1450 μm by 25 μm steps, the SZA from 20 to 70◦ by 10◦ steps, and the 
LWC values from 0 to 20% by 1% steps. To better represent the snow-
pack conditions, we set the density values according to LWC values as 
follows: 300 kg/m3 for LWC values ranging from 0 to 4%, 350 kg/m3 

from 5 to 9%, 400 kg/m3 from 10 to 14%, and 450 kg/m3 from 14 to 
20%, respectively. As for the other parameters available in the model, 
we used direct solar radiation and a mid-latitude winter atmosphere. 
Since the light absorbing particles (LAPs) present in the snowpack affect 
the spectral reflectance (e.g., Di Mauro et al., 2021), we performed 
BioSNICAR simulations by increasing the volumetric concentration of 
black carbon (from 100 to 1000 ppb by 100 ppb step) and Saharan dust 
particles (from 100 to 1000 ppm by 100 ppm step) with varying LWC 
from 0 to 20%. As the organic impurities in the snowpack affect the 
spectral reflectance only in the visible range (400–785 nm) (Di Mauro 
et al., 2021), which lies outside the considered absorption feature, we 
decided to exclude them from the simulations. 

An example of simulated data for different grain sizes and LWC is 
shown in Fig. 3. Fig. 3a shows the snow reflectance with variable snow 
grain size. The transition may mimic from pristine snow (grain effective 
radius of about 50 μm) to aged snow (about 1500 μm), and it produces a 
decrease of reflectance mainly in near-infrared wavelengths, without 
any shift or shape deformation of the absorption feature at 1030 nm. The 
reason is that large-coarse grains exhibit higher absorptive and forward 
scattering properties compared to fine grains due to the longer light path 
within the ice crystal, resulting in increasing light absorption (Wiscombe 
and Warren, 1980). Different methods have been developed and suc-
cessfully tested for deriving grain size from multispectral and hyper-
spectral data (Dumont et al., 2017; Garzonio et al., 2018; Kokhanovsky 
et al., 2019; Negi and Kokhanovsky, 2011; Nolin and Dozier, 2000). 
Fig. 3b shows the reflectance with increasing values of surficial LWC and 
grain size equal to 500 μm. During the snow melting season in alpine 
catchments, an increase in the effective grain size generally occurs when 
liquid water fills the gaps between ice grains, leading the refractive 
index of the moist ice to align with that of water. Green et al. (2002) first 
highlighted that the position of the local minimum corresponding to the 
absorption feature at 1030 nm shifts toward lower wavelengths with 
increasing LWC, in particular in the spectral range between 800 and 
2500 nm. The magnitude of this shift is about 20 nm in the 0–20% LWC 
range. The effect of the LWC on reflectance is less than the effect of the 
grain size on reflectance but can affect grain size retrieval if not 
accounted for (Donahue et al., 2022). 

2.2.2. Spectral index development 
To analyze in detail the spectral feature centered at 1030 nm, and to 

decouple the effects of grain size, SZA, and LWC in the detected signal, 
we propose an approach based on the development of a new spectral 
index. Firstly, we applied a Continuum Removal (CR) approach within 

Table 1 
Information about study areas, snow characteristics, field spectral measurements and satellite PRISMA data availability.  

Site name Sites location (Lat; 
Lon) 

Elevation (m 
asl) 

Campaign 
date 

LWC 
sampling sites 

LWC range 
(%) 

Mean snow 
density (kg/m3) 

Mean SSA 
(m2/kg) 

Field spectroscopy 
points 

PRISMA 
image 

Plateau Rosa 45.930003◦; 
7.681924◦

3500 30/06/2021 8 0–9.1 411 ± 40 14.0 ± 0.4 8 NO 

Stelvio 46.514032◦; 
10.459534◦

2561 18/10/2022 16 0.4–14.48 200 ± 60 15.0 ± 4.0 16 NO 

Laghi Cime 
Bianche 

45.933883◦; 
7.713678◦

2810 21/02/2023 9 0–9.2 350 ± 69 12.4 ± 3.9 3 YES 

Formazza 46.423439◦; 
8.415994◦

1700 03/03/2023 19 0–10.1 250 ± 50 18.0 ± 3.8 19 NO  

Fig. 2. Real (dashed line) and imaginary components (continuous line) of the 
refractive index of ice (light blue line) and water (blue line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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the absorption feature considering the method proposed by Clark and 
Roush (1984). This technique involves establishing a convex continuum 
between two anchor points of the reflectance in the referred wavelength 
range and then subtracting it. Here, we have considered the CR between 
905 and 1125 nm as band shoulders. Among the advantages of using the 
CR method, the estimation of LWC is expected to be independent of the 
absolute magnitude of spectral reflectance (Nolin and Dozier, 2000). 
Subsequently, the continuum-removed spectra were fitted with a 
Gaussian function (Pepe et al., 2023). Fig. 4 shows two examples of the 
continuum removal with different LWC values for two typical snow 
grain sizes (Fig. 4a, grain size = 400 μm; Fig. 4b, grain size = 800 μm). 
For higher LWC values, the minimum in the snow spectra is clearly 
shifted to shorter wavelengths and the area becomes asymmetric. We 
found that the magnitude of the spectral shift after the application of the 
CR method is about 27 nm for a 20% change in LWC. This value is 
dependent on the position of the anchor points of the CR. In the presence 
of dry snow (for LWC = 0), the CR is centered around 1025 nm, and it 
shows increasing depths with increasing grain size (Fig. 4a and b). The 
depth of the absorption features at 1025 nm (ddry) can be exploited to 
modulate the grain size variability and to minimize its effect on the 
recorded signal. 

This analysis allowed us to introduce the dimensionless Snow Sur-
ficial Water Index (SSWI), which is defined as the semi-area of the ab-
sorption feature normalized to ddry as: 

SSWI =
1

ddry
A1025 =

1
ddry

∫ λ=1025

λ=905

Rc(λ) − R(λ)
Rc(λ)

dλ (1)  

where Rc is the continuum reflectance, and R is the reflectance; A1025 is 
the semi-area, which is estimated by numerical integration with the 
trapezoidal rule between the anchor points of the CR feature at 905 nm 
and 1025 nm, inspired by the Nolin and Dozier (2000) approach. The 
choice to use a semi-area rather than the whole area of the absorption 
feature is due to a fine tuning of the standard deviation when consid-
ering the grain size variability. A1025 increases exponentially with the 
grain size and ddry also increases with grain size with the same expo-
nential law (data not shown). Similarly, A1025 and ddry decrease with the 
SZA with the same exponential law. Therefore, we expect SSWI to be 
independent of both grain size and SZA. Moreover, SSWI is independent 
from impurities in the scenario of low LAPs concentration (<0.6 ppm for 
carbonaceous particles and < 500 ppm for dust, data not shown), and it 
can be therefore applied only under this condition. This index relates 
very well to the method presented by Green et al., 2002 (with a deter-
mination coefficient R2 of 0.994, data not shown). 

Under the Lambertian assumptions, we developed SSWI from BHRF 
simulations from BioSNICAR, and then we applied it to the 
Hemispherical-Conical Reflectance Factor (HCRF) spectra derived from 
field measurements and PRISMA image. Other studies used the same 
approach (Chevrollier et al., 2022; Di Mauro et al., 2017, 2024; 
Kokhanovsky et al., 2019). However, the Lambertian assumption may 
introduce some uncertainty in SSWI and LWC retrievals, but this analysis 

was beyond the scope of this study. 
The performance of SSWI to derive LWC was evaluated by using both 

simulated and measured datasets and then tested in a regression model 
with both field measurements and PRISMA images to retrieve LWC from 
observed data. 

2.3. Field spectroscopy, PRISMA satellite data preprocessing and 
statistical analysis 

Field spectroscopy measurements were performed at the same time 
as LWC, snow density, and specific surface area measurements at each 
investigated site. All the measurements were performed on clear sky 
days on almost flat terrain (<5◦) and clean snow conditions (no visible 
layers of impurities). Spectral measurements were conducted using a 
Spectral Evolution (SR-3500) full range portable spectroradiometer 
(spectral range from 350 nm to 2500 nm; spectral resolution ≤3.5 nm 
from 350 to 1000 nm, ≤ 10 nm from 1000 to 1900 nm, and ≤ 7 nm from 
2100 to 2500 nm). 

The measured reflected radiances, replicated three times for each 
site, were converted into reflectance (namely HCRF) by normalizing the 
reflected radiances measured over snow targets with the radiances re-
flected from a calibrated Lambertian Spectralon panel. Data at the native 
spectral resolution were resampled to 10 nm to be consistent with the 
spectral setting of both BioSNICAR and PRISMA. During the campaign at 
Laghi Cime Bianche, reflectance measurements were collected in 3 
different areas, with 20 measurements in each area, where LWC mea-
surements were also performed (Section 2.1). 

The level 1 - top-of-atmosphere radiance (L1) - PRISMA standard 
products were downloaded from the PRISMA portal and pre-processed 
using the prismaread1 tool (Busetto and Ranghetti, 2020) to convert 
the PRISMA data package into a single hyperspectral data-cube from the 
Visible – Near-InfraRed (VNIR) to Short Wave InfraRed (SWIR) region. 
To ensure a precise geolocation with the field measurements, a geo-
coding process was performed. Using prismaread, a primary bow-tie 
correction, gap filling, and gridding in geographic coordinates are per-
formed. Then, a Python script based on the AROSICS package,2 was used 
to perform automatic subpixel co-registration of PRISMA (GSD 30 m) 
with Sentinel 2 data (GSD 20 m) as a reference. The AROSICS algorithm 
(Scheffler et al., 2017) applies an improved phase-correlation approach 
employing a discrete Fourier transformation domain to derive pixel 
geometrical displacement of the slave PRISMA image with respect to the 
Sentinel-2 master image (chosen as close as possible to the PRISMA 
overpass). The local co-registration algorithm option was used for 
extracting tie-points toward a moving window across a 10-m grid of 
control points. Since the algorithm runs for single monochromatic image 

Fig. 3. (a) Modeled dry snow reflectance for grain size ranging from 100 to 1000 μm; SZA = 50◦. (b) Modeled snow reflectance for grain size = 500 μm with LWC 
ranging from 0 to 20%; SZA = 50◦. 

1 https://irea-cnr-mi.github.io/prismaread/index.html.  
2 https://www.gfz-potsdam.de/en/software/automatic-subpixel-co-registr 

ation-geomultisens. 
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pairs, PRISMA band 51 was paired with Sentinel-2 band 8. Afterwards, 
AROSICS was used to extract tie-points, while their altitude was 
extracted from a Digital Elevation Model (DEM) and included in the final 
ortho-projection by second order polynomial transformation in GDAL. 
Residual errors are around half-pixel size. 

The entire process results in a geocoded L1 hypercube with 30 m 
spatial resolution. Geocoded L1 data were then corrected for atmo-
spheric effects with the ATCOR3 software (Richter, 1998). The rugged 
terrain mode was used, ingesting elevation data from the local DEM for 
atmospheric altitude compensation. A rural aerosol type was used, and 
water vapor in the atmosphere was set to vary spatially, using the 
atmospherically pre-corrected differential absorption (APDA) method 
(Schläpfer et al., 1998, implemented in ATCOR3) applied at the 820 nm 
water absorption region. The atmospheric visibility was set to 23 km (as 
modeled by ATCOR3 and consistent with the Aerosol Optical Depth 
provided within the PRISMA standard product), while the range of ad-
jacency effect was set to 1 km. 

Finally, to reduce the noise in the ATCOR3-derived PRISMA reflec-
tance we applied a Savitzky-Golay smoothing filter (kernel = 6 and 
polynomial order = 3). This smoothing preserves the signal within the 
investigated absorption feature at 1030 nm, where the PRISMA spectral 
bandwidth of 12.95 nm is also comparable to the 10 nm bandwidth of 
both the BioSNICAR simulations and the SR-3500 field data. The 
smoothed ATCOR3-derived PRISMA image of reflectance allowed the 
continuous shape of the absorption spectra within the spectral region 
used by the SSWI. 

To obtain a snow cover map, we exploited a modified version of the 
Normalized Difference Snow Index (NDSI) (Dozier, 1989) on the 
smoothed PRISMA reflectance image. Since the NDSI was originally 
designed for multispectral data (Hall and Riggs, 1995), we adopted the 
NDSI formulation proposed for the Hyperion satellite sensor (Negi et al., 
2013) considering 500 nm and 1600 nm. According to the literature, 
where NDSI is >0.4 the surface is largely covered by snow. 

We finally computed the SSWI index both on field data and PRISMA 
image according to Eq. (1). The SSWI from PRISMA have been calcu-
lated by averaging the reflectance of regions of interest corresponding to 
a window of 3 × 3 PRISMA pixels centered on the 9 sites where the LWC 
measurements were measured. Field and PRISMA derived SSWIs were 
analyzed together since for PRISMA we had only 9 matchups. The 
empirical relationship between SSWI and manually measured LWC was 
established using inverse Ordinary Least Squares (OLS) regression 
techniques and evaluated in terms of R2 and RMSE. The OLS technique 
allowed us to calibrate the inverse form of the empirical relationship. In 
particular, we employed the measured LWC variable as the predictor 
and SSWI as the dependent variable to estimate the OLS coefficients. The 
validation of the OLS model was performed with the k-fold approach 
splitting the dataset into five subsets (number of samples = 11). The 
model was fitted using four subsets for the training, and the validation 
was performed using the remaining subset. We repeated the k-fold cross- 
validation to improve the estimated performance, involving 15 multiple 

iterations of the procedure. The performance of the model was evaluated 
in terms of cross-validated coefficient of determination (R2

CV) and cross- 
validated root mean square error (RMSECV). The inverse model was 
finally applied to the PRISMA snow cover map to produce the LWC map 
in the Laghi Cime Bianche area. From PRISMA data we excluded the 
snow shaded areas by imposing a threshold on the blue reflectance (i.e. 
ρ497 > 0.4) since the application of the CR approach produced unreliable 
values (LWC >20%). The LWC map was finally interpreted by consid-
ering spatial patterns according to aspect and altitude in different 
catchments derived from the DEM of the Aosta Valley (Italy). 

3. Results and discussion 

3.1. SSWI performance on simulated data 

Fig. 5a and b show the average trend of the SSWI computed ac-
cording to Eq. (1) over the SZA (0–70◦ range) and grain size (250–1450 
μm range) respectively, while Fig. 5c shows the behavior of SSWI with 
regards to LWC. The SSWI is almost independent of the SZA and grain 
size, and it is significantly linearly correlated with LWC in the case of 
Lambertian surfaces and low LAPs values. Therefore, these simulations 
appear to suggest that this spectral index can minimize grain size and 
SZA effects and therefore to maximize sensitivity to liquid water 
content. 

Other methods to retrieve LWC have been proposed in the literature 
and these can present advantages over the proposed method. The full 
retrieval of snow parameters from space presented in Bohn et al. (2022) 
allows for consistent estimates of snow parameters and it may represent 
the state of the art, although model parameterization and inversion 
approaches imply a significant complexity. Such approaches allow the 
estimation of LWC in the predictive mode, therefore overcoming the 
need for parameterization required for the use of regressive empirical 
models. In this study, we focused on a single snow parameter that can be 
estimated by a spectral index using an empirical approach. SSWI is easy 
to implement: it can be computed from different space imaging spec-
troscopy, and it can be considered as a proxy for LWC to investigate its 
spatial and temporal patterns. A full comparison of different methods, an 
uncertainty analysis and a full validation scheme with real data are 
currently missing and should be pursued with the advent of new space 
imaging spectroscopy missions. 

3.2. LWC retrieval from field spectroscopy and PRISMA image 

Fig. 6 shows the field SR-3500 reflectance spectra and the corre-
sponding CR spectra at each of the investigated Alpine sites (cf. Fig. 1). 
The variability observed in the CR analysis can be mostly explained by 
the change in snow properties since impacts due to the SZA and grain 
size are suppressed by this method. The spectral shift of the minimum 
absorption is clearly visible in Fig. 6b at the Stelvio site, where we 
recorded the widest LWC range. 

Fig. 4. Example of a continuum removal (CR) around the absorption feature at 1030 nm with varying LWC. The grain sizes used for the simulations are 400 μm (a) 
and 800 μm (b). The center of the CR for LWC = 0 is located at 1025 nm, and its depth (ddry) increases with the grain size. 
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The relationship between SSWI and measured LWC is shown in 
Fig. 7a. Overall, the regression analysis showed an R2 of 0.8 and an 
RMSE of 3.3. The modeled LWC was then obtained by inverting the 
regression model shown in Fig. 7a, according to the following equation: 

LWC =
SSWI − 38

1.6
[%] (2) 

Fig. 7b shows the agreement between modeled LWC (Eq. (2)) and 
measured LWC using the k-fold cross-validation. The performance of this 
approach is promising, with an R2 of 0.7 and a cross-validated error of 
3.0%. Overall, the uncertainties can be attributed to the surface 
anisotropy, topo-atmospheric correction, and PRISMA geolocation er-
rors. In addition, the Snow Sensor describes water status by considering 
a snowpack thickness and a spatial field of view different from that of 
reflectance measurements (both SR-3500 and PRISMA data). A recent 
study demonstrated how the reflectance data can be corrected for 
topography without the use of a DEM (Carmon et al., 2023), and this 
may provide interesting perspectives for remote sensing in alpine areas. 

In summary, this study provides evidence that LWC can be estimated 
from remotely sensed data and presents a validation attempt that, to our 
knowledge, has never been conducted using both field and satellite data. 

Finally, the LWC at the surface was mapped from the PRISMA snow 
cover map by using Eq. (2). Fig. 8a shows a true-colour composite of the 
PRISMA image over the western European Alps, also including the Laghi 
Cime Bianche and Plateau Rosa areas. The 9 red points correspond to the 
in-situ measurements performed with the Snow Sensor at the same time 
as the PRISMA acquisition. Fig. 8b shows an example of the ATCOR3- 
derived PRISMA reflectance, with corresponding field-based spectra, 
before (red dots) and after the smoothing filter (black line), where the 
absorption feature at 1030 nm and the relative anchor points for the CR 
analysis are evident. The PRISMA continuum removed spectrum in the 
905–1125 nm range is shown at the top of the plot. Fig. 8c shows an LWC 
map obtained from the PRISMA derived reflectance, while Fig. 8d il-
lustrates the corresponding histogram frequency. The colors are set ac-
cording to the five classes of Fierz et al. (2009), which are traditionally 
used to distinguish between dry (0%), moist (0–3%), wet (3–5%), very 
wet (5–8%), and soaked snow (> 15%). Overall, we found a median of 
1.5% for LWC, with a maximum value of 20%. Although the median of 
the LWC is low, there are also some points above 15%, which can hardly 
be reached in the few millimeters of the snowpack. LWC is typically 
limited by the snowpack maximum water holding capacity, which de-
pends on snow grain density and shape. For example, an LWC value of 
20% can be too high for densities below 500 kg/m3, which could never 
be achieved. However, Quéno et al. (2020) describe scenarios where an 
impermeable barrier traps meltwater beyond the typical holding ca-
pacity. In the superficial layer this could potentially occur under specific 
circumstances, such as the formation of a sun crust during high solar 
radiation on cold snow (Fierz et al., 2009), leading to temporarily high 
LWC in the first few millimeters. When the LWC exceeds about 15%, the 
snow is classified as slush snow (Fierz et al., 2009), which essentially has 
very different spectral properties from the wet snow (Di Mauro et al., 
2017), probably invalidating the accuracy of BioSNICAR for high LWC. 
In this work, we focused on seasonal snow, but we acknowledge that on 
bare ice during the melting season water can stagnate and create 
supraglacial ponds and bédière. Future research may be focused on the 
retrieval of liquid water on ice, but in that case, the Snow Sensor 
probably will not be the optimal instrument for measuring the target 
variable in the field. 

The shaded areas (black areas in Fig. 8d) were excluded from the 
analysis due to unreliable LWC retrieval. Moreover, patchy snow and 
heterogeneous pixels can produce erroneous SSWI values and hence 
inaccurate LWC results. Further research could concentrate on detecting 
LWC in rugged terrain, mixed pixels, and under vegetation canopies, 
which are not considered in this study. 

Fig. 9 shows the spatial distribution of LWC at the catchment level. 
We performed a polar plot for each basin, where the angles radiating 

Fig. 5. Sensitivity of simulated SSWI to SZA (a), snow grain size (b), and LWC 
(c). In (c) the blue dots indicate the mean values, while the gray area represents 
the standard deviation. The best fit is depicted as a red dashed line. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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from the center represent the slope expositions, with 0◦ corresponding to 
the North. The distance from the center to each data point represents the 
elevation, with the center representing lower altitudes, and the outer 
edges representing higher altitudes. The colour assigned to each data 
point indicates the amount of LWC. Overall, we found higher LWC 
values on the southeast-facing (SE) surfaces at different elevations, as 
highlighted by a dense cluster of blue dots. At higher altitudes, LWC 
exhibits low values, and above 3500 m we observed LWC = 0% in each 
catchment. Overall, the results are consistent with those found in the 
literature (Donahue et al., 2022; Green et al., 2002; Koch et al., 2019; 

Techel and Pielmeier, 2011). The LWC spatial distribution seems to be 
consistent with the LWC values found in the campaign conducted during 
a warm day at 11.00 am, which can lead to such values. However, as 
expected in the accumulation phase, most of the LWC was found to be 
equal to zero. 

4. Conclusions 

In this study, we designed a novel spectral index named SSWI by 
exploiting the BioSNICAR radiative transfer model. The SSWI was 

Fig. 6. Measured spectral reflectance (SR-3500) of each campaign site: (a) Plateau Rosa; (b) Stelvio; (c) Laghi Cime Bianche; and (d) Formazza. The continuum 
removed spectra in the 905–1125 nm range are shown at the top of each plot. Different colors represent the LWC data measured in the field. 

Fig. 7. (a) Relationship between measured LWC and SSWI. Different colors relate to the four field campaigns. The black markers are the PRISMA target pixels. The 
red dotted line is the best fit between LWC and SSWI. (b) Comparison of the modeled and measured LWC value obtained through the k-fold analysis. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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derived from the continuum-removed area of the absorption feature at 
1030 nm and normalized to the depth of the absorption at 1025 nm. 
Using simulated data, we found that this index is sensitive to LWC and 
uncorrelated both to snow grain size and SZA variation. The index was 
then tested on data gathered from field spectroscopy and a PRISMA 
image by using independent field measurements of LWC. The SSWI was 
used to develop an empirical regression model to infer LWC from 
hyperspectral data, demonstrating the possibility of mapping surficial 
liquid water content from space. The model applied to field and PRISMA 
data allows the estimation of LWC with R2

CV and RMSECV of 0.7 and 3%, 
respectively. The LWC map derived from PRISMA data was evaluated in 
terms of spatial variability in complex topography and we found that 
higher LWC values occur on South-East facing slopes. 

Overall, the correlation between SSWI and LWC highlights the po-
tential of SSWI for quantifying LWC without prior knowledge of grain 
size, thereby improving our understanding of snowpack dynamics and 
contributing to improving hydrological models. The SSWI index can be 
easily computed from hyperspectral data and can be used as an inter-
mediate product to evaluate the spatial and temporal variability of LWC 

in alpine areas, contributing to the monitoring of the cryosphere. We 
emphasize the importance of this work in verifying the accuracy of LWC 
mapping methods through comprehensive validation using field and 
satellite data. In the absence of field measurements of LWC, the pro-
posed surficial snow water spectral index may be used as a first attempt 
to qualitatively characterize areas with different spatial LWC patterns. 
This can help to provide a comprehensive view of the amount and dis-
tribution of LWC, having the potential for broader applications at 
regional scales. 

CRediT authorship contribution statement 

C. Ravasio: Conceptualization, Methodology, Investigation, Data 
curation, Writing – original draft. R. Garzonio: Conceptualization, 
Methodology, Data curation, Writing – review & editing. B. Di Mauro: 
Conceptualization, Methodology, Writing – review & editing. E. Matta: 
Methodology, Writing – review & editing. C. Giardino: Writing – review 
& editing. M. Pepe: Methodology, Writing – review & editing. E. Cre-
monese: Writing – review & editing. P. Pogliotti: Writing – review & 

Fig. 8. (a) RGB map of the PRISMA acquisition. The red points are the locations of the ground-based data. (b) Example of PRISMA spectra before (red markers) and 
after smoothing (black line). The red shaded area indicates the standard deviation of the PRISMA derived reflectance spectra within the 3 × 3 pixel area (centered on 
the location where the LWC measurements were performed). The turquoise line represents the average of the SR-3500 measurements, and the turquoise shaded area 
is the standard deviation of the SR-3500 (number of samples = 20). (c) Liquid water content map obtained from PRISMA data. The black lines in Fig. 8c depict four 
catchments (Buthier, Marmore, Evanςon, Lys), as derived from the Aosta Valley DEM. (d) Histogram of the LWC distribution from (c). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

C. Ravasio et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 311 (2024) 114268

9

editing. C. Marin: Writing – review & editing. R. Colombo: Concep-
tualization, Methodology, Investigation, Data curation, Writing – orig-
inal draft, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work has been supported by the SCIA (Sviluppo di algoritmi per 
lo studio della Criosfera mediante Immagini PrismA) and the CRIOSAR 
(Applicazioni SAR multifrequenza alla criosfera) project, both funded by 
the Italian Space Agency (ASI). We greatly acknowledge the Italian 
Space Agency and A. Montuori (ASI) for the discussion during the pro-
jects. We acknowledge G. Bramati (UZH), G. Pozzi, and G. Tagliabue for 
their help in the field data collection. 

We would like to thank the anonymous reviewers for their useful 
comments and suggestions. 

References 

Awasthi, S., Varade, D., Kumar Thakur, P., Kumar, A., Singh, H., Jain, K., Snehmani, 
2022. Development of a novel approach for snow wetness estimation using hybrid 
polarimetric RISAT-1 SAR datasets in North-Western Himalayan region. J. Hydrol. 
612, 128252 https://doi.org/10.1016/j.jhydrol.2022.128252. 

Bohn, N., Guanter, L., Kuester, T., Preusker, R., Segl, K., 2020. Coupled retrieval of the 
three phases of water from spaceborne imaging spectroscopy measurements. Remote 
Sens. Environ. 242, 111708 https://doi.org/10.1016/j.rse.2020.111708. 

Bohn, N., Painter, T.H., Thompson, D.R., Carmon, N., Susiluoto, J., Turmon, M.J., 
Helmlinger, M.C., Green, R.O., Cook, J.M., Guanter, L., 2021. Optimal estimation of 
snow and ice surface parameters from imaging spectroscopy measurements. Remote 
Sens. Environ. 264, 112613 https://doi.org/10.1016/j.rse.2021.112613. 

Bohn, N., Di Mauro, B., Colombo, R., Thompson, D.R., Susiluoto, J., Carmon, N., 
Turmon, M.J., Guanter, L., 2022. Glacier ice surface properties in South-West 
Greenland ice sheet: first estimates from PRISMA imaging spectroscopy data. 
J. Geophys. Res. Biogeosci. 127, 1–21. https://doi.org/10.1029/2021JG006718. 

Boyne, H.S., Fisk, D., 1987. A comparison of snow cover liquid water measurement 
techniques. Water Resour. Res. 23 (10), 1833–1836. 

Brun, E., Martin, E., Simon, V., Gendre, C., Coleou, C., 1989. An energy and mass model 
of snow cover suitable for operational avalanche forecasting. J. Glaciol. 35 (121), 
333–342. 

Busetto, L., Ranghetti, L., 2020. prismaread: A tool for facilitating access and analysis of 
prisma l1/l2 hyperspectral imagery. URL. https://lbusett.github.io/prismaread/. 

Carmon, N., Berk, A., Bohn, N., Brodrick, P.G., Dozier, J., Johnson, M., Miller, C.E., 
Thompson, D.R., Turmon, M., Bachmann, C.M., Green, R.O., Eckert, R., Liggett, E., 
Nguyen, H., Ochoa, F., Okin, G.S., Samuels, R., Schimel, D., Song, J.J., Susiluoto, J., 
2023. Shape from spectra. Remote Sens. Environ. 288, 113497 https://doi.org/ 
10.1016/j.rse.2023.113497. 
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