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Abstract: Georgia is the major part of the Caucasus; it is considered as one of the distinguished regions
of the world with respect to biodiversity. The majority of Georgia’s biodiversity is connected with
forest ecosystems, which cover about 38% of the country’s territories. In Georgia, as in other countries,
many unique species of forest phytocenosis are threatened by extinction and/or genetic pollution
due to the negative impact of various environmental and anthropogenic factors. Implementation of
biotechnological approaches in practice for in vitro conservation of species can significantly speed
up the processes of protection, thus guaranteeing the sustainability of the phytogenetic pool of the
country. The present review summarizes the current status of several threatened woody perennials
of the Red List of Georgia belonging to the genera Castanea, Quercus, and Betula, which are the
dominant or edificatory species of forest phytocenosis. The feasibility for their in vitro propagation
for conservation purposes is discussed.
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1. Introduction

Georgia is one of the countries with various types of climates from the agronomic
point of view due to its uneven climate, altitude variations, and the existence of ecological
habitats. The major part of the country is the Caucasus, which is considered by international
organizations as one of the distinguished regions of the world with respect to biodiversity.
It is within one of the World Wide Fund for Nature’s (WWF) 35 ‘priority places’ (Greater
Black Sea Basin), and is also part of two of 36 ‘biodiversity hotspots’ (the Caucasus and
Irano-Anatolian hotspots) identified by Conservation International as being simultaneously
the richest and most threatened reservoirs of plant and animal life [1–4].

The natural habitats of Georgia represent heterogeneous ecosystems, and the country’s
dominant flora is frequently presented by rare and endemic species. Over 2000 species
of Georgian flora have direct economic value as timber resources and food for humans
and animals; 1200 species of vascular plants are used as medicinal herbs [3,5]. The unique
phyto-genetic pool of Georgia is the constituent part of the natural and cultural heritage of
the country [3]. According to the National Report to the Convention on Biological Diversity,
Georgian flora is one of the richest among countries with moderate climates, with 4130
vascular plant species, including around 900 species (approximately 21%) that are either
Caucasian or Georgian endemics [5]: 275 species of vascular plants are endemic to Georgia,
and 52 species of Georgian endemic flora (approximately 60% of endemic species) are
categorized as endangered due to disturbance to their habitats, excessive use, pathogens,
and other pressures [2,3].

Forests are the most important habitats of the Caucasus Region. The majority of Geor-
gia’s biodiversity is directly connected with forest ecosystems. Approximately 2.66 million
ha, or 38.3% of the country’s territories, are covered by forest, and about 95–98% of these
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are of natural origin [4,6]. Forests are especially valuable natural resources in Georgia.
Forest massifs surviving in the Georgian mountains are the last untouched forests in the
moderate climate zone of the Earth, and thus have a global importance. They also have
an exceptional importance at the national and regional levels. Georgian forests not only
conserve the unique biological diversity of Georgia, but ensure continuous delivery of vital
direct and indirect benefits and resources to the population. This in turn facilitates the
functioning of the field of economy, the growth of human welfare, and poverty elimina-
tion, and creates a favorable environment for the sustainable development of the country.
Their composition, structure, growth, development, and other characteristics determine a
rich biological diversity—up to 400 tree and shrub species grow in Georgian forests. The
large number of endemic timber tree species points to the high diversity of dendroflora.
Among endemic species, 61 species are endemic to Georgia and 43 are endemic to the
Caucasus [7]. The main wood-formative species of forests in Georgia from deciduous
species are: beech tree (Fagus orientalis Lipsky), with 51.8% of the total growing wood stock;
oak tree (mostly Quercus iberica Steven ex M.Bieb)—5.5%; hornbeam (Carpinus L.)—5.7%;
and edible chestnut (Castanea sativa Mill.)—2.9%. From coniferous species, they are: fir tree
(Abies nordmanniana (Steven) Spach)—17.2%; spruce (Picea orientalis L.)—7.5%; and pine
tree (Pinus sosnowskyi Nakai, Pinus eldarica Medw.)—3.4% [8].

Georgian forest hardwoods are required to meet different demands of the national
economy and the population. They provide timber for industrial and household use and
thus can generate significant value and work possibilities, as well as increase incomes and
prosperity of the rural population. Forest ecosystem health determines the clean water
supply for the major part of the Georgian population, as well as supply for agriculture.
Besides the other useful functions of great significance to the State, Georgian forest ecosys-
tems also have an exceptional aesthetic and recreational importance. The existence and
development of a number of resorts largely increases tourism potential and incomes from
tourism activities [7].

After the 1990s, the forests of Georgia became intensively exploited for economic
purposes, while for the part of rural communities, firewood has remained one of the
sources of energy. Significant demand exists for timber. As a consequence, the introduction
of sustainable forestry principles plays a significant role in the conservation of the country’s
biodiversity. The protection and restoration of forest ecosystems are important from the
viewpoint of biodiversity preservation, along with the social–economic point of view,
including sustainable development of agriculture and provision of food safety.

The “National Forest Concept of Georgia” (2013) [7] is the main policy document that
defines forest management principles and establishes priority directions in the development
of forestry, and also defines the State’s approach to forests, taking into account the main
functional purpose of forests and their values. A considerable portion of forests with high
conservation values have been assigned the status of Protected Areas (PAs), an effective
tool for protecting species and habitats. Currently, the area covered by forests that is under
the Agency of Protected Areas of Georgia is estimated at 303,000 ha, which is about 11.3%
out of the 2.7 million ha of total forest area covered by forests [4]. There are 14 Strict Nature
Reserves, 11 National Parks, 19 Managed Nature Reserves, 41 Natural Monuments, and
2 Protected Landscapes [4,8].

Currently, many unique species in natural habitats across the country are threatened
by extinction and/or genetic pollution due to the negative impact of various environmental
and anthropogenic factors. Due to habitat destruction and extensive, unregulated exploita-
tion, many plant species have become endangered. Local temperature and edaphic factors
of each zone, such as soil moisture and depth, are all of importance in determining the
composition of vegetation and ecological biodiversity that leads to the establishment of
different subcommunities. These and other questions concerning biodiversity of forests of
Georgia and the threat of extinction of some species were discussed by Patarkalashvili [8].

At present, the Red List of Georgia [9] contains 56 wooded plant species; 36 have been
identified as vulnerable (VU), 18 taxa as endangered (EN), and 2 species as critically endan-
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gered (CR) according to the International Union for Conservation of Nature (IUCN) Red
List Categories and Criteria (2012) [10]. It is noteworthy that several species from the Red
List are also catalogued in the globally threatened trees and shrubs of the Caucasus [11,12].
Populations with limited geographical distribution or fragmentary and decreasing species
are referred to the above categories, which are not threatened by extinction at this stage,
but are under a certain risk and are defined as rare species. They usually occur only in
specific locations and are localized in limited geographical areas, or are narrowly scattered
in a wider area. Approximately 60% of the total numbers of endemic plant species are
classified as endangered due to disturbance to their habitats, excessive use, pathogens,
and other pressures [3,4]. Irregular climatic conditions and nonsustainable management
of natural resources create a real danger for the flora biodiversity of Georgia. The main
threats for biodiversity in Georgia are the destruction/degradation of habitats and the
extensive use of biological resources. The threats to the forest ecosystems in Georgia
include unsustainable utilization of forest resources, which is mainly caused by lack of
access to alternative energy sources; overgrazing by livestock, which results in degradation
of the forests’ natural regeneration capabilities; forest pests and diseases; alien invasive
species; frequent forest fires; and legislative gaps and shortcomings in management [2,6,13].
Unsustainable utilization of forest resources has inflicted damage on beech forests in moun-
tainous regions of Georgia and chestnut forests in the Colchis foothills; oak forests are only
preserved in distant canyons and relatively meager soils. Several threatened tree species
included in the Red List of Georgia belonging to genera of Castanea, Quercus, and Betula are
especially noteworthy, as they are dominant or edificatory species of forest phytocenosis.
Among them are European chestnut (Castanea sativa Mill.), Imeretian oak (Quercus imeretina
Steven ex Woronow), and endemic and relict species of birch (Betula medwediewii Regel,
Betula megrelica Sosn.). The Caucasian oak (Quercus macranthera Fisch. & C.A.Mey. ex
Hohen.) and birch (Betula spp.) are the dominants of subalpine sparse and crook-stem
forests (1800–2500 m) and play a key role in the restoration of the high-mountainous forest
belt (by elevation of the upper subalpine border, which is already lowered by 100–150 m).
The above condition will create serious problems for Bakhmaro and Bakuriani forests in
the near future. An alert should be focused on the local provenance of European chestnut
(Castanea sativa). Along with the relict Colchic oak (Quercus hartwissiana Steven), chestnut is
the dominant of mountainous forests of Western Georgia, generally extending from 100 m
up to 900–1000 m above sea level, having the absolute upper limit at 1400 m in sporadic
locations of West and East Georgia, which contain the highest percentage of areas covered
with forests (approximately 75%) [14,15]. At present, due to low self-renewal and diseases,
the big massifs of chestnut forests in the Tkibuli region are on the verge of destruction.
Despite the recent tendencies of reduction of illegal harvesting of timber resources, the
logging of timber and fuel wood is still considered as one the most important pressures for
country biodiversity, as well as unsustainable utilization of natural resources for obtaining
energy, food, and financial benefits.

2. Country Policies and Networks for Conservation of Biodiversity

The Law on Red List and Red Book adopted by the Parliament of Georgia [16] gives
the legal definitions (relevant recommendations and methodological issues) of endangered
species. It also regulates the issues related to planning and financial matters connected
with the protection, rehabilitation, and conservation of endangered species. Alongside
this, the participation of the country in all global conventions for biodiversity protection
provides aspects of security and regulation of exploitation of species. Ratified in 1994, the
Convention on Biological Diversity (1992) [17] is the main international guiding document
for the protection and conservation of national biodiversity. Hereafter, the country accepted
the responsibility to safeguard the nation’s rich diversity of plant, animal, and microbial life,
to begin sustainably using biological resources, and to ensure equitable sharing of benefits
from biodiversity. Later, the country joined other conventions, including the United Na-
tions Framework Convention on Climate Change (1992) [18], Convention on International
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Trade in Endangered Species of Wild Fauna and Flora (CITES) [19], Convention on the
Conservation of European Wildlife and Natural Habitats [20], and the European Landscape
Convention [21]. As a signatory to these important international environmental treaties,
Georgia entered the world scene with the potential for joining the most advanced nations
in the field of environmental protection.

Realizing the importance of protection and rational use of biodiversity resources
for the conservation of national heritage, ‘The Biodiversity Strategy and Action Plan of
Georgia’ (NBSAP) was first approved in 2005 [22]. NBSAP-Georgia defined the strategies
of protection and balanced use of natural resources for a 10-year period and more tangible
actions for five-year intervals. According to this article, the ex situ and on-farm conservation
of endemic and threatened species of flora of Georgia and cultural breeds/varieties is
believed to be one of the key achievements of implementation of NBSAP, and considered
as the best way of preservation of biodiversity. Alongside this, NBSAP emphasizes that
loss of biodiversity may be avoided only as a result of synchronization of in situ and
ex situ conservation measures. Updated in 2014, NBSAP includes the vision and the
overall national targets for safeguarding Georgia’s biodiversity for 2014–2020, followed
by thematic chapters describing the situation for Georgia’s biodiversity in more detail
under the headings covering species and habitats, protected areas, forest ecosystems,
agricultural biodiversity, natural grasslands, etc. [2]. Strategic goals and national targets
of NBSAP (Target C.2) imply a considerable improvement of 75% of Red List species
through effective conservation measures and sustainable use by 2020. It is in agreement
with the Target 8 of the Global Strategy for Plant Conservation, which determines the
new and important role of the ex situ conservation in the conservation strategy aimed
at least 75% of threatened plant species in ex situ collections, preferably in the country
of origin, and at least 20% available for recovery and restoration programs [23,24]. The
Convention on Aichi Biodiversity Targets (2011–2020) statement says that by 2020, the
rate of loss of all-natural habitats, including forests, should at least be halved, and where
feasible, brought close to zero (Target 5), and that areas under agriculture and forestry
should be managed sustainably, ensuring biodiversity conservation (Target 7) [25]. The
2020 edition of the Ecoregional Conservation Plan (ECP) for the Caucasus explains the role
of ECP as the regional instrument for implementing international agreements related to
biodiversity, and presents the plan itself with its targets and actions [13]. According to
this document, sustainable management, restoration, and maintenance of the ecological
connectivity of forest ecosystems require following targets by 2035: C1—illegal logging
must be eliminated, forests must be managed sustainably, and management policies and
practices must take into consideration the potential impact of climate change and goals
of biodiversity conservation; and C2—connectivity of forest ecosystems are restored and
enhanced within CLs and BLs through application of the FLR approach and taking into
account the potential impact of climate change.

The impacts on Caucasus ecosystems are already apparent and will become stronger.
During the last 50-year period, an average annual temperature in the whole country was
manifesting a growth trend, with maximum increments observed in the east Georgia semi-
arid zone (+0.7 ◦C) and the Black Sea coastal zone (+0.6 ◦C). According to the forecast, by
2100, precipitation reduction by 10–20% is expected throughout the whole country [3]. The
named trend of climate change is already affecting forest ecosystems: in the mountainous
zone, birch is being replaced by pine and fir trees. As for abiotic disorders, there was an
increase in the number of forest fire incidents, and at the same time biotic disorders were
manifesting in several catchments through growing establishment of various pests and
diseases [3]. The World Economic Forum’s 2020–21 Global Risk Report ranks biodiver-
sity loss and ecosystem collapse as one of the top five threats humanity will face in the
10 years leading to 2030, and “climate action failure” was recognized as the most impactful
and second most likely long-term risk identified in the Global Risks Perception Survey
(GRPS) [26,27]. Furthermore, because of the strong interconnection between biodiversity
loss and climate change, conserving biodiversity and preserving ecosystem health are a
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top priority [13]. Delayed response can put large areas of forest at risk of catastrophic
degradation. This will lead to a large reduction in the quantity and quality of the forest
resources and useful functions, on which many people in the country depend. Among
the strategies and implemented activities elaborated by The National Forest Concept for
Georgia [7] aimed at mitigating and/or adapting to the impacts of climate change on
forests the following actions draws attention are: (i) expansion of protected areas; and (ii)
reforestation—forest planting, greening urban areas, and forest plantations. These activities
are largely focused on the reinforcement of in situ and ex situ conservation means.

Since 1990, when the WWF country office was established in Georgia, large projects
have been launched to assist the protected-area system in Georgia and build an environ-
mental education program. More projects have been funded, including ones regarding
species conservation and sustainable forest management under the WWF/World Bank
Alliance for Forest Conservation and Sustainable Use. Since then, in a 10-year period,
the overall area of strictly protected areas, national parks, and sanctuaries (IUNC I to IV)
have been increased from 2.4% to 4.4% (307,246 ha). In 1999, a Forest Code of Georgia
was adopted [28], which created different categories of protected forests over an area of
1,113,130 ha (IUCN categories V and VI) [11,29]. As a result of these actions, the total
percent of protected areas in Georgia increased permanently [3,6], and today it counts more
than 670,978 ha, which is about 10% of the country [4].

Plant genetic resources are vulnerable; they can reduce and disappear, placing the
continuity of the species in serious danger. The use and loss of plant genetic resources
depend on human intervention; in fact, the population increase, industrialization, and
expansion of the agricultural frontier contribute to genetic erosion, and to these are added
climate changes that contribute to the modification and/or destruction of centers of genetic
diversity [30]. To avoid this loss of plant genetic resources, they must be conserved and used
sustainably, and the conservation strategy adopted should be applied while considering
the targeted species.

Plant genetic resources can be conserved in their natural habitats (in situ), in condi-
tions different from their natural habitats (ex situ), or in complementarity. Conservation
objectives should be defined in terms of logical, scientific, and economic criteria, such as the
need for and the value and use of a given species, and the feasibility of preservation [31].
Programs for ex situ conservation of plant genetic resources by different methods, such
as seed banks [32–34], in vitro collections [35,36], and cryobanks [37,38], are established in
various countries. The main objective is to collect and maintain the genetic diversity in
order to ensure its continued availability and to meet the needs of different users.

Despite the extensive in situ and ex situ conservation measures practiced (including
the renewal of seed banks, maintenance of field collections, and botanical gardens) less
attention is paid to recovery measures. As a consequence, rehabilitation of reducing
habitats largely relies on natural restoration processes. In this regard, implementation
of in vitro conservation of species in practice can significantly speed up the processes of
protection, thus guaranteeing the sustainability of the phytogenetic pool of the country.

3. Micropropagation and In Vitro Approaches to Conservation

Traditionally, in situ conservation implies the continuation of the evolution process
in the natural area of existence of species, whereas ex situ conservation is determined as
the protection of plants’ diversity beyond the natural habitat. It provides a better degree
of protection of a gene pool with respect to the in situ conditions; in fact, the natural
protected areas are not always safe and are subject to destruction. The ex situ conservation
can be considered a complementary process of the in situ conservation, and it provides
the safety strategy of ‘safe copying’ against the extinction of the wilderness. Ex situ
conservation has received international recognition after its inclusion in the ‘Convention
on Biological Diversity’ (Article 9) [39]. An approach to ex situ conservation methods like
seed storage in seed banks remains the most convenient and low-cost plant conservation
means in many countries. Within the scope of the Millennium Seed Bank Partnership
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(MSBP) program [40] implemented by many botanical gardens in the world, the ex situ
conservation of rare and endemic species has been conducted by the Seed Bank of Georgia
since 2006 [41]. Concerning tree species, the preservation of genetic resources is traditionally
implemented in seed banks. Indeed, conservation of seeds is an acceptable method in the
case of plants with ‘normal’ seeds, by drying and placing them in low-temperature storage
for a long-term preservation. Although the fundamental role of seed banks and clonal
collections is undeniable, these traditional approaches to the storage and conservation
of tree germplasms are not always acceptable, and have some important limitations and
drawbacks. These limitations include: (i) some plants do not produce seeds, and their
reproduction is possible only by vegetative reproduction; (ii) some seeds have germinability
only during a certain period, or germinate with difficulty (so-called ‘recalcitrant seeds’);
(iii) some seeds do not store in dry form or low-temperature conditions; (iv) seeds are
heterozygotic and are not suitable for obtaining of the genotype of identical type; and
(v) seeds of some species quickly decay under the influence of seed pathogens. These
drawbacks are especially relevant to numerous forest angiosperms having nonorthodox
seeds that quickly lose their viability or are subject to a rapid decrease in germinability
during storage [42].

The main value of an in vitro technique for conservation purposes is an innovative
approach to the protection of biodiversity. In vitro techniques have a clear role within
ex situ conservation strategies, including for trees and endangered species, particularly
where it is important to conserve specific genotypes or where normal propagules, such as
recalcitrant seeds, may not be suitable for long-term storage. Standard in vitro propagation
methods, in vitro seed germination, micropropagation, somatic embryogenesis, zygotic
embryo culture, and callus culture systems have been developed successfully for a large
number of woody species with basic protocols [43–45]. During the last decades, research
efforts have been made to develop and refine in vitro techniques and culture medium for
large-scale woody plant multiplication; however, many woody species still remain recalci-
trant to in vitro culture and require specific conditions such as medium and hormones for
growth and development [44,46].

In vitro conservation, based on plant tissue culture technology, is considered as one of
the most efficient methods of ex situ conservation, and it is especially important for the
plants propagated by vegetative methods and for nonorthodox seed plant species (e.g., Acer
spp., Quercus spp., chestnut, horse chestnut, and many tropical species) [47–51]. Cell and
tissue culture techniques ensure the rapid multiplication and production of plant material
under aseptic conditions, allowing the propagation and the preservation of endangered
plant species for the short-, medium- and long-term. Up to now, in vitro techniques have
been practiced for the conservation of a large number of threatened plants, and became
the reliable option for long-term germplasm preservation [51–53]. In vitro conservation
involves the use of conventional micropropagation systems, slow growth techniques, and
cryopreservation [53]. Collecting efficiency can be significantly increased through the use of
in vitro collecting. The first in vitro collecting systems were developed for cocoa (Theobroma
cacao L.) and coconut (Cocos nucifera L.), generating two in vitro collecting methods that
were used as a model to develop other protocols [12]. In vitro collecting represents an
alternative for rare and endangered species, since usually this material is limited in supply,
and seed collection may be restricted.

Plant micropropagation and the establishment of the in vitro collections can be consid-
ered the first approaches toward in vitro recovery and in vitro preservation of
germplasms [52,54]. However, frequently subcultured material experiences the risk of
somaclonal variation, which can compromise the genetic fidelity of the multiplied material,
making micropropagation effective only for short-term preservation of germplasms [50,55].
Even so, micropropagation is a fundamental step for the stored explants under in vitro slow-
growth conditions or preserved by cooling to very low temperatures (cryopreservation).

Reliable in vitro reproduction methods are important for the creation of alternative
sources of rare and endangered plants to prevent the loss of biodiversity, as well as the
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large-scale production of commercially valuable species, thus decreasing pressure on
wilderness. This technique is useful especially when the population number of species is
critically low in the wilderness, or when populations of rare plants decrease as a result of
their unreasonable harvesting and intensive exploitation of natural resources. The method
has prospects for obtaining in vitro conditions of genetically pure elite populations, free
from systematic bacterial, fungal, and viral diseases, thus guaranteeing the emergence
of quality specimens. At the same time, it provides the large-scale production of young
seedlings within a short period and with limited space. For many rare species, the method
of tissue culture is the only reliable system of propagation, in comparison with vegetative
reproduction or reproduction by seeds [56,57]. However, the results of the cloning are
accompanied by plants with an identical genome, which can cause problems in terms
of genetic variability. On the contrary, the majority of plants that emerged from seeds
are heterozygotic and manifest high variability within the species, which is expressed in
differing growth, viability, and reproduction. Hence, to ensure the protection of biodiversity
of species, it is expedient to carry out reproduction by traditional methods (by seed or
vegetative means) in parallel with the in vitro reproduction.

In vitro propagation can be carried out via organogenesis, a process by which cells and
tissues are forced to undergo changes that lead to the production of a unipolar structure—a
shoot or root primordium—whose vascular system is often connected to the parent tis-
sues [58]. Using apical meristems (shoot tips) as initial explants for in vitro propagation,
virus-free plants can be obtained through meristem culture in combination with thermother-
apy, thus ensuring the production of disease-free stocks and simplifying procedures for the
international exchange of germplasms [49]. Moreover, these explants give a higher guaran-
tee for clonal stability [59,60]. The risk of somaclonal variation increases together with the
number of subcultures, particularly after the second year of subculturing [50]; therefore,
medium-term conservation in slow-growth storage conditions is desirable for mainte-
nance of in vitro collecting, avoiding the handling of plant material, and also preventing
its contamination.

Propagation by somatic embryogenesis, on the contrary, leads to the production
of a bipolar structure containing a root/shoot axis, with a closed independent vascular
system [58]. Plant regeneration via somatic embryogenesis may offer many advantages over
organogenesis, such as the feasibility of single-cell origin and the possibilities of automating
the large-scale production of embryos in bioreactors and field planting with synthetic
seeds [61]. The bipolar nature of embryos allows for direct development into plantlets
without the need for the rooting stage required for plant regeneration organogenesis [62].
However, the application of somatic embryogenesis in a wide range of woody plants
is limited by genotypic influences, poor germination of somatic embryos, and limited
numbers of explants [63].

Major advances in the mass propagation of woody plants have been made over the
past decade [64,65]. The number of woody plant species that have been clonally propagated
through tissue culture is increasing at a rapid rate, and in fact, most commercially important
species have been studied [46,50,51,64]. However, numerous forest trees and bushes are
still recalcitrant toward in vitro establishment. Due to the rather variable response of
species and cultivars to an in vitro environment, much research still is needed to define
the cultural conditions required by woody species. The main problems that may occur
during the micropropagation of woody perennials and their successful solutions are: (i)
obtaining a suitable vegetation material for isolation of explants may become complicated,
and in an optimal case, the material must be in an actively grown phase and must be
obtained from seeds, shoots, or a newly reproduced plant; and (ii) a tissue may show low
susceptibility with respect to the cultivation process. In such cases, the various stages of
micropropagation must be carried out in parallel. These are: isolation, proliferation, and
optimization of already-developed shoots, rooting of micro shoots, and acclimatization.
However, micropropagation techniques have contributed to the conservation of a large
number of endangered plants [52]. For example, the Micropropagation Unit at the Royal
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Botanical Garden Kew alone has helped conserve at least 3000 species from around the
world [66].

3.1. The Genus Castanea

European chestnut or sweet chestnut (Castanea sativa Mill.), representative of the genus
Castanea, is dominant in mountainous forests of West Georgia (150–1800 m). It occupies the
highest percentage of areas covered with forests (approximately 75%). The ‘Dendroflora of
Caucasus’, issued earlier in 1961, lists 14 species within the genus Castanea; however, only
Castanea sativa Mill. occurs in Georgia [67]. Chestnut forests are distributed continuously
along the southern slope of the Caucasus Mountains near the Black Sea, and are found in
isolated populations on the north side of the Caucasus, at elevations ranging from 200 to
1300 m [68]. Chestnut-dominated forests comprise only a few percent of total forest cover in
the Caucasus Biosphere Preserve, and usually occur in mountain valleys or coves with deep
brown soil. Castanea sativa forests are developed in both West and East Georgia, but to the
west of the country, they occupy larger areas. In some localities, pure stands of C. sativa can
be found, but they mainly occur as a component of oligodominant beech–sweet chestnut
and hornbeam–beech–sweet chestnut forests [69]. Chestnut trees generally extend from
100 m (West Georgia) up to 900–1000 m above sea level, having an absolute upper limit
of 1400 m in sporadic locations of West and East Georgia [14,15]. At present, due to low
self-renewal and diseases, the large massifs of chestnut forests in the Caucasus are on the
verge of destruction. Chestnut blight was apparently introduced into the region after 1880,
and continues to destroy chestnut forests now. In addition, sweet chestnut in the Caucasus
is infested by several fungal and bacterial parasites [70,71]. Castanea sativa Mill. is filed in
the Red List of Georgia (2006) [9] due to the tendency to decrease the distribution range
and habitat fragmentation. The IUCN category for this taxon was evaluated as Vulnerable
(VU), according to the IUCN Red List Categories and Criteria (2012) [10]. According to the
official IUCN list (2019) [72], Castanea sativa has been assessed as Least Concern [73].

Chestnuts are very difficult to propagate by vegetative reproduction using conven-
tional techniques, resulting in difficulties in establishing new plantations. Among the
different propagation methods used for chestnuts, grafting and rooting of cuttings give
the best results, but are considered very difficult [74]. Like other hardwoods, the in vitro
culture techniques developed as an alternative to the conventional propagation appear
to be more effective for the mass propagation of chestnut [75,76]. In this sense, much
effort is focused on improving the chestnut genotypes, thus increasing both the economic
value of fruit and building materials [76,77]. Another target in chestnut micropropaga-
tion is the species’ resistance to major fungal pathogens such as Phytophthora spp. and
Cryphonectria parasitica.

In the genus Castanea, most of the research on micropropagation has been carried out
on Castanea sativa (European chestnut) [78], Castanea dentata (American chestnut) [79,80],
and chestnut hybrids [81–83], and there also have been numerous studies to establish the
best culture conditions for the important Asian species such as: Castanea crenata [84] and
Castanea mollissima [85]. In vitro propagation methods for the chestnut include the differ-
entiation of adventitious buds [86], somatic embryogenesis [87–89], and the proliferation
of axillary buds [90,91], apical buds [92], and nodal segments [93]. Different microprop-
agation approaches have managed to develop axillary buds and the subsequent rooting
of the shoots through using juvenile [94,95] and adult material of this species [96–99],
partially focusing on the axillary shoot culture proliferation for short- and medium-term
conservation [80,100]. A temporary immersion bioreactor (TIB) has been also suggested
as an efficient and economic tool for mass clonal propagation of chestnut [75,101]. This
system, with its immersion/dry-period cycle, allows the plants to have greater accessibility
to the medium components, allowing greater gains in biomass and a time reduction for
propagation; moreover, there are also factors such as ease of handling and the possibility to
automate, which would reduce labor costs [102,103].
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From the conservation point of view, proliferation of axillary buds is considered to be
the most important method [104]. Nevertheless, despite some success in the proliferation
and rooting of mature plant material [98], attempts to propagate on a large scale from
adult material have not been effective, mainly because the majority of genotypes require
specific adjustments to the protocols. It seems the micropropagation of adult trees is more
achievable from tissues retaining physiologically adolescent characteristics, such as basal
shoots and stump sprouts, or when gradual reinvigoration of adult chestnut is used [105].
In some cases, problems arise in the rooting phase depending on the origin (genotype)
of the chestnut [99,106,107]. However, new combinations of adapted modified nutrient
media applied in different stages of the propagation process resulted in high rates of
rooting, survival, and continuous growth in the field [95,107]. Generally, the genotype and
environmental influence are considered as the most important factors in all traits related
to multiplication rates in clonal propagation [82,108]. The suggestion was given to obtain
the individual analysis while trying to multiply a concrete clone, and to leave aside the
results of the total population when multiplying a concrete clone, because the best culture
media for one clone are not necessarily the best for other clones. Some authors reported
that Castanea sativa clones had medium or low multiplication rates in comparison with
hybrid clones. During the past years, many studies have been carried out using in vitro
culture of Castanea sativa [76]. The main research on in vitro propagation and conservation
during the last decade are reported in Table 1.

Table 1. Conservation status and in vitro propagation of some threatened woody species of Georgia.

Genera/Species Family Red List
Georgia IUCN Explant Used References

Betula medwdewii
Regel Betulaceae VU 1

B1b(i,ii,iii) DD 2 Shoot tips, buds [109–111]

Betula megrelica Regel Betulaceae VU
B1a EN 3 Shoot tips, buds [109–111]

Betula raddeana
Trautv. Betulaceae VU

B2a(i)b LC 4 Shoot tips, buds;
Leaves, buds [109–112]

Castanea sativa Mill. Fagaceae VU
A2 LC

In vitro nodal explants [95]
Buds [99,109]

Embryonic axis [109,113–115]
Single-node segments [98]

Root, nodal, and internodal segments [116]
Cotyledons of immature seeds [89]

Quercus pedunculiflora
C. Koch. Fagaceae VU

B1b(I,ii,iii) LC Nodal segments, green and mature acorns
Nodal segments, immature and mature acorns [117,118]

Note: 1 VU, Vulnerable; 2 DD, Data Deficient; 3 EN, Endangered; 4 LC, Least Concern.

Micropropagation of hardwoods for large-scale reproduction and/or for in vitro con-
servation is not commonly practiced in Georgia. Therefore, in vitro culture research on the
Georgian origin of Castanea sativa plays a role of high importance, and it currently is carried
out in our faculty’s Plant Tissue Culture Laboratory. Particularly, the most interesting
areas in terms of conservation priority considered are located in Italy, Georgia, and eastern
Turkey [108]. Our research demonstrated the high feasibility of the in vitro propagation
protocol of Castanea sativa using embryonic axes as initial explants (Figure 1a) [109,113].

Plantlets, from embryonic axes cultivated in vitro, showed considerable rates of ini-
tiation and rooting rates in woody plant medium (WPM) [119] supplemented with low
concentration (0.4 µM) of N6-6-benzylaminopurine (BAP) and 15 µM of indole-3-butyric
acid (IBA), which is in agreement with general consideration on superiority of WPM, BAP,
and IBA on organogenesis and root formation (Figure 1b). Kinetin was not as effective for
multiplication of shoots; however, it promoted the rapid elongation of apical shoots. Many
buds sprouted on the initiation media without growth regulators, but the shoots did not
elongate (Figure 1c) [109]. Phenol oxidation is another challenge in chestnut micropropa-
gation in initiation stages. Mostly, it occurs with buds turning brown after a few minutes
in a nutrient medium. Implementation of an ascorbic acid or polyvinylpyrrolidone (PVP)
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in the nutrient media did not prevent the browning. Nevertheless, the addition of 0.3%
activated charcoal (AC) was effective in eliminating browning and acceleration of rooting
(Figure 1d) [120]. Other our research was directed toward the long-term preservation of
Castanea sativa, and reported the feasibility of in vitro embryonic axes when applying
different cryogenic techniques such as dehydration, PVS2-vitrification, and encapsulation–
vitrification followed by ‘one-step freezing’ in liquid nitrogen [120,121]. The valid protocol
developed for the Georgian provenance of Castanea sativa can now be tested on a wide
range of chestnut cultivars and hybrid clones to achieve the practical long-term cryop-
reservation of the Castanea genus germplasm. Hopefully, the work done on the Georgian
provenance of Castanea sativa offers a useful platform for further studies toward the
improvement of micropropagation strategies applied to the other threatened species of
genus Castanea.
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Figure 1. Micropropagation of selected woody plants. (a) Embryonic axes of Castanea sativa;
(b) rooted Castanea sativa shoots after 6 weeks of culture in WPM supplemented with 0.4µM N6-
6-benzylaminopurine (BAP) and 15 µM indole-3-butyric acid (IBA); (c) Castanea sativa bud culture
in WPM; (d) embryonic axes of Castanea sativa cultured in WPM supplemented with 0.3% AC;
(e) in vitro development of Quercus hartwissiana on WPM supplemented with 2.5 µM BAP after
28 days of culture; (f) buds of Betula megrelica; (g) multiplication stage of Betula spp. initiated in MS
medium supplemented with 4.4 µM BAP; and (h) potted plantlets of Betula spp. 6 weeks after potting
and acclimatization in a greenhouse.

3.2. The Genus Quercus

The genus Quercus is one of the most diverse and economically important tree genera
within the Fagaceae family, and is widely distributed in temperate and subtropical areas of
the Northern hemisphere [122]. Based on large-scale collections and the use of canonical
and discriminant analysis, a complete revision of the Caucasian species and the related
species of Europe and Asia Minor was made, and a key for the eight recognized species
of Caucasian Oaks was presented in [123]. Two species, Quercus hartwissiana Stev. and
Quercus macranthera Fisch. and C.A.Mey. ex Hohen., are currently included in the Red List
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of Georgia [9]. Quercus hartwissiana (vernacular name Colchic oak, or oak of Hartwiss) is
a tertiary relict [69]. Quercus hartwissiana is an element of Colchic forests. This is a light-
demanding species occurring in the lowlands and lower montane zone of West Georgia,
together with Quercus imeretina, Quercus iberica, and other broad-leaved groupings. Quercus
hartwissiana creates forests in the lowlands and lower montane belts. Quercus hartwissiana
mainly resides in the western part of Georgia (Abkhazia, Racha-Lechkhumi, Samegrelo,
Imereti, Guria, Ajara); to the East, middle Kakheti is the only distribution area. Quercus
hartwissiana Stev. is included in the Red List of Georgia [9] as Vulnerable (VU) based
on the IUCN categories and criteria [10], and it also is listed in the checklist of Vascular
Plants of Georgia [124]. This taxon is therefore considered to be facing a high risk of
extinction in the wild. Quercus hartwissiana is included in IUCN Red List under the status
DD (Data Deficient) [125]. Quercus macranthera Fisch. and C.A.Mey. ex Hohen., known as
high mountain oak or oriental oak, is the oldest in of Southwestern Asia, and has great
importance in the study of the flora history [67,69]. Quercus macranthera is distributed in
almost all high mountain regions of Georgia and mountainous areas of East Georgia at
1700–2400 m a.s.l. In West Georgia, high mountain oak forests are comparatively widely
distributed only in the Racha and Zemo Svaneti regions. The total area of mountain oak
forests attains approximately 10,000–12,000 ha. Oak forests created by high mountain
oak are mostly distributed in the subalpine belt, above 1750–1800 m, although in some
localities (slopes of Trialeti range), Q. macrantehra comes down to even lower altitudes
of 1400–1500 m, and together with Quercus iberica, creates the oak forest [126]. Quercus
macranthera is listed in the Red List of Georgia as Vulnerable (VU) [9].

Like other forest angiosperms, Quercus spp. has nonorthodox seeds that are no longer
viable or are subject to a rapid decrease in germinability during storage [42]. Propagation
by vegetative reproduction is also very difficult for most oaks [127]. Their rooting ability
decreases significantly with the age of the oak tree, although grafting, cutting back, and
etiolation are usually adopted to improve rooting [95]. Since both in vivo and in vitro
methodologies were suggested in the early 1980s for the genus Quercus [127], in vitro
propagation systems have been further developed for Q. petraea [128], Q. robur [128,129],
Himalayan oaks Q. leicotrichophora and Q. glauca [130,131], and endangered and rare oak
species such as Q. euboica [132] and Q. lusitanica [133]. Studies on micropropagation through
axillary shoot proliferation and somatic embryogenesis in different species have been
summarized in several reviews [134,135]. Standardized procedures have been developed
for micropropagation of the most important European (Q. robur, Q. petarea, Q. suber) and
American (Q. alba, Q. bicolor, Q. rubra) oaks by axillary shoot growth [128,136]. Nevertheless,
similar to many woody perennials oaks, their characteristic strong episodic seasonal shoot
growth is highly problematic for clonal micropropagation, resulting in the inability to
achieve a stabilized shoot multiplication stage [136]. Tissue culture of oak species, especially
using mature-phase plant material, is still a challenge, often resulting in low growth and
a low survival ratio [136–139], which requires rejuvenation of plant material [140]. Most
commonly, micropropagation from shoot tips or nodal explants is an efficient way to
produce uniform quality oak clones [141,142]. In most cases, the micropropagation systems
are based on the proliferation of axillary shoots, and juvenile seedling material is used [143].

Studies on micropropagation through axillary shoot proliferation in oak species of
economic relevance have been carried out in last 25 years [136]. Various culture media
were used for Quercus spp. micropropagation; Veitez et al. [144] showed that, out of the
eight media tested on Q. robur, the best results were achieved with Gresshoff and Doy (GD)
(1972) medium [145], while MS Murashige and Skoog (1962) (MS) [146] medium showed
poorly developed axillary buds, small leaves, and necrosis that spread from the shoot
tips to the whole culture, but without basal callus formation [144]. Moreover, the cultures
had thick succulent or hyperhydric shoots. However, woody plant medium (WPM) [119]
supplemented with BA in the range of 0.44–4.44 µM for shoot proliferation and IBA in
the range 0.98–4.9 µM is most commonly used for the micropropagation of many Quercus
species [127]. The ratios and concentrations of plant growth regulators are greatly varied
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among the species, even in different regional populations and genotypes of the same
species. This is mainly due to the influence of the genotype, and the different responses to
micropropagation of oak genotypes are large enough to explain the lack of repeatability in
culture establishment, subculture, and rooting [136,147].

However, in general, adventitious shoots and axillary buds have been widely applied
to in vitro propagation, and the research is still largely focused on using somatic embryo-
genesis (SE). In woody plants, SE is widely recognized as the most efficient system of
regeneration [77,136,148–150]. Different explants from juvenile and mature plant material
were used to establish embryogenic cultures, most frequently using leaf explants from
mature trees [134,151] and zygotic embryos [152]. Embryogenic cultures and embryo axes
were also used in Quercus spp. cryopreservation [153].

Attempts to establish cultures of Quercus hartwissiana and Quercus macranthera from
the field-grown adult trees using axillary buds as explants have been made in our fac-
ulty laboratory. The buds collected from the adult maternity trees and cultured in vitro
sprouted (Figure 1e), but did not produce fully developed plantlets (unpublished work).
From the Quercus species included in the Red List of Georgia, only Q. pedunculiflora can
be found micropropagated from the nodal segments, and immature and mature acorns
(Table 1) [117,118].

3.3. The Genus Betula

The birch family (Betulaceae) includes taxa distributed across a large proportion of the
northern hemisphere, from Canada in the west to China, Japan, and Siberia in the east. The
genus Betula is presented in Georgia by five species: (i) Betula medwediewii Regel., (ii) Betula
megrelica Sosn., (iii) Betula raddeana Trautv., (iv) Betula litwinowii Doluch., and (v) Betula
pendula Roth. [154,155]. Three of these, B. medwediewii, B. megrelica, and B. raddeana, are
included in the Red List of Georgia [9] based on assessments made earlier and according
to the requirements of IUCN Red List Categories and Criteria [10], and guidelines for the
application of IUCN Red List criteria at regional and national levels [156].

Betula megrelica Sosn., or Megrelian birch, is identified as Endangered (EN) in the
IUCN Red List of Threatened Species [72,155]. It is endemic to Georgia (local endemic of
West Georgia), belongs to a very rare species, and is often regarded as a synonym to Betula
medwediewii. B. megrelica is gathered on Migaria Mountain, and can spread up to 1800 m
a.s.l., with an upper elevation limit of 2800 m a.s.l. It is scattered throughout pine, mixed,
or beech forests, and forms a tree line together with sallow (Salix) and Picea orientalis. In the
IUCN Red List of Threatened Species, Betula raddeana Trautv. or Radde’s birch, has a status
of Least Concern (LC) [72,157]. Betula raddeana belongs to the relic species; it is endemic
to Caucasus, and occurs in Azerbaijan, Georgia, and Russia. In the Red List of Georgia,
Betula raddeana is identified as Vulnerable (VU). Betula medwediewii Regel, or Medwedew’s
birch, has not yet been assessed for the IUCN Red List of Threatened Species [158], but it
is included in the Catalogue of Life Annual Checklist [159]. Betula medwedewii occurs in
the western part of the country, in the zone of the subalpine crook-stem forest, limestone
slopes, and in the upper and subalpine belt at 1900–2250 m a.s.l., in some cases reaching
2350 m elevations. B. medwedewii grows in small groups and creates peculiar complexes
with Pontic oak. Like B. raddeana, in the Red List of Georgia, Betula medwedewii is identified
as Vulnerable (VU) [9]. The species is protected in the Kintrishi State Reserve, and is
of considerable conservation and evolutionary interest [160]. Overexploitation of wild
populations can pose a threat to the Betulaceae family. A ‘small fragmented distribution
range’ is named as a reason for including these species in the Red List [9]. The following
factors are considered to be responsible for the declining population of these three species:
for Betula medwediewii—forest logging and grazing, which damages seedlings; for Betula
megrelica—its small stands are heavily threatened by excess grazing and habitat destruction;
and for Betula raddeana—cutting of subalpine birch-woods, and use of twigs for feeding the
livestock, mostly horses [160,161].
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Several reports are available on the micropropagation of various Betula spp. from both
juvenile and adult plant material [162]. Earlier studies include clonal propagation from
young trees using shoot tips of B. schmidtii, B. costata, and B. davurica [163]; apical and axil-
lary buds of B. pendula [164,165]; and nodal and internodal segments of B. platyphylla [166],
and B. pendula [167]. Adventitious shoot induction from leaf callus, as well as directly on
the explant, has also been reported for B. pendula [168] and B. platyfylla [169]. The feasibility
of micropropagation of a mature colchicine-polyploid and irradiation-mutant of Betula
pendula Roth. was reported by Särkilahti (1988), where tetraploid plantlets were regener-
ated from cultured apical and axillary buds of a 23-year-old tree [165]. The regenerated
plantlets had a tetraploid chromosome set (4n = 56) and an altered leaf morphology typical
of colchicine-polyploid birches. The mutant nature of the parent tree was also evident in
the light-green color of the leaves of the plantlets.

Like other hardwoods, various species and genotypes of birch respond differently to
in vitro conditions and explant sources. Successful plant regeneration has been reported
using several basal culture media and growth regulators during the different growth phases.
In general, WPM [119] or MS [146] supplemented with N6-6-benzylaminopurine (BAP)
in a range 0.5–5 mg/L and 1-Naphthaleneacetic acid (NAA) in a range 0.01–2 mg/L is
recommended for shoot induction and multiplication [159]. Low salt concentration in the
medium, as well as the addition of low auxin in concentrations of 0.02–0.5 mg/L, improves
rooting [156,164].

An interesting study applied the TIB for micropropagation of B. pubescens Ehrh and B.
pendula var. carelica, with good results in the proliferation, rooting, and acclimatization for
both species [170]. In particular, B. pendula explants exhibited a 1.75-fold increase in their
multiplication rate with the TIB system compared to a solid culture medium.

Micropropagation of threatened Betula species distributed in Georgia was successfully
initiated and grown in vitro, resulting in multiple shoot formation and rooting through
axillary shoot proliferation derived from mature-phase plant material (Figure 1f) [109]
and seedlings grown in vitro (Figure 1g,h) [110,111]. These are the only reports on in vitro
propagation of Betula spp. listed in the Red List of Georgia (Table 1). Different responses
to culture media and concentration of growth regulators, including bud-sprouting and
shoot proliferation, were observed in general for all specimens from Georgian Betula spp.
Proliferated shoots of all Betula spp. exhibited rapid elongation either in WPM or MS
medium supplemented with 4.4 µM BAP, with an average of 3–4 shoots greater than
2.5–3 cm long. Low concentration (2.5 µM) of BAP was not effective for shoot proliferation.
Kinetin at 0.5 or 1.16 µM applied in MS or WPM culture media had a significant effect
on shoot elongation, but did not affect the proliferation [109]. In other studies, shoot
elongation showed different responses when different concentrations of BAP (2.5, 7.5, or
10 µM) were used in combination with 1 µM gibberellic acid (GA3) [110,111]. Considerable
elongation of shoots was achieved in MS medium supplemented with 7.5 µM BA and
1 µM gibberellin for all Betula taxa. The fastest shoot growth response was achieved for
the Betula megrelica, forming shoots consistent in size. Remarkably, the lowest response to
proliferation was shown by B. medwedewii, while the fastest shoot growth was achieved
by Betula megrelica. The optimal medium for in vitro rooting of shoots was WPM medium
containing 1 µM IBA, which showed the highest (93–98%) rooting frequency and survival
rate (95–100%). WPM prevailed over 1

2 MS for rooting efficiency. Severe problems with
contamination occurred when establishing bud cultures initiated from the field-grown
adult trees. Many twigs of Betulaceae were severely contaminated because of the high
levels of micro-organisms existing in nature during the collection period, and disinfestation
was unsuccessful.

4. Conclusions

The micropropagation of Georgian indigenous threatened hardwood species is signifi-
cant, requiring the development of effective in vitro conservation strategies for rare and
endangered species. In many countries, it allowed storage in in vitro gene banks of several



Agronomy 2021, 11, 1082 14 of 20

species, and it can have a crucial role in the conservation of genetic resources of forest
ecosystems of Georgia and in global biodiversity. The work done on the threatened woody
species of Georgia offers a useful platform for further work, including the application of
new biotechnological tools such as temporary immersion systems and cryopreservation,
toward the establishment of comprehensive in vitro conservation programs for other plant
species of commercial importance that are not possible to propagate and preserve by
conventional ways.
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