
A stochastic modeling approach for an efficient
dependability evaluation of large systems with

non-anonymous interconnected components
Silvano Chiaradonna

and Felicita Di Giandomenico
ISTI-CNR, Pisa, Italy

e-mail: {silvano.chiaradonna,
felicita.digiandomenico}@isti.cnr.it

Giulio Masetti
Computer Science Department

University of Pisa, Italy
and ISTI-CNR, Pisa, Italy

e-mail: giulio.masetti@isti.cnr.it

Abstract—This paper addresses the generation of stochastic
models for dependability and performability analysis of complex
systems, through automatic replication of template models. The
proposed solution is tailored to systems composed by large pop-
ulations of similar non-anonymous components, interconnected
with each other according to a variety of topologies. A new
efficient replication technique is presented and its implementation
is discussed. The goal is to improve the performance of simulation
solvers with respect to standard approaches, when employed in
the modeling of the addressed class of systems, in particular for
loosely interconnected system components (as typically encoun-
tered in the electrical or transportation sectors). Effectiveness of
the new technique is demonstrated by comparison with a state
of the art alternative solution on a representative case study.

I. INTRODUCTION AND RELATED WORK

Stochastic model-based approaches are popular means to
perform system dependability analysis. A variety of modeling
formalisms and model solution techniques, typically automated
in commercially available tools, have been developed since
decades to assist the modeler’s activity. Although a system
model is a representation at an appropriate degree of abstraction
of the real system under analysis, as necessary to satisfy
requirements on computational feasibility of the analysis itself,
the growing complexity and size of modern and future systems
pose continuous challenges. Modularity and composition at
model level are key principles commonly adopted, but reflected
at solution level only under specific conditions (e.g., peculiar
symmetries or convenient hierarchical structures). Unfortu-
nately, unaffordable execution time to obtain results from model
solution is an observable obstacle when dealing with system
size representative of the reality in many sectors, thus confining
the analysis to limited system configurations that, consequently,
generate limited interest by system utilizers in the assessment
results. Of course, raising the level of system abstraction so
to match the capability of available modeling and evaluation
methods is always a possibility. But then the drawback is the
risk of too poor accuracy of the obtained analysis results, if the
attainable representation is too abstract to properly account for
the specificities requested by the analysis purpose. Certainly,
when dealing with critical systems employed in vital sectors

such as critical infrastructures, accuracy of the assessment is a
key issue. In particular, dependability related properties (such
as reliability, safety and performability) are primarily relevant
in such contexts and assessing whether a designed-implemented
system fulfills them at a pre-defined level of accuracy is an
essential, but very challenging activity. By boosting efficient
simulation-based evaluation, we aim at enhancing accuracy of
dependability analysis of (potentially large) critical systems in
realistic scenarios.

The study started from the observation that many systems of
interest from the dependability and resilience perspective are
actually composed by large populations of similar non-anony-
mous components. By exploiting such observation, this paper
presents a modeling strategy well suited to obtain efficient
simulation-based evaluations in such contexts.

In the literature, modeling of system components replica-
tion has been mainly addressed in the form of anonymous
replication, well suited to represent a population of identical
components, each one interacting with all the others or
completely independent, following the approach originally
presented in [1]. This configuration favors the application of
the strong lumping theorem [2], enhancing the state-space
generation based solvers [3], as well as simulation-based
solvers [4]. The key point is the possibility to exploit the
trivial “all or nothing” symmetry that characterizes the complete
directed graph of interactions among components. For identical
components connected in arbitrary ways, symmetry exploitation
methods [2] have been adopted. In case of the “all or
nothing” interconnection pattern, other approaches focus on
syncronization [5], [6], in particular when stochastic Petri nets
dialects are employed. Alternatively, behavioral aspects [7],
such as bisimulation, have been pursued by the stochastic
process algebra community.

The need to cope with modeling of different but similar
components, e.g., when the topological position of a specific
system component has an impact on its parameters setting,
triggered solutions based on non-anonymous replication. In [8],
[9] a solution, referred in the following as State-Sharing
(SS) approach, is proposed. It is a general solution for



simulation-based solvers, but its efficiency is limited because
it relies on the pessimistic approach of a complete dependency
graph among all the replicas. Instead, the great majority of
real-world systems are typically composed by many loosely
interconnected components according to regular topologies
(tree, mesh, cycle, etc). A population of different but similar
components is also considered in [10], where a graph of
connections is employed to construct a well shaped matrix in
which differences among components correspond to non-zero
off-diagonal entries. Similarities help the numerical solver in
gaining performance, being the computation based on a linear
system solution that is sensitive to the number of non-zero
off-diagonal elements. In [10], there is no template model and
no replication, and the definition and composition of submodels
is manually performed.

In general, modelling a large population of different inter-
dependent components, without using a generic template as a
building block in the definition of the overall model, requires
to define and compose a large number of different models,
one for each component. Automated procedures are certainly
desirable both from the efficiency point of view and to enhance
correctness of the developed model.

Taking an approach based on the modular composition
of template models through replication and join operators,
similarly to the SS approach, in this paper we propose a
new mechanism to non-anonymous replication, named De-
pendency-Aware Replication (DARep), that greatly improves
on efficiency when simulation-based solvers are adopted. The
idea is to exploit the real dependency graph characterizing
the interactions among the system entities, usually not a
complete graph structure, to reduce the solution time. In fact,
it is expected that dependency awareness will benefit the
simulation operations, including the simulator initialization
step. Promoting higher efficiency is greatly relevant, since it
makes possible to enlarge the size of the systems that can
be analyzed and better represent scenarios at the required
level of accuracy (especially crucial for dependability critical
applications).

Very recently, the authors also developed an alternative
approach, presented in [11], which specifically addresses
non-anonymous replication of loosely interconnected compo-
nents adopting model-based simulation in Möbius. This strategy,
named channel-sharing approach, uses a single channel shared
among all the replicas to exchange values of the state variables
following the actual system topology. Although based on the
same principle of exploiting real dependencies as in DARep,
it has been conceived as a Möbius modeling mechanism for
system scenarios with low dependency degrees in presence of
large number of replicas. These are no more the premises for
the new DARep solution.

The rest of the paper is organized as follows. Section II
briefly introduces the category of systems under analysis and
their characteristics. Section III describes the formalism and
tool used to define and evaluate the proposed approach, which
is then presented in Section IV. To gain insights on concrete
benefits, extensive comparisons with the SS approach are carried

on in Section VI, adopting a simple but representative case
study previously presented in Section V. The obtained results
show the superiority of the newly introduced approach in all
the investigated scenarios. Conclusions are finally drawn in
Section VII. To help the reading, a table of acronyms is also
included in Appendix A.

II. LOGICAL ARCHITECTURE OF TARGETED SYSTEMS

The reference system category for this study is composed
by a large number of components, grouped according to well
known structures, e.g., tree, cycle, mesh, etc. The connection
among two or more components induces a dependency among
the behaviour, and so in general the state, of the involved
components. Therefore, in the following, the terms connection
and dependency are used as synonymous, when referred to the
relation among components.

Cyber-physical systems in critical sectors, such as transporta-
tion, electricity, water and oil, fit well in the addressed system
category. For example, an electrical grid encompasses, among
its components, a number of collection points called busses,
which are different but similar. The main aspects that determine
differences among them include the position occupied in the
grid topology and the number and kind of attached electrical
equipments for energy production or consumption. When
abstracting the bus component for analysis purpose, a generic
bus component can be assumed and a template model for it
can be built, which is then replicated through an indexing
function to model all the specific bus components included in
the system, each with its individual peculiarities. Therefore,
although they all adhere to the structure and behaviour of the
generic bus component, each bus replica is non-anonymous
and needs to be specifically distinguished through an index.

The solution proposed in this paper is meant to assist
the modeler in modeling a generic component and then
automatically build different but similar components, connected
according to a predefined topology. Of course, the definition of
the logical architecture of the system under analysis in terms
of types and number of components to be accounted for in
the models, as well as the abstraction level to be adopted for
their representation, strongly depends on which is the goal
of the analysis. As a simple exemplification, if the interest
is in determining the overall system failure rate, the system
abstraction level is in general different from the case where
the objective is to quantify the impact of failure propagation
among specific system components.

In general terms, the logical architecture of the given
reference system can be seen as composed by:
• A large number of connected components (called specific

components).
• One or more generic components. Each generic component

groups all the specific components having common char-
acteristics, i.e., homogeneous system components, which,
although different, share the same behaviour, structure
and parameters. This means that the template model built
for the generic component is adequate to represent the set
of its specific components.



• A topology that defines the connections among the
generic or specific components. For the purpose of the
DARep mechanism, for each generic component, only the
dependencies existing among its specific components are
of interest, so in this paper the focus is restricted to them.

Without loosing in generality, but for the sake of simplicity,
in the following only one generic component with its n specific
connected components is considered. In fact, extending to h
generic components, simply implies simultaneous application
of the DARep mechanism to the h template models, each
one representing a generic component. In order to allow
automatic generation of the non-anonymous replicas, the
structure, behavior and parameters of the generic component
have to be defined as a function of the index i of the
replica, with i = 0, 1, . . . , n − 1. Each specific component
is characterized by the value of the index i of the replica and
it is referred as “component i”. The state of each component i
is represented by v state variables

SVi,0, SVi,1, . . . , SVi,v−1

with v being the same for each replica. The values of
the state variables can be discrete and continuous. A spe-
cific component sci can depend on state variables of other
components according to a predefined topology. Of course,
at the same time other components can depend on state
variables of sci. Therefore, we distinguish two kinds of state
variables. Those that impact on, or are impacted by, other
specific components, called dependency-related state variables,
indicated with SVi,0, SVi,1, . . . , SVi,m−1, where m ≤ v, being
m the same for each replica. The other v−m state variables are
referred as non dependency-related state variables, or local state
variables. The dependency degree of the component i, called
di ∈ {0, 1, . . . , n−1}, indicates that the structure, behavior and
parameters of the component i depend on dependency-related
state variables of di other components. The list of those
components from which the component i depends on is called
Di = {j0, j1, . . . , jdi−1}. If di = 0 then the component i does
not depend on any other components, although the state of the
component i can impact on the state of the component j, if
i ∈ Dj . When di = 0 and @j | i ∈ Dj the component i is said
to be independent. From a topological point of view, Di, for
i = 0, . . . , n−1, defines an oriented graph that represents how
the n components are connected and how they depend on each
other to form the overall system. An independent component
corresponds to a disconnected node of the graph, while a
system where there is full connectivity among its components
results in a complete graph.

III. FORMALISM AND TOOLS

The Möbius modeling framework [12], implemented by the
tool Möbius [13], is used to define and evaluate the models
expressing the proposed approach. Möbius is a powerful mod-
ular environment that supports multiple modeling formalisms
and multiple solution techniques.

The Möbius modeling formalism we used for our replication
approach is the Stochastic Activity Networks (SAN) formal-
ism [14], a stochastic extension of Petri nets based on four
primitives: places, activities (transitions), input gates, and output
gates. Primitive data types of the programming language C++,
like short, float, double, including structures and arrays, are
represented by special places, called “extended places”. Input
gates define both the enabling condition of an activity and the
marking changes occurring when the activity completes. The
output gates define the marking changes occurring when the
activity completes, but they are randomly chosen at completion
of the activity from a probability distribution function, defined
by “cases” associated to the activity. The SAN primitives are
expressed by C++ code.

Composed models are obtained through two compositional
operators, based on the sharing of state variables [1]:
• Join, that composes, i.e., brings together two or more

(composed or atomic) submodels, and
• Rep, that automatically constructs identical copies (repli-

cas) of a (composed or atomic) submodel.
A state variable can be either local to each submodel, if it
cannot be directly accessed by other submodels, or shared
among submodels or replicas, if the submodels or replicas can
directly access that state variable. Both Join and Rep operators
support automated sharing, based on an all-or-none sharing
strategy, meaning that an automatically shared state variable
can be either shared among all submodels or it is local to
each submodels only. In contrast to Rep, the Join operator
supports the sharing of state variables among different subsets
of the composed submodels, but each state variable has to
be manually defined for each submodel and manually shared
using the graphical user interface.

The Rep and Join operators are defined at level of Abstract
Functional Interface (AFI) [12], [15], a common interface
between model formalisms and solvers that allows formal-
ism-to-formalism and formalism-to-solver interactions. At AFI
level, places and activities (transitions) of SAN correspond
to state variables and actions, respectively. For the sake of
simplicity, the proposed atomic and composed models are
defined using the SAN notation (places and activities). All the
formalisms and solvers supported by Möbius are based on, and
defined in terms of, C++ code. Thus, the tool supports external
C++ data structures, statically defined at compilation time, and
can include and link external C++ libraries. A template model
represents a group of homogeneous components, as described
in Section II. It is an atomic or composed generic model used
as a building block in the definition of the overall system
model.

Möbius is not an open source software and the AFI level
is not accessible via APIs, thus we introduce an additional
layer of abstraction between the modeler and Möbius that
addresses directly the non-anonymous replication. In particular,
our approach is based on XQuery [16], the W3C recommended
language for manipulating xml files, XQilla [17], an XQuery
and XPath 2 library written in C++, and self-written C++
classes and function templates.



IV. THE DARep APPROACH

A. The General Approach

The proposed DARep approach models automatically the in-
teractions among similar components represented by non-anony-
mous replication of a given template model, as described
in Section II. The DARep approach takes advantage of the
topology of dependencies among system components, by
sharing the state variables of each replica among only those
replicas that need to exchange values of their state variables.
The goal is to improve the performance of the simulation
solvers with respect to the standard SS approach, which uses the
automatic replication based on the all-or-none sharing strategy,
that is either a state variable is shared among all the replicas
or it is local to each replica. Since it is rarely the case that this
sharing strategy naturally fits the system under analysis, extra
computation time and possibly intricate data structures are
necessary to properly manage the correct dependency relations
at model definition and solution. To overcome this drawback,
the DARep approach extends the Rep composition operator in
order to: 1) generate automatically the replicas of a template
model and the state variable associated to each replica, 2) share
the state variables among different subsets of the replicas. Thus,
it merges the advantages of the Join and Rep compositional
operators.

In more details, the DARep approach models similar compo-
nents and the interactions among them in the following steps
(listed in order of execution):

1. For each different dependency-related state variable, manual
or automatic definition of the related dependency topology.

2. Manual definition of the template model that represents the
generic component.

3. Automatic generation of n atomic models, one for each
replica of the template, including only the dependency-re-
lated state variables shared among the other replicas, in
accordance with the actual dependencies topology.

4. Automatic generation of the composed model defined by
the Join operator that joins all the atomic models generated
at step 3 and shares among different subsets of them all the
dependency-related state variables automatically defined at
step 3.

The primitives of the formalism used to define the template
model (e.g., the SAN formalism) have to include the following
two functions:

• Index(), that is applied to each atomic template model to
get the actual index of the replica. It is replaced, in each
atomic model generated at step 3, by the actual index of
the modeled replica.

• Deps(j), that is applied to each dependency-related state
variable defined in the template model to access to: 1) the
actual dependency-related state variable of the current
replica, if j = 0, and 2) the actual dependency-related
state variable of the j-th replica of the list of replicas
(components) from which the current replica depends on
or that impact on the the current replica, if j > 0.

These functions are needed to define a template model as
a function of the index of the replica and to access to the
dependency-related state variables associated to each replica,
in accordance with the actual dependencies topology.

To make more concrete the proposed method, in Sec-
tion IV-B, the implementation of the above listed steps in the
Möbius framework is presented. However, we underline that it
is a general approach applicable to any modeling and evaluation
environment that supports both composition of submodels
based on sharing of state variables and the definition of the
above two functions Index() and Deps(). Of course, specific
implementation details could be different, in accordance with
what the adopted modeling environment offers.

In the DARep approach, the composed model is automatically
defined with the Join operator, at step 4, in order to share, for
each dependency-related state variable defined in the template
model, the minimum set of state variables among the minimum
set of the replicas. More precisely, for each dependency-related
state variable, each replica i requires to share with the other
replicas only di + 1 state variables, i.e. the state variable
associated to the replica i and the state variables, associated
to other replicas, from which the replica i depends on or that
depend on the replica i.

To perform comparison with the state of the art SS approach,
we briefly recall how this last works, as presented in [8], [9].
SS relies on a template SAN model replicated by the Rep
operator to model similar components and the interactions
among them. For each dependency-related state variable of
the modeled component, an array of state variables, i.e. one
state variable for each replica, is defined in the template model.
Differently from the DARep approach, SS does not exploit
the dependency topology and the array is shared among all
the replicas of the template model. The template defines an
additional state variable local to each replica representing the
index of the replica. Using the index in the template, each
replica can access to the the entries of the array representing
the state variable of the other replicas.

Compared to SS, a reduction in the time overhead is expected
for DARep, both during the initialization of the simulation
solver and during the execution of the simulation batches.
However, DARep introduces a time overhead at generation
time of the atomic and composed models (steps 3 and 4) and
at compilation time, due to the number n of the atomic models
and to the size of the composed model. In particular, for very
high values of n and di, the time required for the generation
and compilation of the composed model could have a relevant
impact on the efficiency of the model evaluation.

To understand the impact of these phenomena on the
efficiency of the approaches, at varying both the number of
considered replicas and the dependency degree, comparisons
between the DARep approach and the SS approach have
been performed. To this purpose, both approaches have been
implemented in the Möbius modeling environment and the
obtained results are shown and discussed in SECTION VI.



B. The Möbius-Based Implementation

The above general steps of the DARep approach are detailed
in this Section, resorting to the SAN formalism and the Möbius
framework.

The template model defined at step 2 is an atomic SAN
model, where either plain places or extended places are used
to represent respectively one or more dependency-related state
variables of the modeled generic component. In particular,
struct-type place with m fields or array-type extended place
with m entries can be both used to model m different
dependency-related state variables associated to a generic
component.

The functions Index() and Deps(j) of DARep approach are
implemented respectively by two new C++ functions, that can
be only used in the SAN template model as follow:
• SANDARep::sanname::Index(), and
• SANDARep::sanname::placename–>Deps(j).

where SANDARep and sanname are C++ namespaces in-
troduced to avoid names conflicting with Möbius C++
code. In particular, a different namespace sanname is de-
fined for each template SAN sanname. The statement
SANDARep::sanname::Index() is used in the template model
sanname to get the index of the replica. It is replaced,
in each atomic SAN model generated at step 3, by
the actual index of the modeled replica. The statement
SANDARep::sanname::placename–>Deps(j) refers to: 1) the
dependency-related place (state variable) placename associated
to the current replica i of the template sanname, if j = 0; 2) the
dependency-related place (state variable) placename associated
to j-th replica of the list Di shared with the current replica
i, if j > 0; 3) the list of all dependency-related places (state
variables) placename defined in the current SAN and associated
to the replicas listed in Di, if j is omitted. The method Deps(),
without the index j, can be used to pass the list of references to
dependency-related places to each user defined C++ function,
that can read or update the values of these places. In each
atomic SAN model generated at step 3, corresponding to replica
i, the statement SANDARep::sanname::placename–>Deps(j)
is replaced by

SANDARep::sanname::rep(j).placename(),

where a C++ object rep calls the actual method that returns the
reference to the dependency-related place placename defined
in the generated SAN and associated to j-th replica of the list
Di. Moreover, in each SAN primitive where this statement
is used (e.g., in the enabling condition of an input gate), all
the actual names of the dependency-related places placename
associated to all replicas of the list Di are included in the
primitive through a call to a dummy empty function having
all these names as arguments. This is needed because the
dependencies among SAN primitives and places in the Möbius
tool are statically defined when the C++ code describing the
model is generated, based on the names of the places. Thus,
for example, an enabling condition defined by a statement
that accesses to a place by reference, like the above statement

Fig. 1. SAN model SANSANDARep99 generated by the DARep approach
from the generic template SAN of Figure 5.

generated by the DARep approach, is checked at each update
of the place only if the enabling condition includes also the
name of the place.

At step 3, the C++ code (definition of classes and initializa-
tion of objects and constants), used to implement this method
and that depends on the dependencies topology, is automatically
generated and included in each submodel. In particular, the
code to initialize the object rep with the list of the pointers to
the dependency-related places associated to each replica listed
in Di, is included in the field “Custom Initialization” of each
SAN, thus the C++ data structures are set before the model
evaluation starts.

An example of definition of output gate in a SAN template
mysan including the dependency-related place S and the local
place B is the following:

B->Mark()=
SANDARep::mysan::S->Deps(0)->Mark();

updateS(SANDARep::mysan::S->Deps(),
SANDARep::mysan::Index());

where to the extended place B is assigned the value of
the dependency-related place S associated to the current
replica, and the function updateS() receives the list of all the
dependency-related places S of the other replicas that depend
on the current replica and updates them based on the index of
the current replica SANDARep::mysan::Index().

The i-th atomic SAN model, automatically generated at
step 3, represents the i-th replica. For each dependency-related
state variable (place) SV∗,y , defined for a generic component in
the template SAN model, the dependency-related place SVi,y
associated to the specific replica i, referred in the template SAN
by SANDARep::sanname::SV∗,y–>Deps(0), is automatically
generated in the SAN. In addition, all the places SVx,y, for
x ∈ Di, that depend on or have impact on it, are automatically
generated in the SAN. The places are referred in the template
SAN by SANDARep::sanname::SV∗,y–>Deps(j), for 1 ≤ j ≤
di, where j is the position of the the index x in Di. For
example, Figure 1 shows the SAN model SANSANDARep99
(the name of the model is obtained merging the name SAN of
the template, the string SANDARep and the index of the replica)
representing the 100-th replica (the index of first replica is 0)
of the generic template depicted in Figure 5 and presented in
Section V. This model is generated by the DARep approach
for n = 100 and d = 10.

Figure 2 depicts the left part of the composed model
SANSANDARep (the name of the model is obtained merging



Fig. 2. Composed model Comp generated by the DARep approach from the
generic template SAN of Figure 5.

Fig. 3. A snapshot of the “Define Node Join Dialog” of the Möbius tool for
the composed model SANSANDARep generated by the DARep approach from
the generic template SAN of Figure 5.

the name SAN of the template with the string SANDARep)
automatically generated at step 4, for n = 100 and d = 10,
from the generic template depicted in Figure 5.

Figure 3 is a snapshot of the “Define Node Join Dialog”
of the Möbius tool for the composed model SANSANDARep.
It shows the list automatically generated of all the depen-
dency-related places SDRSV DARepi (the name of each
place is obtained merging the name S of the place, the string
DRSVDARep and the index of the replica associated to the
place) associated to each replica of the template, that are shared
among subsets of submodels (replicas) in accordance with the
actual dependencies topology. In particular, for the first place
SDRSV DARep0, the list of the submodels (replicas) that
share the place is shown.

Each model generated at steps 3 and 4 is defined with an
XML file, automatically generated with the XQilla tool using
the dependency topology described with an XML input file
defined at step 1. Each time the template SAN model undergoes
updates at step 2 that imply changes in the number of replicas n
or the dependency topology, the steps 3 and 4 must be repeated,
to update the resulting xml files and C++ files. Consequently
the overall model must be compiled again.

V. CASE STUDY

As already mentioned in Section II, to illustrate the concrete
application of our proposed replication mechanism we consider
a system composed by n different, but similar components,
interconnected through a specified topology which involves a
varying number of components (including the two extremes of
having each component connected with only another one, to
the case where each component is connected with all the

other ones). Although simple, our case study is effective
in demonstrating the features and benefits of the DARep
mechanism, since it fully represents the logical architecture of
targeted systems described in Section II and can be considered
as a basis to be easily extended and adapted to represent a
great variety of real contexts.

Similarly to the system logical structure adopted in the study
in [18], let’s consider n working stations dedicated to perform
the same task in parallel. At every time instant, each station can
be either working or failed, and the change of status takes place
after an exponentially distributed random time. The failure of
a station implies a reconfiguration of the workload assigned
to the other stations, to continue accomplishing the tasks of
the failed station. Just before failing, a station redirects its
tasks to one or more other stations it is connected with, i.e.
neighbouring stations according to the dependency topology.
The stations that receive new tasks increase their workload,
implying also a change of their failure rate.

Interdependencies
A B0

A B1

A B2

A B3

A B4

0

1

2

3

4

(a) d = 1

Interdependencies
A B0

A B1

A B2

A B3

A B4

0

1

2

3

4

(b) d = 2

Fig. 4. Logical structure of the case study for n = 5 and two dependency
scenarios: d = 1 in (a) and d = 2 in (b).

This system is modeled as a pure death process [19] with
monotone load sharing [20]. To reflect the impact of failures
of neighbouring components on the failure rate of component
i, this last is determined according to the following expression:

λi = const ·
(

(i mod 10 + 1) +
∑
j∈Di

1{component j is failed}

)
where the first addendum of the sum in parenthesis accounts
for the failure rate of component i in isolation, and the second
addendum for the increment due to the failure of neighbouring
components it depends on.

The workload of failed stations is transferred to the d
cyclically following working stations, determined according to
the following expression:

Di = {i+ 1 mod n, . . . , i+ d mod n}

Figure 4 illustrates a system configuration of 5 components
in two simple dependency scenarios: d = 1 and d = 2. Then,



Fig. 5. Case study generic SAN model.

should for example component 0 fail, its workload is transferred
to component 1, which also increases its failure rate, in the
scenario with d = 1. In case of scenario with d = 2, the
workload originally assigned to the failed component 0 is
transferred to components 1 and 2, which also increase their
failure rates.

In this case study, the same dependency degree is assumed
for each component, i.e., di = d holds for each i, although
different degrees could be easily accommodated.

To gradually investigate the impact of the different dimen-
sions impacting on the performance of the studied replication
mechanisms, the representation of the workload reconfiguration
process assumes in our study only one dependency-related
state variable (m = 1). Some dialects of Stochastic Petri
Nets, including Stochastic Well-Formed Nets [21] and SANs,
offer arbitrary typed tokens or places, thus having only one
dependency-related state variable allows anyhow to model
a rich information exchange among components. The SAN
model implementing the generic component (the working
station) is depicted in Figure 5. The model consists of two
places, A and B, the transition T and the dependency-related
place S. When a token is in A the component is working,
when a token is in B the component is failed, and the two
alternatives are mutually exclusive. At the beginning, each
replica initializes S–>Deps(0)–>Mark() with its local load.
Whenever a replica fails, via the Output Gate upd, it increments
each Place in S–>Deps() by 1. Transition T has then an
exponentially distributed time and an index dependent rate
equal to const · S–>Deps(0)–>Mark().

Note that Figure 5 depicts only the structural part of the
case study template SAN model, leaving the logic inside λi
and Di.

VI. EVALUATION RESULTS

To demonstrate the effectiveness of the proposed approach, a
comparison of the performance results of the Möbius simulator
obtained by both DARep and SS approaches has been conducted.
To this purpose, the terminating Möbius simulator [12] has
been used to evaluate at each execution different measures of
dependability (reward variables) for the proposed case study,
like the cumulated time a component stays in a specific state
and the probability that a component is failed at time t. As a
form of validation, for some sample models, it has been verified
that the number of stable states obtained with both approaches
is the same and it is equal to the theoretical prediction. In
addition, also the results obtained for the defined measures have
been the same for both DARep and SS approaches. Different
reward structures [5], [19] over different set of markings have a

different impact on simulation times. Thus, to improve accuracy
and fairness of the comparison, a high number of reward
variables (around 50) has been considered in the study. The
evaluated measures span from indicators relative to individual
components (such as the probability of failure or the MTTF of
a specific system entity), to indicators relative to portions of the
system, up to the overall system (such as the system MTTF).
However, since here the analysis focuses on the comparison
of the performance of the two approaches, details on these
measures and the obtained results are out of the scope of this
paper.

Each execution of the terminating Möbius simulator is
defined for a specific setting of all the parameters of the
considered models (corresponding to an experiment in the
Möbius terminology). Each execution of the terminating
simulator starts initializing the data structures, then runs k
batches (replications in Möbius notation) with k ≥ 1.

The following performance measures have been considered:
• τ(k): Total amount of CPU time, in seconds, used by one

execution of the Möbius simulator that runs k batches,
with k ≥ 1.

• τinit or τ(0): The amount of CPU time, in seconds,
used by one execution of the Möbius simulator to
initialize the data structures of the simulator. This is
the CPU time used by the simulator to output the string
“SIMULATOR::Preparing to run()”. The definition of τinit
as a function of τ(k) is: τinit = τ(1)− (τ(2)− τ(1)) =
2τ(1)− τ(2), where τ(2)− τ(1) is the total amount of
CPU, in seconds, used by one execution of the Möbius
simulator to run a batch.

• ∆τ(k): Difference between run time and initialization
time:

∆τ(k) = τ(k)− τinit
• Cτ(k): Compared simulation performance (pure number)

between SS and DARep, defined as follows:

Cτ(k) =
∆τDARep(k)

∆τSS(k)

where k > 0 and the superscripts “SS” and “DARep”
refer to State-Sharing and Dependency-Aware Replication
approaches, respectively.

The considered CPU time includes both user and system CPU
times. As already stated, only one template model is assumed
with its n replicas, and the number of dependency-related state
variables is also one (m = 1). Then, to exercise the approaches
in relevant contexts, the scenarios generated as combinations
of the following values for n, d and k, have been considered:
• number n of replicas ranging from 10 to 1000,
• dependency degree d varying from 1 (minimum connec-

tivity) to 500,
• number of batches k varying from 1 to 10000. The

value of k impacts on the precision of the obtained
results. Although 10000 showed an appropriate value to
assure convergence satisfying the selected requirement
(confidence interval of width less than 10−5) for most of



the measures we considered, we also observed that for
some of them 50000 batches have been necessary.

Simulations were sequentially performed on Intel(R)
Core(TM) i7-5960X with fixed 3.50 GHz CPU, 20M cache
and 32GB RAM, and an up to date GNU/Linux Operating
System. Each τ(k) has been evaluated 10 times and the
arithmetic mean is presented in Tables I to IV, VI and VII.
It is important to notice that, for the SS approach, models
compilation times are negligible, being constituted by a single
atomic SAN and one composed model, while for the DARep
approach component models compilation time can be relevant.
In particular, if n ≤ 100 then atomic SANs compilation times
and composed model compilation time can take few minutes,
while for n ≈ 1000 and d ≈ 500 composed model compilation
time can grow up to about 2.8 hours. For d ≈ 999 composed
model compilation time can take several hours and the C++
source code can reach 250Mbyte of size. However, composed
model re-compilations are needed only when interdependencies
are modified, thus – once fixed the topology of the system –
the modeler can change or define new measures and studies
without having to re-compile.

Tables I and II show initialization times for both SS and
DARep, for different values of n and d. All the table entries
in which d ≥ n are empty because d < n by definition. As
expected, since the SS approach works always considering
the pessimistic case of totally interdependent replicas, τinit
remains constant at varying the value of d. Of course, the value
of τinit grows at the increasing of n: it is about 0.23 seconds
for n = 100, and about 560 seconds for n = 1000. On the
contrary, τinit of the DARep approach changes at varying d,
but the assumed values are always negligible compared with
τinit of the SS approach.

TABLE I
τinit FOR THE SS APPROACH.

d
1 9 99 500

n
101 0.010 0.010
102 0.229 0.238 0.242
103 565.736 560.015 561.493 562.433

TABLE II
τinit FOR THE DARep APPROACH.

d
1 9 99 500

n
101 0.011 0.010
102 0.011 0.011 0.130
103 0.043 0.136 2.250 84.643

Tables III and IV show, for k = 1000, the difference between
run and initialization times (in seconds) for n = 10, 100, 1000
and d = 1, 9, 99, 500, respectively for SS and DARep. Although
the values shown by DARep are small and significantly lower
than the corresponding ones of SS, it can be observed the
different trend of the two approaches with respect to d. In
fact, while the impact of d on ∆τ(1000) is small in the table

relative to SS, in the case of DARep the value of ∆τ(1000)
for d = 500 is about 1.6 times the value for d = 1. This is not
surprising, since SS always works under the implicit assumption
of maximum interconnection among component replicas, so
its sensitivity to variation of d is minimal, while DARep is
significantly influenced by d, given the applied principle of
considering only real replicas interdependencies. With respect
to increasing values of n, as expected the results obtained for
∆τ(1000) increase for both approaches. However, DARep can
be more than one order of magnitude faster than SS when
n = 100 and d up to 9 and when n = 1000.

TABLE III
∆τ(1000) IN SECONDS FOR THE SS APPROACH.

d
1 9 99 500

n
101 0.087 0.102
102 9.203 9.197 9.357
103 1613.246 1723.666 1732.983 1754.996

TABLE IV
∆τ(1000) IN SECONDS FOR THE DARep APPROACH.

d
1 9 99 500

n
101 0.015 0.022
102 0.774 0.817 0.972
103 104.939 109.797 131.580 167.160

Elaborating on the results shown in Tables III and IV, in
Table V the comparisons between ∆τ(1000) of DARep and
∆τ(1000) of SS are shown. The improvement in efficiency
brought by DARep is very significant, especially at increasing
the value of n: DARep is between 0.67 and 1.19 orders of
magnitude faster than SS.

TABLE V
COMPARISONS Cτ(1000).

d
1 9 99 500

n
101 0.175 0.213
102 0.084 0.089 0.104
103 0.065 0.064 0.076 0.095

Tables VI and VII show, for d = 10, differences between
run and initialization times (in seconds) for n = 100, 1000 and
k = 1, 10, 100, 1000, 10000, for SS and DARep respectively. As
expected, ∆τ(k) is (about linearly) proportional to k, for both
DARep and SS. Also for this performance indicator, there is a
strong superiority of DARep over SS, especially in the scenarios
with high values of n (systems of larger size, which are those
we specifically address) and of k (to assure more accurate
results, as typically requested in dependability analysis). For
n = 1000 and d = 10, the mean run times are τSS(10000) =
574.032 + 13085.148 = 13659.180 seconds (about 3.8 hours)
and τDARep = 0.138 + 1067.821 = 1067.959 seconds (about
17.8 minutes).



TABLE VI
∆τ(k) IN SECONDS FOR THE SS APPROACH WHEN d = 10.

k
100 101 102 103 104

n
102 0.020 0.095 0.937 9.208 91.584
103 5.396 20.326 180.629 1675.024 13085.148

TABLE VII
∆τ(k) IN SECONDS FOR THE DARep WHEN d = 10.

k
100 101 102 103 104

n
102 0.001 0.011 0.089 0.811 8.081
103 0.111 1.120 10.976 109.692 1067.821

Finally, Table VIII presents comparisons between ∆τ(k)
of DARep and ∆τ(k) of SS with respect to values shown in
Tables VI and VII. The obtained values for Cτ(k) clearly point
out that DARep is again about one order of magnitude faster
than SS.

TABLE VIII
Cτ(k) WHEN d IS FIXED AT 10.

k
100 101 102 103 104

n
102 0.045 0.116 0.095 0.088 0.088
103 0.021 0.055 0.061 0.065 0.082

VII. CONCLUSIONS

Moving from considerations on the need to promote efficient
dependability and performability model-based analysis to
properly address the increasing size of modern and future
critical and complex systems, this paper developed a novel
replicator operator for non-anonymous replication in systems
composed by large populations of interconnected components,
when simulation-based solvers are used. Although the demand
for non-anonymous replication comes from a variety of key
sectors for our society and economy, the available solutions
show significant limitations in terms of efficiency when
copying with real-size systems. The major principle the new
solution, DARep, is based on is to exploit the actually existing
dependencies among components of the system under analysis,
instead of relying on the pessimistic situation of point-to-point
connections as assumed by the already existing SS approach.
The underlying principle is that making use of topology
information is expected to reduce the operations performed by
the solver, both at initialization and simulation time. Although
the approach is general and applicable to any modeling and
evaluation environment that supports automatic replication and
composition of submodels based on sharing of state variables, in
this work we adopted the Möbius framework as implementation
environment. Then, to quantify the extent of the expected gain
in performance and to better understand the interplay of the
peculiarities of both solutions, an evaluation study involving
both the State-Sharing and Dependency-Aware Replication
approaches has been conducted using the terminating simulator

of Möbius. Indicators representative of the execution and
initialization time of the simulator have been computed on
a simple but representative case study. Several scenarios,
characterized by different values of the number of replicas,
the dependency degree and the number of simulation batches,
have been investigated.

The simulation results demonstrate the superiority of the
newly introduced Dependency-Aware Replication method with
respect to the State-Sharing competitor in all the considered
scenarios.

Extensions of the presented study are foreseen in several
directions. An already on-going activity is to progress on
the performance evaluation of Dependency-Aware Replication,
investigating system configurations with higher numbers of n
and d. Although the analyses performed so far are the most rep-
resentative of realistic applications scenarios, stressing further
these parameters would allow understanding the applicability
limits of the approach, both from a theoretical perspective and
in view of potential future needs.

Another immediate advancement direction is the adoption
of the new approach in more complex system scenarios, as
offered by the power grid sector. It would require relaxing
the simplistic assumption on having just one template model
with equal dependency degree among all its replicas, which
has been made in this paper to easy the presentation of the
DARep solution. However, this is also a context where the
dependency degree d is very small compared to the number of
system components, so the benefits of using DARep instead of
SS are expected to be very significant, according to the results
presented in the previous section. In fact, focusing on the bus
component, which is the major grid component, and examining
some reference grids used in other studies, and precisely the
IEEE118, IEEE300 testbed [22], [23] and the Illinois Center
for a Smarter Electric Grid’s Texas synthetic grid [24], the
dependency degrees are numbers between 2 and 3 on average,
with maximum value of 16 for the configuration with 2000
buses.

Certainly, taking advantage of the results obtained so far and
the understanding of the dynamics that generated them, another
line of extension would be to enhance the DARep mechanism
towards making it applicable to a wider class of systems, e.g.
where the dependency-related state variables may change for
different subsets of dependency-related replicas (that is, the
parameter m is no more constant for all the replicas, as in the
current version).

Also, implementing the DARep approach in a different
modeling environment would provide further feedback on the
implications of the underlying technological choices provided
by the adopted modeling and solution tool. Although Möbius
is a widely used framework for dependability and performance
analysis, it is not the only one and extending the proposed
replication mechanism to other stochastic model-based frame-
works would help modelers familiar with them. One example
can be GreatSPN [21], [25].

Finally, a more long term objective would be to define
and making native in the adopted evaluation tool a new



non-anonymous replica operator, based on the principle of
state sharing only among interdependent replicas. This would
certainly improve efficiency with respect to solutions that can
be built by a tool utilizer on top of offered operators/features,
as done so far. Compared to DARep, such a smart replicator
operator would avoid resorting to the many files now needed,
which require increasing (and possibly prohibitive) compilation
time at increasing the number of replicas and the dependency
degree they show.

APPENDIX

SAN Stochastic Activity Networks
AFI Abstract Functional Interface
SV State Variable
SS State-Sharing
DARep Dependency-Aware Replication
n Number of system components
m Number of dependency-aware state variables
h Number of generic components
di Dependency degree of component i
d Constant dependency degree
Di List of those components from which the

component i depends on
k Number of simulation runs (batches)
τ(k) Möbius CPU run time with k batches
∆τ(k) Difference between Möbius run and

initialization time with k batches
Cτ(k) Compared simulation performance between

DARep and SS with k batches
i, j, x, y System components indeces

REFERENCES

[1] W. H. Sanders and J. F. Meyer, “A unified approach for specifying mea-
sures of performance, dependability and performability,” in Dependable
Computing for Critical Applications, Vol. 4 of Dependable Computing
and Fault-Tolerant Systems, A. Avizienis and J. Laprie, Eds. Springer
Verlag, 1991, pp. 215–237.

[2] P. Buchholz, “Exact and ordinary lumpability in finite Markov chains,”
J. of Appl. Probab., vol. 31, no. 1, pp. 59–75, 1994.

[3] S. Derisavi, P. Kemper, and W. H. Sanders, “Symbolic state-space
exploration and numerical analysis of state-sharing composed models,”
Linear Algebra and its Applications, Special Issue on the Conf. on the
Numerical Solution of Markov Chains 2003, vol. 386, pp. 137–166, 2004.

[4] W. H. Sanders and R. S. Freire, “Efficient simulation of hierarchical
stochastic activity network models,” Discrete Event Dynamic Systems,
vol. 3, no. 2, pp. 271–299, 1993.

[5] V. V. Lam, P. Buchholz, and W. H. Sanders, “A component-level path-
based simulation approach for efficient analysis of large Markov models,”
in 37th Conf. on Winter Simulation, M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, Eds., Orlando, Florida, 2005, pp. 584–590.

[6] L. Brenner, P. Fernandes, A. Sales, and T. Webber, “A framework to
decompose GSPN models,” in Applications and Theory of Petri Nets
2005, ser. LNCS, G. Ciardo and P. Darondeau, Eds. Springer-Verlag,
2005, vol. 3536, pp. 128–147.

[7] J. Hillston, Compositional Markovian Modelling Using a Process Algebra.
Boston, MA: Springer US, 1995, pp. 177–196.

[8] S. Chiaradonna, P. Lollini, and F. Di Giandomenico, “On a modeling
framework for the analysis of interdependencies in electric power systems,”
in 37th Annu. IEEE/IFIP Int. Conf. on Dependable Syst. and Netw. (DSN
2007), Edinburgh, UK, June 2007, pp. 185–195.

[9] F. Flammini, Critical Infrastructure Security: Assessment, Prevention,
Detection, Response, ser. Information & communication technologies.
WIT Press, 2012.

[10] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochastic
reward net models,” Perform. Eval., vol. 18, no. 1, pp. 37–59, 1993.

[11] G. Masetti, S. Chiaradonna, and F. Di Giandomenico, “Model-based
simulation in Mobius: an efficient approach targeting loosely intercon-
nected components,” forthcoming Computer Performance Engineering:
13th European Workshop (EPEW), Berlin, Germany, Sep. 2017.

[12] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster, “The Möbius framework and
its implementation,” IEEE Trans. on Softw. Eng., vol. 28, no. 10, pp.
956–969, 2002.

[13] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H.
Sanders, “Möbius 2.3: An extensible tool for dependability, security,
and performance evaluation of large and complex system models,” in
39th Annu. IEEE/IFIP Int. Conf. on Dependable Syst. and Netw. (DSN
2009), Estoril, Lisbon, Portugal, 2009, pp. 353–358.

[14] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal
definitions and concepts,” in Lectures on formal methods and performance
analysis: first EEF/Euro summer school on trends in computer science,
Berg en Dal, The Netherlands, July 3-7, 2000, Revised Lectures, ser.
LNCS, E. Brinksma, H. Hermanns, and J. P. Katoen, Eds. Springer-
Verlag, 2001, vol. 2090, pp. 315–343.

[15] J. M. Doyle, “Abstract model specification using the Möbius modeling
tool,” Master’s thesis, University of Illinois at Urbana-Champaign, 2000.

[16] M. Brundage, XQuery: The XML Query Language. Pearson Higher
Education, 2004.

[17] Oracle, Decisionsoft Ltd, Parthenon Computing Ltd, Y. Cai, G. Fein-
berg, L. Foutz, B. Kolpackov, A. Massari, and J. Snelson, “XQilla,”
http://xqilla.sourceforge.net/HomePage, 2011.

[18] L. Xing and G. Levitin, “Reliability of systems subject to failures
with dependent propagation effect,” IEEE Trans. of Systems, Man, and
Cybernetics: Systems, vol. 43, 2013.

[19] K. S. Trivedi, Probability and Statistics with Reliability, Queueing and
Computer Science Applications, 2nd ed. New York: John Wiley & Sons,
2002.

[20] B. M. Amari, Handbook of Performability Engineering. Springer, 2008.
[21] M. Beccuti and G. Franceschinis, “Efficient simulation of stochastic well-

formed nets through symmetry exploitation,” in 2012 Winter Simulation
Conference (WSC), Berlin, Germany, 2012, pp. 1–13.

[22] R. Christie, “IEEE 118-bus test case,” http://icseg.iti.illinois.edu/ieee-
118-bus-system, 1993.

[23] M. Adibi and IEEE Test Systems Task Force, “IEEE 300-bus test case,”
http://icseg.iti.illinois.edu/ieee-300-bus-system, 1993.

[24] Illinois Center for a Smarter Electric Grid (ICSEG), “June 2016
texas 2000 syntetic test case,” http://icseg.iti.illinois.edu/synthetic-power-
cases/texas2000-june2016, 2016.

[25] S. Baarir, M. Beccuti, D. Cerotti, M. D. Pierro, S. Donatelli, and
G. Franceschinis, “The GreatSPN tool: recent enhancements,” ACM
SIGMETRICS Perform. Eval. Rev., Spec. Issue on Tools for computer
performance modeling and reliability analysis, vol. 36, no. 4, pp. 4–9,
2009.


