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ABSTRACT 53 
 54 

The recent developments of micro-electro-mechanical systems and wireless sensor networks allow 55 

today the use of low-cost and small-size sensors for continuous monitoring of civil structures. Both 56 

these features are very important for the low impact of the sensor grid in heritage structures, 57 

ensuring a low-cost and sustainable dynamic monitoring system. Over the last twenty years the use 58 

of sensor networks for continuous monitoring has received a growing interest. Anyway, still 59 

numerous questions remain opened about the sensitivity of measurement devices, the optimization 60 

of number and positioning of sensors, the energy efficiency of the network, and the development of 61 

algorithms for real-time data analysis. This paper, based on the aforementioned motivations, 62 

discusses about a monitoring system made of micro-electro-mechanical sensors connected through 63 

a wireless network. The architecture of the wireless sensor network and the automatized procedure 64 

proposed for the continuous processing of the recorded signals are discussed and described with 65 

reference to an explicative masonry tower case study. It is believed that the proposed technologies 66 

can provide an economical and relatively non-invasive tool for real-time structural monitoring and 67 

that, moreover, the availability of large amounts of data from actual measurements can give 68 

effective information on the structural behaviour of historic constructions. 69 

 70 

  71 
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INTRODUCTION 80 

 81 

The periodic monitoring of ancient buildings is becoming an essential element in the preservation of 82 

Cultural Heritage structures (CHS). Many, in fact, are the events (with environmental and/or 83 

anthropic origin) that can compromise safety and stability of historic constructions: ageing of 84 

materials, degradation, earthquakes, environmental vibrations, etc. (Cavalagli et al. 2017; Cavalagli 85 

et al. 2018). They can be assessed with the help of a long-term monitoring system, which allows 86 

increasing and updating the knowledge level of monumental buildings and can moreover lead to 87 

reduction and optimization of the maintenance costs.  88 

In recent years, monitoring protocols coupled with appropriate mathematical and numerical models 89 

gained an increasing importance in the field of preservation and conservation of historic 90 

constructions, as evidenced by the growing scientific literature and exemplary case studies on the 91 

subject. However, it is worth noting that, despite such increasing interest, dynamic monitoring has 92 

not yet found in the national or international codes the same relevance as classical methods of local 93 

investigation, such as static monitoring or even sonic and ultrasonic tests. The Italian Guidelines 94 

(DPCM 2011), which paid attention to the monitoring of monumental buildings, limit the interest of 95 

these techniques primarily to the evaluation of the main frequencies and mode shapes, recognizing 96 

however that “the control of certain parameters of the dynamic response can, in some cases, 97 

represent one of the possible elements for identifying a change in the construction.” Despite the 98 

Structural Health Monitoring (SHM) framework (Sohn et al. 2004) has been introduced some 99 

decades ago and despite some novelties both in sensing technologies and data processing, the 100 

application to historic civil engineering structures is still subject of debate and innovation among 101 

the research community.  102 

The application of SHM to CHS, if compared with new buildings, is even more challenging because 103 

of the uniqueness of each monitored structure and the issues arising from the preservation needs 104 

which characterize this kind of buildings. Such constraints require the design of monitoring systems 105 

based on a reduced number of small size sensors, in order to assure a reduced impact on the 106 

structure. This is in fact a key aspect when dealing with the CHS in order to avoid the set-up of 107 

complex and invasive monitoring systems. As a consequence, data obtained through Ambient 108 

Vibration Tests (AVTs) will be not so accurate in terms of mode shapes, due to use of sparse sensor 109 

grids. Anyway, frequencies and damping ratios can be estimated with a high degree of accuracy, as 110 

shown in the automated procedures for the Modal Parameters Identification (MPI) recently 111 

proposed by several authors (Reynders et al. 2012; Ubertini et al. 2013; Rainieri and Fabbrocino 112 

2015; Cabboi et al. 2017; Neu et al. 2017). 113 
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Assuming that damage will alter the modal properties of a system, several damage sensitive 114 

properties (Salawu 1997; Sinou 2009; Dessi and Camerlengo 2015) have been investigated from the 115 

Eighties by means of AVTs. The proper choice of the sensor grid depends on both the properties of 116 

the investigated structures and the level of damage that should be potentially assessed. In the case of 117 

CHS, eigenfrequencies are still the reference property monitored to detect anomalies in the 118 

structural behaviour. Different authors (Cavalagli et al. 2017; Ubertini et al. 2016) show that a 119 

frequency shift can reveal the presence of damage in the CH buildings. 120 

On the other hand, frequencies are strongly dependent on the environmental conditions such as 121 

temperature, humidity and, in some cases, wind speed. Ubertini et al. (2017) clearly showed the 122 

effects of temperature on the modal properties of the San Pietro bell-tower in Perugia. The increase 123 

of temperature led to a quite linear increase in the frequencies for the bending modes, while a 124 

negative correlation was found for the torsional modes with a decrease of the frequency with 125 

temperature. An exception to this behaviour was found in the freezing days, during which the 126 

frequency tended to increase with the decrease of temperature. This last result is explained by the 127 

authors with the volumetric expansion of the water absorbed by the mortar joints that, due to the 128 

freezing effect, leads to the stiffening of the masonry walls. Gentile et al. (2016) investigated the 129 

correlation between the identified frequencies and the temperature through the analysis of the data 130 

collected during a one-year monitoring of the Gabbia tower in Mantua. The results show a positive 131 

linear correlation between frequency and temperature both for the bending and the torsional modes. 132 

Azzara et al. (2018) investigated the temperature effects on the San Frediano bell-tower in Lucca, 133 

finding a positive correlation between frequency and temperature of all the identified modes, while 134 

in Azzara et al. (2019), the authors detected the effects of freezing on the natural frequencies of the 135 

Clock Tower in Lucca. Ramos et al. (2010) investigated the effects of the humidity on the 136 

Mogodouro clock tower and underlined the trend of the frequencies during the heavy rain period. 137 

With respect to the wind speed effects, there are still few researches in the field of historic 138 

constructions, but some results can be found in the AVTs data analysis collected on tall buildings. 139 

Wu et al. (2017) analysed the correlation between the recorded wind speed and the frequencies 140 

extracted from the monitoring data of a tall concrete building. The results underline a negative 141 

correlation between all the frequencies and the wind speed values.  142 

To detect in the data any anomaly that could be correlated to the presence of damage, suitable 143 

statistical methods are used to remove the environmental effects, such as the Principal Components 144 

Analysis (PCA), the Multiple Data Regression and the Kernel PCA (Ubertini et al. 2017; Rizzo et 145 

al. 2017; Azzara et al. 2018). Among the monitoring system protocols proposed by the scholars in 146 

the last years, the Continuous Vibration-Based Structural Health Monitoring (CVB-SHM), based on 147 
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automated procedures for MPI, seems to be a promising tool for the structural health monitoring of 148 

historic structures (Pecorelli et al. 2018). In case of different levels of random excitation, the 149 

collection of quasi-continuous time histories allows the recognition of the lowest energy level of 150 

input necessary to the model identification of the system. Nevertheless, the wireless sensor network 151 

(WSN) technologies are not still widely applied for the CVB-SHM, apart from a few examples 152 

(Zonta et al. 2010; Potenza et al. 2015; Clementi et al. 2018). 153 

This paper illustrates the design and application of a WSN for CVB-SHM purposes on a historic 154 

masonry tower. The whole system was designed within the framework of the MOSCARDO 155 

(“Information and Communication Technologies for structural monitoring of ancient constructions 156 

based on wireless sensor networks and drones”) research project, funded by the Region of Tuscany 157 

and spanning from 2016 to 2018. It was recently tested on few illustrative case studies of cultural 158 

heritage structures. The paper discusses on the capability of the designed monitoring system to 159 

identify the modal parameters with low-cost and little invasive devices, addressing to the main 160 

requirements for the SHM of CHS. The first section describes the sensor network and reports on its 161 

properties. Subsequently, the case study (a historic masonry tower in Livorno, Italy) is introduced 162 

and an automated algorithm for the extraction of the structure’s modal parameters is illustrated: the 163 

first 12 months of data collected by the WSN are shown and discussed with pros and cons. Finally, 164 

the last part of the paper focuses on the influence of the environmental parameters on the identified 165 

modal properties. 166 

 167 

WIRELESS MONITORING SYSTEM DESIGN 168 

 169 

Wireless Sensor Networks applications for structural health monitoring are relatively recent. In the 170 

field of cultural heritage, WSN have been used until now for mainly monitoring large 171 

archaeological excavations (Barlindhaug et al. 2007) or some environmental parameters within 172 

museums or historic buildings. To date, applications of WSN technology to structural monitoring of 173 

ancient buildings are still in experimental phase and are limited to prototypes and few research 174 

projects. One of these is the “SMooHs-Smart Monitoring of Historic Structures”, an international 175 

and multidisciplinary research project aimed at developing an intelligent monitoring system for 176 

controlling the degradation processes of a cultural asset, and providing indications of possible 177 

critical situations. Another research project in the field is “HHMS-Historical Heritage Management 178 

System” (Zonta et al. 2008; Zonta et al. 2010) where a framework for real-time monitoring and risk 179 

assessment of historic buildings is developed and tested with respect to an illustrative case study: 180 

the “Porta Aquila” (Eagle Gate), one of the main historical monuments in the town of Trento 181 
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(Italy). HHMS is a framework based on an on-line internet-based platform for storing and managing 182 

data collected via a low-cost distributed sensing technology (accelerometers, strain gauges, 183 

thermometers, etc.) network. Another prototype is described in Barsocchi et al. (2018), where the 184 

bell-tower of the San Frediano church in Lucca was monitored. The authors deployed some Internet 185 

of Thing (IoT) sensor devices (MEMS accelerometers) on the San Frediano bell-tower and 186 

monitored the ambient vibrations of the structure for six months. 187 

In general, despite the above-mentioned experiences, it can be stated that the dynamic monitoring of 188 

historic constructions via WSN is still developed as an episodic experimental activity. At the same 189 

time the above-mentioned researches demonstrate that this framework can find, not interfering with 190 

the normal use of the structure and being totally non-invasive and completely reversible, in 191 

monumental buildings its natural application. The still existing limitations are related to several 192 

factors. In fact, the application of these procedures in the field of historic and monumental 193 

buildings, although almost systematized under the theoretical point of view, finds difficulties 194 

associated with: i) the selection and proper design of the monitoring network (with regard to both 195 

the choice of the optimal sensor layout on the structure and the design of the sensor system itself); 196 

ii) the operational difficulties associated with the management of the large amount of data coming 197 

from a long-term dynamic monitoring network; iii) the dependence of the modal properties on the 198 

environmental parameters; iv) the evaluation of the effects of a potential structural damage on the 199 

modal properties. 200 

 201 

Network Architecture  202 

Before reporting on the chosen architecture, it is worth noting that the design of the proposed 203 

wireless monitoring system takes into account several peculiar aspects. First, the monitoring system 204 

is composed by different kinds of nodes, with different kinds of sensors: accelerometers, strain 205 

gauges, displacement transducers, environmental monitoring devices (temperature, humidity, wind). 206 

Each sensor (and then each node) has its special requirements, in terms of sampling frequency, data 207 

storage and radio data rate. Another important aspect is represented by the sample synchronization. 208 

This phase is critical when dealing with structural data analysis, since every bunch of data must be 209 

correlated with the others. Therefore, a robust network synchronization algorithm is needed. 210 

Another aspect taken into account is represented by the packaging of the accelerometers that must 211 

be mechanically suitable for the detection of very small vibrations at low frequencies. This implies 212 

direct adherence between the sensor and the box itself. Moreover, from the packaging point of view, 213 

since the system is installed over historical buildings often visited by tourists, it is important to 214 

ensure compliance with local regulations, protection against tampering and respect for aesthetics. 215 
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Finally, another constraint is represented by the remote control of the entire wireless monitoring 216 

system, needed in order to avoid frequent access to the structure  217 

To meet all the above requirements, a custom hardware, firmware and software solution was 218 

designed. 219 

The network architecture showed in Figure 1 guarantees the sensor heterogeneity constraint as well 220 

as the remote control of the entire monitoring system. Indeed, the central element is the message 221 

queue telemetry transport (MQTT) broker, which forwards all messages between the sensors and 222 

the rightful receivers. Each sensor is connected to a gateway that publishes a message to the broker 223 

including a topic (i.e., acceleration, temperature and humidity) in the message.  224 

The gateway is the node that allows the integration of the different kinds of sensor technologies. In 225 

particular, the gateway allows a two-way communication: from sensors to the monitoring center, for 226 

the transmission of collected data; and from the monitoring center to the nodes, allowing the remote 227 

parameter configuration via a simple and convenient Web interface. Figure 2, as an example, 228 

reports a view of the gateway as installed on the historic tower here analysed. 229 

Each application/service that wants to receive messages subscribes to a topic, and the broker 230 

delivers all messages with the matching topic to the applicant. This architecture allows scalable 231 

solutions without dependencies between the data producers and the data consumers, and it is ideal 232 

for the emerging IoT/machine-to-machine (M2M) world, where bandwidth and power consumption 233 

are of paramount importance (Barsocchi et al. 2018). 234 

Moreover, the gateway, by connecting directly to the broker with connection failover and message-235 

buffering mechanisms, prevents data loss when connectivity issues arise on the Internet Protocol 236 

network (Barsocchi et al. 2014). The sensing information received through the messaging service is 237 

stored in two different databases. In particular, a MySQL database stores part of the wireless sensor 238 

(WS) information, while a MongoDB database stores the remaining part. The MySQL database is 239 

used to store sensor identification, the type of data acquired, and the medium access control address 240 

of the sensor nodes. Instead, the MongoDB non-relational is used to store all the sensing 241 

information gathered from the WS nodes. 242 

The synchronization constraint is guaranteed by using the internal clock with the Network Time 243 

Protocol (NTP). Each node is endowed with an NTP client, and, just before the acquisition, each 244 

node sends a timing request to the local NTP server.  245 

 246 

Sensor nodes 247 

Considering the expected functionalities and the need to strongly adapt the system to the application 248 

context, the realization of an “ad hoc” node was considered the optimal solution. The designed node 249 
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platform has a modular and easily expandable architecture (Figure 3). Every node is composed by a 250 

combination of: 251 

- Core board, delegated to the collection, processing and sending of data (Figure 4a). The Core 252 

board provides computation and communication functionalities to the system, coordinating the 253 

different parts of the node. The diagram reported in Figure 5 represents the basic components of 254 

the board. The main component is the microcontroller, a ST Microelectronics STM32F4. Local 255 

data is stored on FRAM memory when dealing with high throughput sensors (like 256 

accelerometers). Unlike Flash and Micro SD, FRAM provides faster read/write operations and 257 

lower power consumption (but lower capacity). The Micro SD, instead, is used to maintain 258 

limited access to read/write data, like node status and configuration, local logger (saved into 259 

easily readable TXT files), and so on. The user interface (and specifically the display, 128x48 260 

OLED) is useful when testing or installing the system: it provides handy information like node 261 

identifier, hardware/firmware version, acquisition status, data link activity, battery power etc. 262 

(Figure 6). The programming and debug interface, available both on Micro USB connector and 263 

SWD (IDC), is rich and easy to use; the board is completed by an expansion connector Arduino-264 

compatible, used when additional boards or components are needed. 265 

- Solar board, used when direct supply is not available and battery-operated supply with solar 266 

panel charging is required (Figure 4b); 267 

- Analog board, needed to condition and convert acceleration, displacement and strain gauge 268 

signals (Figure 4c). 269 

With regard to the transducers, the Accelerometer node (Figure 7) consists of a custom sensor 270 

board, based on a mono-axial MEMS transducer with differential analog output, developed by 271 

Safran Colibrys SA. This sensor is characterised by very high sensitivity (1.35 V/g), large and flat 272 

frequency response (from DC to 7 kHz) and ultra-low noise output (7 µg/√Hz). The full -scale 273 

selected is ±2g (typical), because we deal with very low signal amplitudes. Besides the 274 

accelerometer transducer, this module includes pre-filtering and buffering stages. The first is used 275 

to remove unwanted frequency components from the signal, thereby reducing the overall noise. The 276 

second allows the use of longer cables between the sensor and the acquisition box, without 277 

significant signal loss and/or corruption. 278 

In the case of the Strain Gauge node, a commercial Pi-shape transducer with differential output has 279 

been selected: specifically, the TML PI-2 with gauge length of 300mm. This device is a 280 

combination of strain gauges and an arch-shaped spring plate, the former attached to the latter. The 281 

transducer is connected to the node, and its signal is adapted and converted by the Analog board. 282 

The Displacement node is similar to the previous one, but in this case, a Gefran PZ67 auto-aligning 283 
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potentiometric transducer with single-ended output is used, whose signal was fed to the Analog 284 

board, for signal conditioning and conversion. Finally, the Temperature/Humidity node makes use 285 

of a commercial sensor made by Davis, equipped with a Sensirion SHT31 precision transducer with 286 

digital output. The reading is then directly processed by the Core board. 287 

 288 

Packaging and layout 289 

Starting from the described modular architecture, different types of nodes were assembled: 290 

accelerometer, strain gauge, displacement, temperature/humidity (indoor) and complete weather 291 

station (outdoor). As mentioned, display was provided on-board to allow ease reading of the 292 

operating parameters. A multi-colour status LED is also provided to allow malfunction identifying 293 

even at long distance. To this end, IP67 boxes with semi-transparent cover were chosen, compatible 294 

with outdoor installation and protected against dust and atmospheric agents (rain, wind). Moreover, 295 

the selected panel connectors are also IP67 certified and allow easy plug and/or replacement. 296 

The accelerometric transducers were assembled keeping the board as close as possible to the box, to 297 

avoid the introduction of extraneous signals produced by the mechanical coupling between the 298 

transducer and the box itself. There is a single connector on the panel, needed for power supply and 299 

connection of the transducer signal to the acquisition node. 300 

 301 

Test and validation 302 

The operation of the new sensors was verified through a set of laboratory tests and the data 303 

acquisition and pre-processing routines were improved in order to ensure the best possible 304 

performance over. In particular, the coherence of the accelerometric data was verified, comparing 305 

the performances of the developed system with those of a commercial reference one (a monoaxial 306 

piezoelectric accelerometer PCB 393C).  307 

The measurement was carried out using an oscillating structure with a known resonance frequency. 308 

A wooden-framed structure was built (Figure 8), consisting of two 1 m high columns with 309 

rectangular cross section of (10 mm × 98 mm), spaced about 350 mm and connected to an upper 310 

wooden beam with rectangular cross section of (34 mm × 94 mm). All connections are ensured 311 

through steel angle brackets and bolts; this setup prevents any relative rotation of the elements 312 

composing the wooden structure, whose fundamental frequency can be tuned by simply adding or 313 

removing sandbags from the upper beam. Without additional masses on the top of the structure, the 314 

fundamental frequency of the system is equal to 3.70 Hz, as also confirmed via finite-element 315 

simulation (Barsocchi et al. 2018). 316 
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Comparisons between the developed sensor and the reference accelerometer were performed in both 317 

the frequency and the time domain, on the values of the fundamental frequency measured by the 318 

two devices and on the shape and trend of the experimental signals recorded. The devices were 319 

tested on the structure under ambient vibration and then assigning a horizontal displacement to the 320 

upper beam and measuring the resulting oscillations of the system; each experiment was repeated 321 

four times. Figure 9a shows the very good correspondence between the signals recorded by the two 322 

devices, while in Figure 9b the performances of the accelerometers are compared in terms of 323 

frequency content. 324 

 325 

THE CASE STUDY 326 

 327 

The case study selected to test the efficiency of the designed Wireless Sensor Networks is the 328 

Matilde Tower in Livorno (Italy). This is a historic masonry tower built in the Livorno harbour, 329 

which belongs to an old architectonical site called “Fortezza Vecchia” (Old Fortress). This 330 

structural typology is iconic and widespread all over the Mediterranean area and generally exhibits 331 

high vulnerabilities with respect to the horizontal loads (Ivorra et al. 2009; Acito et al. 2014; Bartoli 332 

et al. 2017; Bartoli et al. 2019).  333 

The Matilde Tower (Figure 10) was built in the XIII century as a stand-alone structure and was 334 

modified through the time. Nowadays it appears as a massive tower bounded by the fortress walls 335 

and by several small buildings. The structure has a circular section with an external diameter of 336 

about 12 m and a total height of about 29 m. The walls width is 2.5 m and a helicoidal stair is 337 

embedded in the walls to reach the different levels. The slabs are constituted by masonry vaults and 338 

concrete, giving a rigid-plane behaviour to the structure. The masonry vaults at Level 0 (Figure 11) 339 

were retrofitted in the past with four tie rods. 340 

The tower is surrounded by the walls of the fortress and other minor buildings reaching different 341 

heights. The South-West corner is bounded by the original block of the fortress called “Quadratura 342 

dei Pisani”, and the East side is confined by the ruins of the Cosimo dei Medici palace. The entire 343 

architectonical complex suffered several damages, due to foundations settlements, environmental 344 

erosion phenomena and bomb attacks occurred during the World War II. 345 

The presented case study can be considered an interesting application since it is subjected to a wide 346 

spectrum of dynamic excitations caused by traffic, remarkable wind speeds, and the harmonic 347 

forced vibrations generated by the engines of the ferry boats docked in the harbour. 348 

 349 

 350 
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Preliminary dynamic tests 351 

Preliminary dynamic tests were performed on the 23th of January, 2017 by the DICEA-UNIFI Lab, 352 

using 12 high sensitivity piezoelectric accelerometers (PCB 393-C with a range of 2.5 g, sensitivity 353 

of 1 V/g and PCB 393-B31 with a range of 0.5 g, sensitivity of 10 V/g), in order to characterize the 354 

dynamic behaviour of the tower. The prior knowledge of the dynamic behaviour is in fact a basic 355 

datum for the design of a suitable long-term monitoring system, especially for the CHS. For this 356 

reason, the preliminary dynamic campaign was performed using a refined grid of sensors in order to 357 

identify the dynamic behaviour of the tower and design the sensor setup of the long-term 358 

monitoring system.  359 

For the sake of brevity, herein the only results of the preliminary dynamic campaign are reported. 360 

Specific details of the experimental layout are reported in Zini et al. (2018). The signals were 361 

recorded with a sampling frequency of 400 Hz, filtered in the frequency band 0.3-13 Hz with two 362 

fourth order low-pass/high-pass Butterworth filters and down-sampled to 30 Hz. 363 

From the analysis in the frequency domain via the Frequency Domain Decomposition (FDD) 364 

technique, the presence of harmonic responses was observed by the local increase in the rank of the 365 

Power Spectral Density (PSD) matrix in proximity of the narrow band peaks (Figure 12). The 366 

results of the dynamic identification are summarized in Table 1. They were obtained by comparing 367 

two techniques: the FDD in frequency domain and the data driven Stochastic Subspace 368 

Identification (SSI-data) in time domain. The results obtained with the two techniques show a good 369 

agreement between them both in terms of frequency and mode shapes (reported in Figure 13). 370 

 371 

Finite-element modelling and model updating 372 

A finite element (FE) model of the Matilde Tower was built making use of  the NOSA-ITACA code 373 

(Girardi et al. 2015). The tower model consists of 44,092 isoparametric 8-node brick elements 374 

(element 8 of NOSA-ITACA library), for a total number of 160,299 degrees of freedom (Figure 375 

14). The nodes of the model were fixed at the base, while the constraints given by the curtain walls 376 

of the Old Fortress were simulated via lateral springs. 377 

Considering the lack of information about the composition and the mechanical properties of the 378 

masonry constituting the tower walls, a homogeneous material was considered in the model: in 379 

particular, once fixed the mass density to 2,000 kg/m3, the Young’s modulus of masonry and the 380 

stiffness of the lateral springs were tuned in order to fit the experimental values of the natural 381 

frequencies by using the model updating algorithm proposed in Girardi et al. (2019). Table 2 shows 382 

the eigenfrequencies of the finite-element model obtained  for a Young’s modulus of 2,500 MPa 383 

and a stiffness of the lateral springs of 5.1 109 N/m. A comparison with the experimental values is 384 
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also reported in Table 2: the finite element model fits very well the first two frequencies, 385 

corresponding to bending modes, but exhibits a stiffer behaviour on the highest frequency. The 386 

numerical results highligh also an intermediate frequency at 6.2 Hz, corresponding to an axial-387 

torsional mode, which has not been clearly identified in the preliminary experimental tests. The 388 

first, second and forth mode shape of the finite element model are also illustrated in Figure 15. 389 

 390 

AUTOMATIC MODAL PARAMETERS EXTRACTION 391 

 392 

The automated procedure proposed here for the extraction of the modal parameters is constituted by 393 

the following steps: i) signal acquisition and processing, ii) input selection, iii) system identification 394 

through the covariance driven Stochastic Subspace Identification (Van Overschee and De Moor 395 

1996) (SSI-cov), iv) clustering phase (Magalhães et al. 2009; Reynders et al. 2012; Ubertini et al. 396 

2013; Cheynet et al. 2016) and v) statistical processing of the obtained data. All these steps are 397 

needed for the dynamic characterization of the investigated structure and the vibration sources, 398 

allowing a clear identification of the modal parameters (Ceravolo et al. 2017). 399 

The procedure was implemented in a MATLAB routine which automatically processes the data 400 

acquired by the monitoring system (Figure 16) with a sampling frequency of 50 Hz. The raw data 401 

are then filtered in the frequency band 0.3-10 Hz by applying successively two fourth-order low-402 

pass/high-pass Butterworth filters and down sampled to a frequency of 25 Hz. The obtained modal 403 

parameters are tracked through the monitored period and correlated with the environmental effects.  404 

The whole algorithm implemented for the modal parameters extraction (illustrated in Figure 17) 405 

was previously calibrated over a week of acquisition, in order to define the energy level threshold 406 

for the selection of the inputs.  407 

 408 

Calibration of the algorithm 409 

The calibration of the algorithm, with respect to its three main phases (Input Selection, Modal 410 

Identification and Modal tracking), was performed over a suitable starting period.  411 

For the input selection, the calibration phase gives the reference values of the Root Mean Square 412 

(RMS) and the Signal-to-Noise-Ratio (SNR) that allow the identification of a minimum number of 413 

modes N. The calibration phase also contributes to a suitable definition of the optimum number of 414 

rows in the Henkel matrix and of the model order range of variation, by means of a sensitivity 415 

analysis (Reynders et al. 2008; Rainieri and Fabbrocino 2014).  416 

To validate the obtained results, the complexity of the mode shapes was investigated using the 417 

Mean Phase Deviation (MPD) and the Modal Phase Collinearity (MPC) (Reynders et al. 2012). 418 
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These two indicators exhibit values between 0 and 1 and can be used to discriminate the physical 419 

from the spurious modes in a proportionally damped system. MPC values equal to one indicate real 420 

modes. The MPD indicator measures the angle of the best straight line fitting a mode shape in the 421 

complex plane (Reynders et al. 2012) (it is measured in degree); values equal to zero are 422 

attributable to real modes. In this paper the MPD indicator is the reciprocal of the classic definition, 423 

thus giving values equal to one for the real modes and to zero for the complex modes. Anyway, 424 

complex mode shapes can arise from both non-linearity in the structural behaviour and noise in the 425 

measurements. Hence, the thresholds on MPC and MPD values for defining the real modes was set 426 

in a statistical way, through the results obtained over the calibration period. The calibration phase 427 

allows also defining the MAC values for the Modal Tracking (MT) of the identified modal 428 

parameters.  429 

As shown in Reynders et al. (2008), the variance in the estimation of the Modal Parameters (MP) is 430 

strictly connected to the operative conditions (coloured noise, non-stationarity, SNR ratio). The aim 431 

of the calibration phase is to reduce the uncertainties that affect the identification process and to 432 

check the quality of the input data, in order to increase the accuracy of the identified modal 433 

parameters (Marwitz and Zabel 2018). All these operations are needed because the frequency 434 

variations potentially induced by damage are very low and can be buried by the environmental 435 

effects; hence, a prior reduction of the errors and noise is very important for the correct application 436 

of the SHM algorithm. 437 

For the investigated structure, the main source of excitation is the wind; for this reason, two periods 438 

of calibration were chosen (Figure 18, Figure 19). The first (#P1) was the week with the highest 439 

values of recorded wind speed (3/12/2018-10/12/2018), and the second (#P2) was the week with the 440 

lowest wind speeds (15/02/2019-22/02/2019). Thus, suitable thresholds for the input selection, the 441 

modal identification and the modal tracking are defined considering both the excitation levels. 442 

 443 

Input selection 444 

The input selection allows choosing the records with the highest quantity of modal information. 445 

Indeed, the level of excitation described, for each sensor, by the power of the signals in terms of 446 

Root Mean Square (RMS) is one of the key reference parameters. To check the quality of the input 447 

signals, the fourth order statistical moment (Kurtosis) of each time history was also calculated. 448 

The Kurtosis gives some indications about the Probability Density Function (PDF) of the time 449 

histories. In particular, values equal to 3 indicate that the PDF is Gaussian, higher values mean that 450 

the distribution exhibits higher tails. Values lower than 3 mean that some periodic wave is inside 451 
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the signals (e.g. a sine wave has a Kurtosis equal to 1.5). Hence, the Kurtosis values were used to 452 

check the hypothesis that the recorded signals come from a Gaussian white-noise process.  453 

Usually, in the OMA testing the signal quality assessment is performed by checking the SNR ratio. 454 

For instance the American standards ANSI S2.47 (1990) recommend a minimum level of 5 dB and 455 

they propose some corrections in the range between 5-10 dB. Anyway, some Authors (Brincker and 456 

Ventura 2015) suggest a minimum level of 30-40 dB for the OMA identification of large civil 457 

structures. 458 

Considering the main dynamic input of the Matilde Tower, i.e. the wind (Figure 20), a criterion for 459 

the input selection was defined through the analysis of the calibration phase results. The analysis of 460 

the Kurtosis allows detecting abrupt changes in the signals like spikes and dropouts due to the 461 

system malfunctioning (Figure 21). To avoid these phenomena, an outlier analysis was performed 462 

and all the values outside 1.5 times the interquartile range were excluded. 463 

For the sake of simplicity, and to fix a unique value for all the inputs, the thresholds on the RMS, 464 

SNR and Kurtosis were finally defined as the mean values of those coming from all the 465 

accelerometers (Table 3). Conservatively, for the SNR and the RMS values the threshold coincides 466 

with the lower bound of the interquartile range (Figure 22). Instead, the Kurtosis threshold was 467 

assumed as 1.5 times the upper bound of the interquartile range, in order to avoid loss of data in the 468 

case of large distribution tails generated by strong wind effects (Table 4). 469 

 470 

Automated modal identification 471 

The Stochastic Subspace Identification (SSI) (Van Overschee and De Moor 1996) is a well-472 

established parametric technique in the time domain used for the Operational Modal Analysis 473 

(OMA). The structure, subjected to unknown input, is modelled in the time domain as a discrete 474 

linear time-invariant system, whose dynamic behaviour is governed by the following state-space 475 

model (Ljung 1987): 476 
𝐱𝐤+𝟏 = 𝐀 𝐱𝐤 + 𝐰𝐤
𝐲𝐤 = 𝐂 𝐱𝐤 + 𝐯𝐤

 (1) 

where 𝐱𝐤ϵ ℛ𝑁 is the state space vector describing the system in the stochastic space, N is the model 477 

order, and 𝐲𝐤ϵ ℛ𝑙 is the vector of observations at the k-th time step. The vectors 𝐰𝐤 ϵ ℛ𝑁 and 478 

𝐯𝐤 ϵ ℛ𝑙 are two unknown zero mean white noises modelling the process noise (the unmeasured inputs 479 

can be considered part of the process noise) and the output noise, respectively. The N×N matrix 𝐀  480 

and the l×N matrix 𝐂 are the system matrix and the controllability matrix, representing the evolution 481 

of the state-space configuration in the stochastic space and the representation of the sequence of 482 

observation in the space of the measured DOFs, respectively. Thus, it is possible to identify the 483 
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system modal characteristics from the eigenvalues decomposition of the system matrix (Peeters and 484 

De Roeck 2001). 485 

The algorithm here used for the modal identification is the so-called Principal Components 486 

algorithm based on the decomposition of the Toeplitz block matrix, estimated from the covariance 487 

matrices of the signals. The model order N is linked to the number of system modes (a system with 488 

a model order N has N/2 modes). The choice of the optimal model order is not straightforward, due 489 

to the noise effects. Then, a range of model order variation should be decided in advance and the 490 

modal parameters can be selected by visual inspection of the stabilization diagram, as repeated 491 

poles at every model order. Usually, the minimum model order is fixed in twice the minimum 492 

number of expected modes, while the maximum is much higher. This operation, called over 493 

modelling, introduces some spurious modes that can bring to misleading values. 494 

An optimum value of the number of rows in the Henkel matrix, representing the memory of the 495 

process, should be defined in advance by means of a sensitivity analysis (Rainieri and Fabbrocino 496 

2014; Cabboi et al. 2017). The automated interpretation of the stabilization diagram was performed 497 

with a single linkage hierarchical clustering algorithm (Magalhães et al. 2012) and the candidate 498 

modes were subsequently validated with two single mode validation criteria: the Modal Phase 499 

Collinearity (MPC) and the Mean Phase Deviation (MPD) (Shih et al. 1988). The values of the 500 

MPC and MPD thresholds were selected as the mean of the obtained values through the calibration 501 

phase (Table 5). It is worth noting that complex modes can arise from different phenomena 502 

(Imregun and Ewins 1995). On the one hand the complexity deals with measurements errors and 503 

identification issue, on the other hand the complexity can arise from the non-linear behaviour of the 504 

structure and from aerodynamics effects. Hence, it is crucial to define conservative thresholds from 505 

data collected in the calibration period, avoiding the loss of information dealing with the structural 506 

dynamics. 507 

The minimum number of elements in each cluster to identify physical modes was selected equal to 508 

one third of the maximum number of poles found along a frequency alignment during the analysis 509 

of the calibration signals. Each mode is correspondingly represented as the mean of the cluster in 510 

terms of frequency, damping ratio and mode shape (Figure 23). 511 

 512 

Modal tracking of the modal parameters 513 

Modal Tracking is a widely applied technique to collect, during the monitoring period, the 514 

identified modal properties which represent the same mode. Despite its popularity, to the authors 515 

knowledge not so many papers are available in literature dealing with this procedure. Verboven et 516 

al. (2002) introduced an algorithm for tracking the modal properties of a slat track, based on the 517 
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distance between the mode residue matrices. When monitoring large structures with OMA 518 

procedures, the vector of the participation factors is not available, and the mode residue matrix 519 

cannot be calculated. Hence, the common approach is defining a reference dataset of modal 520 

properties evaluated from dynamic testing campaigns performed with a refined grid of sensors 521 

(Sinou 2009; Ubertini et al. 2016). Then, some distance thresholds are used in terms of frequencies 522 

and mode shapes (Magalhães et al. 2009) to group together modal properties representing the same 523 

mode. The method works well if the modes are clearly separated and conversely it can fail for 524 

closely spaced modes that exhibit some coupling in the modal domain. For this reasons, Cabboi et 525 

al. (2017) proposed an adaptive threshold for each mode on the basis of the distances between the 526 

frequencies and the mode shapes. 527 

In the present case, all the identified poles in the calibration periods have been grouped together by 528 

means of a hierarchical clustering procedure with a fixed limit distance: all the clustered elements 529 

are sorted within the 5% in terms of frequency and the 0.7 in terms of MAC index. Then all the 530 

clusters with enough numerosity are analysed, excluding those that are less recurring in the two 531 

calibration periods. Since mode shapes are usually less sensitive to the environmental changes, the 532 

statistical properties in terms of MAC indices for each cluster element are evaluated. Finally, the 533 

tolerance in terms of frequency is fixed to the 7.5% and in terms of mode shape is chosen as the 534 

higher value of the lower bound in the interquartile range for each calibration period. Once the 535 

thresholds are fixed, the MT is performed through the whole monitoring period merging the values 536 

representing the same mode.  537 

 538 

ENVIRONMENTAL EFFECTS 539 

 540 

At the beginning of the first 12 months of monitoring several system disconnections occurred which 541 

involved the environmental sensors (temperature and humidity). However, considering both the 542 

outdoor and the indoor sensors, the measured environmental parameters cover the whole monitoring 543 

timespan (Figure 24). Environmental data were used regardless the positioning of the sensor; this 544 

was considered acceptable taking into account the low differences between the indoor and outdoor 545 

recorded values, and in consideration of the absence of a heating system in the tower together with 546 

the presence of several openings.  547 

The results of the MT (Figure 25) show the evolution of the first three modal frequencies over the 548 

first 12 months of activity of the monitoring system. The number of tracked value for the first two 549 

identified modes is comparable (1535 for the first mode, 923 for the second mode), while the third 550 



19 
 

one was identified only on a limited number of session (85). This can be attributable to the higher 551 

level of energy needed to excite that mode. 552 

After one year of data, some preliminary observations can still be done: the first two modes clearly 553 

exhibit an increase of the frequency with the temperature (Figure 26a), while for the third mode a 554 

decrease, with a lower level of correlation, seems to be observed. The latter can be attributable to 555 

the current dataset that cannot still allow establishing the nature of the correlation. The positive 556 

correlation with temperature is well explained in literature (Gentile et al. 2016) in terms of thermal 557 

expansion of the masonry blocks and the resulting increase of the stiffness. The negative correlation 558 

effect on the torsional mode is even documented. In Ubertini et al. (2017) this phenomenon is 559 

explained with the slackening of the tie elements introduced during retrofitting works. The same 560 

behaviour seems to be observed here, due to the presence of steel bars at each vaulted level. 561 

The variation of humidity seems not to have a significant influence on the tracked modes (Figure 562 

26b). This can be justified with the plastered and painted external surface that limits the water 563 

absorption of the walls. The wind speed effect on the natural frequencies (Figure 26c) is low, 564 

exhibiting a slighting negative correlation for all the tracked modes. In Cantieni (2014) it is also 565 

observed a decrease of the frequencies in the case of strong wind activity. This phenomenon is 566 

justified by the crack openings in the case of strong dynamic actions that produce a reduction of the 567 

stiffness. It is worth noting that the first two modes are well identified in a regime of strong wind, 568 

but the third is not identified anymore. This can be explained by the frequency content of the wind 569 

excitation, whose energy tend to be concentred in the low frequencies, allowing a better 570 

identification of the lowest modes. 571 

The variation of the considered environmental parameters (temperature, humidity and wind speed) 572 

during the first 12 months of monitoring is also summarized in Table 6, together with the 573 

corresponding variation of the three main frequencies as obtained from the linear regression of the 574 

data with respect to the measured environmental effects. 575 

 576 

CONCLUSIVE REMARKS 577 

 578 

The paper presented an application of the WSN technology to the long-time monitoring of historic 579 

constructions, developed within the research project MOSCARDO. The project was aimed at 580 

providing a general framework to: i) check the structural health of the monitored structures at any 581 

time and from any location, and to real-time detect any potential damage that may compromise its 582 

habitual use; ii) provide historical data sets that can be used to permanently monitor the tested 583 

structure and to develop predictions (and promptly act for repairing when needed); iii) gain an in-584 
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depth and organic knowledge of the historical construction, from which new models and tools can 585 

be developed to simulate the mechanical behavior of the structure. Based on the specific 586 

requirements of CHS (use of low-cost sensors and low visual impact of the sensor grid), the design 587 

of customized hardware and software technologies has been performed and preliminarily tested on 588 

several representative case studies. The system is operating since September 2018 and is able to 589 

acquires data continuously. Data recorded by the WSN are in agreement with those acquired during 590 

a preliminary test performed with traditional seismic accelerometers, and after an initial period of 591 

debugging and adjustment, the system has now gained stability and reliability and is able to acquire 592 

data without interruptions. Eventually, an automatic modal identification procedure has been set-up, 593 

and the effects of temperature and wind speed on the tower modal properties are in line with the 594 

behaviour observed in other studies. 595 

Practitioners and stakeholders, but the public administrations in charge of risk management of CHS 596 

also, will benefit from the results of the WSN for SHM here proposed in term of improving 597 

prevention and risk awareness. In addition, the scientific community will benefit of the collected 598 

data to improve, f.i., the knowledge of the physical correlation between environmental parameters 599 

and modal properties. 600 
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TABLES 767 

 768 

 769 
Table 1. Results of the preliminary identification test. 770 

 771 
Identified mode Frequency (Hz) Damping ratio (%) MAC  FDD SSI-data FDD SSI-data 

Mode 1 (translational y-y) 2.656 2.685 - 3.20 0.998 
Mode 2 (translational x-x) 3.375 3.367 - 3.20 0.990 

Mode 3 (bending-torsional) 8.172 8.202 - 2.70 0.973 
 772 

 773 

 774 
Table 2. Matilde Tower: experimental (fexp) and numerical (fnum) frequencies and relative errors (∆f). 775 

 776 
fexp[Hz] fnum[Hz] ∆f [%] 
2.685 2.67 -0.56 
3.367 3.34 -0.81 

-- 6.26 -- 
8.202 9.71 18.39 

 777 

 778 

 779 
Table 3. Statistical properties of the input values obtained on the two-calibration periods (#P1, #P2).  780 

The RMS and the Kurtosis are the mean values of all the instruments. 781 
 782 

Calibration phase SNR [dB] RMS [mg] Kurtosis 
median Dev. Std. median Dev. Std. median Dev. Std. 

#P1 46.26 10.63 0.0099 0.0067 5.14 240.87 
#P2 43.45 12.94 0.0047 0.0014 3.05 72.29 

 783 

 784 

 785 
Table 4. Input analysis thresholds for the automated identification algorithm. 786 

 787 
 SNR [dB] RMS [mg] Kurtosis 

#P1 39.06 0.14 8.58 
#P2 34.72 0.0034 3.73 

Threshold 34.72 0.0034 8.58 
 788 

 789 

  790 
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 791 

 792 
Table 5. Choice of the parameters for the automatic modal data extraction. The parameters for the identification phase 793 
are chosen by means of a sensitivity analysis; for the stabilization phase and the validation phase the values are those 794 

suggested in literature (Peeters and De Roeck 2001). 795 
 796 

Parameters of the system identification phase 
Number of rows in the Henkel matrix 

[s] Minimum model order [ordmin] Maximum model order [ordmax] 

20 10 40 
Parameters of the stabilization phase (Soft Criteria) 

Frequency distance (∆𝑓) Damping distance (∆𝜉) Mode shape distance (∆𝛷) 
0.01 0.05 0.02 

Parameters of the stabilization phase (Hard Criteria) 
The Identified modes are complex and conjugate? Damping Interval  

Yes/No 0.005-0.1 
Parameters of the validation phase 

Modal Phase Collinearity (MPC) Mean Phase Deviation (MPD) Minimum number of elements for 
each cluster (Ncl.min) 

0.582 0.570 7 
 797 

 798 

 799 
Table 6. Range of variation of the frequencies over the first 12 months of monitoring obtained from the linear 800 

regression of the data with respect to the measured environmental effects. 801 
 802 

 1st Mode 2nd Mode 3rd Mode 
Min Max Min Max Min Max 

Temperature [°C] 4.95 31.90 1.68 33.23 3.130 30.07 
Frequency [Hz] 2.638 2.832 3.182 3.541 9.009 7.764 
Humidity [%] 11.00 91.33 23.50 94.75 32.00 84.75 

Frequency [Hz] 2.693 2.675 3.157 3.223 9.237 8.059 
Wind speed [m/s] 0.12 22.81 0.56 18.36 0.58 6.794 
Frequency [Hz] 2.826 2.661 3.328 3.307 8.326 7.970 

 803 
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FIGURES 805 

 806 

 807 

 808 

 809 
 810 

Figure 1. Monitoring system network scheme. 811 
 812 

 813 

 814 

 815 
 816 

Figure 2. View of the gateway (installed on the tower case study). 817 
 818 

 819 

 820 

  821 
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 822 

 823 
 824 

Figure 3. Node modules block diagram. 825 
 826 

 827 

 828 

   
(a) (b) (c) 

 829 
Figure 4. Core (a), Solar (b) and Analog (c) boards. 830 

 831 

 832 

 833 

 834 
 835 

Figure 5. Block diagram of the core module. 836 
 837 
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 838 

 839 

 840 
 841 

Figure 6. Node display, LEDs and push buttons. 842 
 843 

 844 

 845 

  846 
 847 

Figure 7. The accelerometer node with custom sensor board and box 848 
 849 
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 851 

 852 

 853 

 854 

 
(a) 

 
(b) 

 855 
Figure 8. The wooden oscillating structure used for the validation (a) and the developed accelerometer (b). 856 
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 859 

 860 

 861 

 862 

 
(a) 

 
(b) 

 863 
Figure 9. System validation: (a) comparison between the horizontal accelerations recorded by the developed sensor 864 
(MEMS) and the reference accelerometer (PCB); (b) Fast Fourier Transform (FFT) of the signals recorded by the 865 

developed sensor (MEMS) and the reference accelerometer (PCB). 866 
 867 

 868 
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 870 

 871 

 872 

 873 

 874 

 875 

 876 
 877 

Figure 10. View of the Matilde Tower with the surrounding structures. 878 
 879 

 880 
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 882 
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 884 

 885 

 886 

 887 

 888 
 889 

Figure 11. Longitudinal and transversal section of the Matilde Tower. 890 
 891 
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 897 

 898 

 899 

 900 

 
(a) 

 
(b) 

 901 
Figure 12. Frequ4ency analysis of the preliminary tests: (a) The first five Singular Values of the Power Spectral 902 

Density matrix (PSD); (b) Auto-spectral density estimation of the first three modes via modal filtering. 903 
 904 
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 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

   
First Bending y-y (B1) First Bending x-x (B2) Bending-Torsional (BT1) 

 916 
Figure 13. The first tree modes identified with the FDD.  917 

The y axis is approximatively the N-S direction and the x axis is the E-W. 918 
 919 
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 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 
 930 

Figure 14. Finite-element model of the Matilde Tower. The y axis is approximatively in the N-S direction and the x axis 931 
is in the E-W direction. 932 
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 937 

 938 

 (a) 

 (b) 

 (c) 

 939 
Figure 15. Finite element model: (a) first mode shape; (b) second mode shape and (c) forth mode shape. The y axis is 940 

approximatively in the N-S direction and the x axis is in the E-W direction. 941 
 942 
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 943 

 944 

  945 
 946 

Figure 16. Layout of the sensors in the MOSCARDO monitoring system. The red arrows are the accelerometers, the 947 
blue squares are the meteorological stations and in yellow are the anemometer 948 

 949 

 950 

 951 

 952 
 953 

Figure 17. Flowchart of the automated modal identification algorithm 954 
 955 

  956 
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 957 

 958 

    959 
 960 

Figure 18. Root mean square values and wind speed over the first calibration period (#P1 3/12/2018-10/12/2018) 961 
 962 

 963 

 964 

    965 
 966 

Figure 19. Root mean square values and wind speed over the second calibration period (#P2 3/12/2018-10/12/2018) 967 
 968 
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 971 

 972 

 973 

  
(a) (b) 

 974 
Figure 20. (a) Average wind direction; (b) The Short Fourier Transform (SFT) of the recorded signals at the last level 975 

in the preliminary dynamic campaign. 976 
 977 

 978 

 979 

 980 
 981 

Figure 21. High values of the Kurtosis usually imply spike or dropouts in the signals. 982 
 983 
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 987 

 988 

 989 

 990 

 991 

 
(a) 

 
(b) 

 992 
Figure 22. The distribution of the SNR on the two calibration periods: (a) #P1, (b) #P2. The red lines represent the 993 

thresholds chosen for the inputs. 994 
 995 
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 997 

 998 

   999 
 1000 

Figure 23. Stabilization diagram of the SSI-cov automated procedure and FDD  1001 
(acquisition of the 12th of March at the 14:15). 1002 

 1003 

 1004 

 1005 

 1006 
 1007 

Figure 24. Variation of the considered environmental parameters over the monitored period. 1008 
 1009 

 1010 
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 1011 

 1012 
 1013 

Figure 25. The modal tracking of the identified frequency for each mode. 1014 
 1015 

 1016 

 1017 

 
(a) 

 
(b) 

 
(c) 

 1018 
Figure 26. Identified frequencies vs the recorded temperature (a), 1019 

 the recorded humidity (b) and the average wind-speed (c). 1020 
 1021 
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