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Outline

• An example-based introduction to approaches
o Image processing-based
o Machine learning-based
o Deep learning-based

• Some issues and tricks
• Basic problems

o Segmentation
o Detection
o Tracking
o Enhancement

• Software
• Data
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Classification based on 
hand-crafted features 

(shape and texture) and 
various classifiers
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https://doi.org/10.1007/978-3-319-23497-7_2 (2015)

Segmentation based on 
intensity thresholding

High-throughput screening of mESCs

https://doi.org/10.1007/978-3-319-23497-7_2


Segmentation: image processing-based approach

• Exploit image processing expertise to predefine the desired operations (e.g, 
thresholding, edge detection, filtering, etc.) as well as their parameters 
(threshold value, filter radius, etc.) to perform the task
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Model
Computer ResultsIntensity, 
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https://doi.org/10.1007/978-3-319-23497-7_2


Classification: traditional machine learning-based approach

• Automate the model configuration, optimizing method parameters
• Need for annotated data (known results) for model training

New data

Computer Results

Trained 
model

Known 
results

Shape, 
texture, …

Data

Model
Computer
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Deep learning-based approach

• Automatic feature learning from data and optimized method parameters (weights)
• Need for

o High volumes of annotated data for model training
o Hyperparameters’ tuning (architectural choices)

New data

Computer Results

Trained
model

Known 
results

Data
Computer
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Artificial Neural Networks
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• Arranged in layers (the output of one layer is the input to the next)
• Different arrangements lead to different architectures
• Weights are the main adjustable parameters; their optimization (by 

backpropagation) leads to the NN training
• Basic layout: layers arranged in a fully connected fashion

https://doi.org/10.1038/s41580-021-00407-0 (2022) L. Maddalena, INNOVA3DIMAGING Workshop, 5th June 2024

https://doi.org/10.1038/s41580-021-00407-0


CNNs

https://doi.org/10.1038/s41580-021-00407-0 (2022) 

• Convolutional layers: the output is the result of a 
small fully connected NN (filter) applied to local 
groups of input features

• Learn the local structure of the input data
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• Pooling layers (P): summarize responses 
of neighboring regions in a feature map 

Adapted from https://doi.org/10.1109/TNNLS.2017.2766168 (2018)

• Fully connected layers (F): learn higher 
level feature representations, specific to 
object classes 

Feature learning Classif.

https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1109/TNNLS.2017.2766168


FCNs

Variant of CNNs, consisting of 
• a convolution path to learn high-level abstract feature representations and 
• a deconvolution path to reconstruct fine details for segmentation

Adapted from https://doi.org/10.1109/TNNLS.2017.2766168 (2018)L. Maddalena, INNOVA3DIMAGING Workshop, 5th June 2024
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U-net
Another encoder-decoder-style variant of CNNs, frequently adopted for bioimaging

https://doi.org/10.1007/978-3-319-24574-4_28 (U-Net, 2015)

• pixel-wise loss weight to force the 
learning of border pixels

• augmentation with elastic deformations
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Some ML and DL issues
• Overfitting: the method performs well on training data, less on 

validation dataà must have learned shortcuts to correct answers 
in training data

11https://doi.org/10.1038/s41580-021-00407-0 (2022) 

• Learning rate: controls the speed for updating 
model parameters during training. Too slow is 
time-consuming; too high can lead to quick 
convergence to a sub-optimal solution
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Some ML and DL tricks
• Data augmentation: artificially increase the size of the 

training dataset
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o Can improve training progress by 
amplifying differences in the dataset

o Useful if the available dataset is small 
(avoid overfitting)

https://doi.org/10.1038/s41467-021-22518-0 (ZeroCostDL4Mic, 2021)

Ex. performance gain with 
data augmentation for cell 
detection and classification
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Some ML and DL tricks
• Transfer learning: Exploiting a pre-trained model as a starting 

model (rather than initializing training with a blank model)

13https://doi.org/10.1038/s41467-021-22518-0 (ZeroCostDL4Mic, 2021)

o Re-use previously learned features
o Shorten training times
o Reduce the amount of required training data
o Benefit from model zoos (e.g., BioImage Model Zoo 

https://bioimage.io)

Ex. performance gain with transfer learning 
for cell segmentation
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https://doi.org/10.1038/s41467-021-22518-0
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Image segmentation
Partitioning of images into meaningful segments
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https://doi.org/10.1038/s41592-021-01262-9 (DeepImageJ, 2021)

Issues: inhomogeneous background noise, low contrast, complex 
and varying instance structures, touching or overlapping cells, ...
• U-Net, SegNet, …
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https://doi.org/10.1038/s41592-021-01262-9


Object detection
Determine locations and classes of objects 
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https://doi.org/10.18280/ria.370217 (2023)

• Traditional approach: extract features from local 
image patches and perform classification on them https://doi.org/10.1038/s41597-023-02540-1 (ALFI, 2023)

Early mitosis
Multipolar

• DL approach
– one-stage: simultaneously perform 

localization and classification in 
the head network (e.g., YOLO)

– two-stage: first obtain region 
proposals, then perform 
localization and classification (e.g., 
R-CNN)
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https://doi.org/10.18280/ria.370217
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Example DL-based object detection 

Examples of 
events occuring

Identified phenotypes 
(ALFI dataset)

Object detection 
predictions on test data

Event analysis for time-lapse microscopy 

(A. Hada, Medical Imaging and Applications (MAIA) Master Thesis, 2022)
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Object tracking
Follow objects through a series of 

time-lapse images
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https://doi.org/10.1038/s41592-022-01507-1 (TrackMate7, 2022)

• Temporal aspects of data association and linking typically solved by traditional CV methods 
• LSTM can capture longer-term dependencies among different time instances in sequential data

Issues: strongly dependent on cells detection and mitoses 
detection; tightly packed cells are treated as a single entity; 
cells change appearance in time, can appear and 
disappear, have erratic movement patterns; time-lapse 
sequences have very low temporal resolution, ...
Two major intertwined tasks:
1. Mitosis detection (tracking free or tracking-based)
2. Track establishment
Cell associations used to detect cell divisions, as well as mitotic events used as anchors for cell tracking

https://celltrackingchallenge.net (7th edition on May 27, 2024)
L. Maddalena, INNOVA3DIMAGING Workshop, 5th June 2024

https://doi.org/10.1038/s41592-022-01507-1
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Image Enhancement

• High SNR and low spatial resolution
• Denoising

18
https://doi.org/10.1038/s41592-021-01262-9 (DeepImageJ, 2021) 

Removing artifacts and restoring 
essential information

• Cross-modality inference or image-to-image 
transformation: transform from one type of 
image into another (e.g., predict fluorescent 
labels from transmitted-light microscopy 
images of unlabeled biological samples)

https://doi.org/10.1038/s41592-018-0216-7 (Restoration, 2018) 
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Publicly available software I

• StarDist https://github.com/stardist/stardist (CNN) for 2D and 3D 
segmentation and classification

19

• DeepCell https://deepcell.org (DCNN) for 
segmentation, tracking, lineage, and data 
annotation
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Publicly available software II
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• Cellpose https://www.cellpose.org (U-net) for segmentation and 
restoration (denoising, deblurring, upsampling)

• Omnipose https://omnipose.readthedocs.io 
(U-net) for segmentation (bacteria)

• Usiigaci https://github.com/ElsevierSoftwareX/SOFTX_2018_158   

(Mask R-CNN) for segmentation and tracking
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Publicly available software III
• ZeroCostDL4Mic 

https://github.com/HenriquesLab/ZeroCostDL4Mic 
cloud-based platform to simplify the use of DL 
architectures for various microscopy imaging tasks

21

§ 2D&3D segmentation (U-net, StarDist)
§ Object detection (YOLOv2)
§ Restoration & denoising (CARE, Noise2Void)
§ Image-to-image translation (e.g., fluo from 

BF or other fluo)

+
§ Quality control
§ Data augmentation (Augmentor)
§ Transfer learning
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Publicly available software IV
• DeepImageJ https://deepimagej.github.io, environment to run DL 

models in ImageJ for segmentation classification, denoising, virtual 
staining, super-resolution

22

Access to pre-trained DL models 
from the BioImage Model Zoo 

(https://bioimage.io) repository

L. Maddalena, INNOVA3DIMAGING Workshop, 5th June 2024

https://deepimagej.github.io/
https://bioimage.io/


NIS.ai AI modules for Nikon microscopes
• Segment.ai to extract target cells from DIC or 

Phase Contrast images

23

• Convert.ai to distinguish nuclear regions without dyeing (digital stain)

https://www.microscope.healthcare.nikon.com/it_EU/solutions/life-sciences/deep-learning-in-microscopy

Commercial software (example)
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See later 
talk!

https://www.microscope.healthcare.nikon.com/it_EU/solutions/life-sciences/deep-learning-in-microscopy


Publicly available datasets I
• StarDist 

https://zenodo.org/records/3715492#.XnMhuXUzY5l, 
paired fluorescence microscopy images (SiR-DNA) 
and corresponding segmentation masks

24

• LIVECell 
https://zenodo.org/records/10277106, a 
large-scale dataset for label-free live 
cell segmentation

Also adapted for 
denoising in 

ZeroCostDL4Mic

https://zenodo.org/records/3715492
https://zenodo.org/records/10277106


Publicly available datasets II
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• Cell Tracking Challenge https://celltrackingchallenge.net, 
2D and 3D time-lapse cell segmentation and tracking 
benchmark, with gold and silver annotations

• EVICAN (Expert VIsual Cell ANnotation) 
dataset https://doi.org/10.17617/3.AJBV1S, 
partially annotated grayscale images of 30 
different cell lines for cell and nucleus 
segmentation 
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Publicly available datasets III

• ALFI (Annotations for Label-Free Images) 
https://doi.org/10.6084/m9.figshare.c.6436958.v1, for 
segmentation, classification, tracking, and lineage

26

See next 
talk!
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Some suggested reading I

• Greener et al., A Guide to Machine Learning for Biologists, Nat Rev Mol Cell Biol 23, 40–55, 2022. 
https://doi.org/10.1038/s41580-021-00407-0 

• G. Jacquemet, Deep Learning to Analyse Microscopy Images, Biochem 43(5): 60–64, 2021. 
https://doi.org/10.1042/bio_2021_167  

• Liu et al., A Survey on Applications of Deep Learning in Microscopy Image Analysis, Comput. Biol. 
Med. 134, 2021. https://doi.org/10.1016/j.compbiomed.2021.104523 

• E. Meijering, A Bird’s-Eye View of Deep Learning in Bioimage Analysis, CSBJ 18, 2020. 
https://doi.org/10.1016/j.csbj.2020.08.003 

• Maddalena et al., Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-
Free Microscopy Imaging, Algorithms 15, 2022. https://doi.org/10.3390/a15090313 
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Some suggested reading II
• Lucas et al., Open-Source Deep-Learning Software for Bioimage Segmentation, Molecular Biology of 

the Cell 32(9), 2021. https://doi.org/10.1091/mbc.E20-10-0660 
• Liu et al., Software Tools for 2D Cell Segmentation, Cells 13(4), 2024. 

https://doi.org/10.3390/cells13040352

• Ma et al., A State-of-the-Art Survey of Object Detection Techniques in Microorganism Image Analysis: 
from Classical Methods to Deep Learning Approaches, Artif. Intell. Rev. 56, 2023. 
https://doi.org/10.1007/s10462-022-10209-1 

• Shifat-E-Rabbi et al., Cell Image Classification: A Comparative Overview, Cytometry 97, 2020. 
https://doi.org/10.1002/cyto.a.23984 

• Yazdi et al., A Survey on Automated Cell Tracking: Challenges and Solutions. Multimed Tools Appl, 
2024. https://doi.org/10.1007/s11042-024-18697-9 

• Maška et al., The Cell Tracking Challenge: 10 Years of Objective Benchmarking. Nat Methods 20, 
2023. https://doi.org/10.1038/s41592-023-01879-y 
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