1811.06065v1 [cs.LO] 14 Nov 2018

arxXiv

Spatial Logics and Model Checking for
Medical Imaging*
- Extended Version -

Fabrizio Banci Buonamici
Gina Belmonte
Azienda Ospedaliera Universitaria Senese, Siena, Italy

{F.Banci,G.Belmonte}@ao-siena.toscana.it

Vincenzo Ciancia, Diego Latella ,Mieke Massink
CNR-ISTI, Pisa, Italy

{Vincenzo.Ciancia, Diego.Latella, Mieke.Massink}@cnr.it

Abstract

Recent research on spatial and spatio-temporal model checking pro-
vides novel image analysis methodologies, rooted in logical methods for
topological spaces. Medical Imaging (MI) is a field where such meth-
ods show potential for ground-breaking innovation. Our starting point is
SLCS, the Spatial Logic for Closure Spaces— Closure Spaces being a gen-
eralisation of topological spaces, covering also discrete space structures—
and topochecker, a model-checker for SLCS (and extensions thereof).
We introduce the logical language ImgQL (“Image Query Language”).
ImgQL extends SLCS with logical operators describing distance and re-
gion similarity. The spatio-temporal model checker topochecker is cor-
respondingly enhanced with state-of-the-art algorithms, borrowed from
computational image processing, for efficient implementation of distance-
based operators, namely distance transforms. Similarity between regions
is defined by means of a statistical similarity operator, based on notions
from statistical texture analysis. We illustrate our approach by means of
two examples of analysis of Magnetic Resonance images: segmentation of
glioblastoma and its oedema, and segmentation of rectal carcinoma.
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1 Introduction

Computer Science plays a fundamental role in the field of medical image analy-
sis. Computational methods are currently in use for several different purposes,
such as: Computer-Aided Diagnosis (CAD), aiming at the classification of areas
in images, based on the presence of signs of specific diseases [31]; Image Seg-
mentation, tailored to identify areas that exhibit specific features or functions
(such as organs or sub-structures) [40]; Automatic contouring of Organs at Risk
or target volumes for radiotherapy applications [9]; Identification of indicators,
computed from the acquired images, enabling early diagnosis, or understanding
of microscopic characteristics of specific diseases, or help in the identification of
prognostic factors to predict a treatment output [I5] [74] (examples of indicators
are the mean diffusivity and the fractional anisotropy obtained from Magnetic
Resonance (MR) Diffusion-Weighted Images, or the magnetisation transfer ratio
maps obtained from a Magnetisation Transfer acquisition [29] [53]).

Such kinds of analyses are strictly tied to the spatial features of images.

In this paper we focus on image segmentation, in particular to identify
glioblastomas and rectal carcinomas. Glioblastomas are the most common ma-
lignant intracranial tumours whereas rectal carcinomas manifest themselves as
particular tumours situated at the end of the large intestine. For the treatment
of glioblastomas neuroimaging protocols are used before and after treatment to
evaluate the effect of treatment strategies and to monitor the evolution of the
disease. In clinical studies and routine treatment magnetic resonance images
(MRI) are evaluated based mostly on qualitative criteria such as the presence of
hyper-intense tissue appearing in the images [58]. The study and development of
automatic and semi-automatic segmentation algorithms is aiming at overcoming
the current time consuming practise of manual delineation of such tumours and
at providing an accurate, reliable and reproducible method of segmentation of
the tumour area and related tissues [32].

Segmentation of medical images, and brain segmentation in particular, is
nowadays an important topic on its own in many applications in neuroimag-
ing; several automatic and semi-automatic methods have been proposed [52, 30]
constituting a very active research area (see for example [32] 35 [68], [78]). One
of the technical challenges of the development of automated (brain) tumour
segmentation is that lesion areas are only defined through changes in the inten-
sity (luminosity) in the (black & white) images that are relative to surrounding
normal tissue. Even manual segmentation by experts shows significant varia-
tions when intensity gradients between adjacent tissue structures are smooth
or partially obscured [58]. Furthermore, there is a considerable variation across
images from different patients and images obtained with different MRI scanners.

In this paper we propose a novel approach to image segmentation, namely an
interactive, logic based method, supported by spatial model checking, tailored
to loosely identify a region of interest in MRI on which to focus the analysis of
glioblastoma or other types of tumours. This approach is particularly suitable
to exploit the relative spatial relations between tissues of interest mentioned
earlier.



Spatial and Spatio-temporal model checking are the subject of a recent trend
in Computer Science (see for instance [28, [42] 18|, 19, 22| [6T], 43]) that uses
specifications written in logical languages describing space — called spatial logics
— to automatically identify patterns and structures of interest in a variety of
domains, ranging from signals [61] and images [19, [43] to Collective Adaptive
Systems [20], [16], 23].

The research presented in the present paper stems from the topological ap-
proach to spatial logics, dating back to the work of Alfred Tarski, who first
recognised the possibility of reasoning on space using topology as a mathemat-
ical framework for the interpretation of modal logic (see [75] for a thorough
introduction). In this context, formulas are interpreted as sets of points of a
topological space, and in particular the modal operator ¢ is usually interpreted
as the (logical representation of the) topological closure operator. A standard
reference is the Handbook of Spatial Logics [2]. Therein, several spatial logics are
described, with applications far beyond topological spaces; such logics treat not
only aspects of morphology, geometry and distance, but also advanced topics
such as dynamic systems, and discrete structures, that are particularly difficult
to deal with from a topological perspective (see, for example [36]). In recent
work [I8 [19], Ciancia et al. pushed such theoretical development further to
encompass directed graphs, resulting in the definition of the Spatial Logic for
Closure Spaces (SLCS), and a related model checking algorithm. Subsequently,
in [I7], a spatio-temporal logic, combining Computation Tree Logic and the
newly defined spatial operators, was introduced; the (extended) model checking
algorithm has been implemented in the prototype spatio-temporal model checker
topocheckelﬂ

The broader scope of our research interest in the context of medical imaging
is to enable the declarative description and automatic or semi-automatic, effi-
cient identification of regions in images (such as tumours, infiltrations, organs
at risk, lesions, etc.) using spatial logic formulas specifying relevant features,
such as texture or similarity, bound together by spatial constraints, for ex-
ample, proximity, boundary properties, distance, and so on, that increase the
significance and signal-to-noise ratio of the obtained results. This is possible
by considering such images as instances of (quasi discrete) closure spaces. The
tools and methods we introduce can be used both for two-dimensional (2D) and
three-dimensional (3D) MI; we remark that modern MRI machines can usually
provide 3D data for analysis; however, in standard practice, 3D information
is often discarded in favour of 2D (slice by slice) analysis, due to the lack of
well-established methods for 3D analysis. Using 3D information may lead to
improved accuracy and it is therefore of high interest, in current research, to
identify techniques for this purpose.

ITopochecker: a topological model checker, see http://topochecker.isti.cnr.it, https:
//github.com/vincenzoml/topochecker


http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker

Original contributions:

This paper details and extends the ideas outlined in [8], providing several further
original contributions:

e extension of the spatial logic SLCS to ImgQL, introducing distance-based
operators and showing their formal relation to the other spatial logic op-
erators of SLCS. A novel approach to model checking of distance-based
operators is provided based on so-called distance transforms, that forms
the basis for the definition an efficient algorithm to solve the model check-
ing problem. Asymptotic time complexity of the procedure we propose is
linear or quasi-linear, depending on the kind of distance used. This result
makes such procedure suitable for the analysis of higher resolution or 3D
images;

e introduction of a novel logical connective aimed at estimating similarity
between regions. This operator is based on statistical texture analysis and
is able to classify points of the space based on the similarity between the
area where they are localised, and a target region, expressed in logical
terms. The connective is specific for medical image analysis. Its embed-
ding shows how such connectives can be integrated into the spatial logic.
This provides an example of how other specialised existing algorithms
could be introduced and exploited within the spatial logic model checking
framework;

e enhancement of the results in the glioblastoma case study first introduced
in [8], providing the relevant technical details on the logical specification;

e presentation of a further case study — namely, segmentation of rectum

carcinoma — showing that the method can also be applied to the seg-
mentation of other types of tumours that are situated in other parts of
the body;

e development of efficient model checking algorithms, that are competitive
in computational efficiency w.r.t. state-of-the-art (semi-)automatic seg-
mentation approaches. As an additional benefit, logical specifications are
transparent, reproducible, accurate, human-readable, and applicable to
both 2D and 3D images.

Texture analysis, distance, and reachability in space can be freely combined
as high-level logical operators with a clear and well-defined topological seman-
tics. The interplay of these aspects is the key to obtain our experimental re-
sults. The work in [8] constituted a first proof-of-concept study. In that study
topochecker was used for the declarative specification of regions in medical
images. The model checker was used to automatically and efficiently identify
and colour glioblastoma and the surrounding oedema in MRI scans, on the basis
of a declarative definition of the two regions of interest, given in terms of their
visual appearance. The latter is defined by image features such as proximity,



interconnection, and texture similarity. The input to the model checker consists
of a precise, declarative, unambiguous logical specification, that besides being
fairly close to the level of abstraction of an expert description of the process, is
also remarkably concise, human readable, robust and reproducible.

Related work:

The idea of using model checking, and in particular spatial or spatio-temporal
model checking, for the analysis of medical images is relatively recent and there
are only a few articles exploring this field so far. In particular, [71] uses spatio-
temporal model checking techniques inspired by [42] — pursuing machine learn-
ing of the logical structure of image features — for the detection of tumours.
In contrast, our approach is more focused on human-intelligible logical descrip-
tions that provide reproducible results. Other interesting work is that in [62]
where spatio-temporal meta model checking is used for the analysis of biological
processes, with an interesting focus on multi-scale aspects.

Among the fully automated approaches that recently are gaining interest are
those based on machine learning and deep learning (see for example [4] for a
recent review). Although manual segmentation is still the standard for in vivo
images, this method is expensive and time-consuming, difficult to reproduce
and possibly inaccurate due to human error. Machine learning and deep learn-
ing approaches have shown promising results in pattern recognition in areas
where large, reliable datasets are available and are currently being developed
for application in MRI based brain segmentation with the aim to obtain reliable
automatic segmentation methods. Deep learning is based on the use of artificial
neural networks, consisting of several layers, that can extract a hierarchy of fea-
tures from raw input data. These methods depend heavily on the availability
of large training datasets and the generation of manual ground truth labels, i.e.
data sets in which segments of interest are indicated by experts manually in a
standard way. This is a complicated task not only because it is very laborious,
but also because of the relatively high intra-expert and inter-expert variabil-
ity of 20+15% and 284+12%, respectively, for manual segmentations of brain
tumour images [57]. Interactive approaches based on spatial model checking
may therefore also be of help to improve the generation of manual ground truth
labels in a more efficient, transparent and reproducible way.

Outline:

A technical introduction to spatial logics and distance-based operators is pro-
vided in Section [2] Syntax and semantics of the fragment of SLCS we will use in
this paper are recalled, as well as the main notions of spatial model checking for
the fragment. The definition of a distance operator for ImgQL is presented as
well. In Section [3]the logic framework we propose for statistical texture analysis
is presented. In Section[d] the two case studies are presented in detail, including,
where available, a first assessment of validation. Some concluding remarks are
given in Section [f]



2 Logics for Closure Spaces with Distance

In this section, we discuss the background knowledge that we use in the tech-
nical developments of the paper and we extend it with notions of distance. In
particular, we briefly introduce the notion of closure spaces, the fragment of
SLCS [18] T9] we use in this paper, the related model checking algorithm, and
topochecker. We detail the use of so-called distance operators in this research
line and we extend the logic fragment with a distance operator parametric on the
specific notion of distance; we also give an account of the extension of the model
checking algorithm necessary for dealing with the distance operator, based on
the notion of distance transform and its implementation in topochecker for
two specific notions of distance, namely the FEuclidean and the shortest path
distances.

In the sequel we will often make explicit reference to 2D images and their
pixels; here we point out that this is done only for the sake of simplicity and
that all notions, notations, definitions and results equally apply to 3D images
and their voxels (i.e. volumetric picture elements, the 3D counterpart of pixels).

2.1 Closure Spaces, Spatial logics and Model Checking

In spatial logics, modal operators are interpreted using the concept of neighbour-
hood in a topological space, enabling one to reason about points of the space
using familiar concepts such as proximity, distance, or reachability. A com-
prehensive reference for these theoretical developments is [2]. Transferring the
results in the field to applications, and in particular to model checking, requires
one to use finite models. However, finite topological spaces are not satisfactory
in this respect; for instance, they cannot encode arbitrary graphs, including e.g.
those with a non-transitive / non-symmetric edge relation, that may be the ob-
ject of spatial reasoning in several applications (for instance, consider the graph
of roads in a town, including the one-way streets). Extending topological spaces
to closure spaces (see [36]) is the key to generalise these results. In this paper
we use a fragment of SLCS comprising an operator, called near, interpreted
as proximity, and the surrounded connective, which is a spatial variant of the
classical temporal weak until operator, able to characterise unbounded areas of
space, based on their boundary properties. The surrounded connective is similar
in spirit to the spatial until operator for topological spaces discussed by Aiello
and van Benthem in [3] [76], although it is interpreted in closure spaces. Several
derived operators may be defined, among which, notably, variants of the notion
of reachability in space. The combination of SLCS with temporal operators from
the well-known branching time logic CTL (Computation Tree Logic) [26], has
been explored in [I7]. Some related case studies have been analysed in [23], 2]
where the logic caters for spatio-temporal reasoning and model checking. In the
present paper, we focus on spatial properties; therefore we restrict our attention
to spatial aspects of our framework.



2.1.1 A fragment of SLCS

SLCS is a logic for space, where the latter is modelled by means of closure spaces.
Before introducing the fragment of SLCS we use in the present paper, we recall
some basic notions of closure spaces [36] [37].

Definition 1 A closure space is a pair (X,C) where X is a non-empty set (of
points) and C : 2% — 2% is a function satisfying the following three azioms:

1. C(0) = 0;
2.Y CCY) forallY C X;
3. C(YiUYs) = C(Y1) UC(Ya) for all Y1,Ys C X. .

According to the well known Kuratowski definition, adding the idempotence
aziom C(C(Y)) = C(Y) for all Y C X in Definition [I| makes it a definition of
topological spaces [37]. Consequently, the latter are a subclass of closure spaces.

Given any relation R C X x X, function Cg : 2% — 2% with Cgr(Y) =
Y U {z|Jy € Y.y Rz} satisfies the axioms of Definition |1 thus making (X,Cr)
a closure space. The class of closure spaces generated by binary relations on
the set of points represent a very interesting subclass of closure spaces, known
as quasi-discrete closure spaces. Quasi-discrete closure spaces include discrete
structures like graphs, where each graph (X, R) with set of nodes X and set of
the edges R is in one to one correspondence with closure space (X, Cg). Clearly,
finite closure spaces are quasi-discrete closure spaces.

The following definition is instrumental for the definition of paths over quasi-
discrete closure spaces.

Definition 2 A continuous function f : (X1,C1) — (X3,C2) is a function f :
X1 — Xo such that, for all Y C X3, we have f(C1(Y)) C Co(f(Y)). .

In the definition below (N,Cgycc) is the closure space of natural numbers
with the successor relation: (n,m) € Succ & m =n+ 1.

Definition 3 A path 7 in (X,Cr) is a continuous function w : (N,Csycc) —
(Xa CR) °

In the sequel we will let 7, 7', 71, T2 denote paths; the elements of N will be
called indexes in the context of paths.

A quasi-discrete closure space (X,Cg), can be used as the basis for a mathe-
matical model of a 2D digital image; X represents the finite set of pizels and R
is the reflexive and symmetric adjacency relation between pixels [38]. We note
in passing that several different adjacency relations can be used. For instance in
the orthogonal adjacency relation (sometimes called von Neumann adjacency)
only pixels which share an edge count as adjacent, so that each pixel is adjacent
to (itself and) four other pixels; on the other hand, in the orthodiagonal adja-
cency relation pixels are adjacent as long as they share at least either an edge
or a corner, so that each pixel is adjacent to (itself and) eight other pixels.



o = p [ATOMIC PREDICATE]
| -@ [NEGATION]
| @1 A Dy [CONJUNCTION]
| NO® [NEAR]
| ®,S59, [SURROUNDED]

Figure 1: Syntax of the fragment of SLCS.

Pixels are usually associated with specific attributes, such as colours and/or
colour-intensity. We model this by assuming that a set A of point attribute
names is given and by enriching (X,Cgr) with an attribute evaluation function
A: X x A—V from points and their attributes to some value set V' such that
A(x,a) € V is the value of attribute a of point z.

For given set P of atomic predicates p, the syntax of the fragment of SLCS
we use in this paper is given in Figure

Informally, it is assumed that space is modelled by a set of points; each
atomic predicate p € P models a specific feature of points and is thus associated
with the set of points which have this feature. A point z satisfies N’ ® if a point
satisfying ® can be reached from z in at most one (closure) step, i.e. if x is near
(or close) to a point satisfying ®. A point = satisfies 1 S Oy if it satisfies Py
and in any path 7 rooted in « (i.e. such that 7(0) = x) and passing through a
point 7(¢) not satisfying ®1, there is a point 7(j) before or at £ (i.e. 0 < j < n)
that satisfies ®5. In other words, x belongs to an area satisfying ®; and one
cannot escape from such an area without hitting a point ®s, i.e. x is surrounded
by ®,. Finally, the fragment includes logical negation (=) and conjunction (A).

The above description is formalised by the definition of model and satisfac-
tion relation:

Definition 4 A closure model is a tuple ((X,C),A,V) consisting of a closure
space (X,C), a valuation A: X x A — V, assigning to each point and attribute
the value of the attribute at that point, and a valuation V : P — 2% assigning
to each atomic predicate the set of points where it holds. )

In the sequel, we assume that an atomic predicate p can be bound to an
assertion «, the latter stating a property of attributes, and we use the syntax
p := « for atomic predicate definitions, to this purpose. Assertions are standard
Boolean expressions, e.g. comparisons of the form a > ¢, for ¢ € V, and
compositions thereof; we refrain from specifying the actual syntax of assertions,
and we assume valuation A4 be extended in the obvious way in order to evaluate
assertions, e.g. A(z,a > ¢) = A(z,a) > c.

Definition 5 Satisfaction M,z = ® at point x € X in model M = ((X,C), A, V)
is defined by induction on the structure of formulas, as in Figure[3. °

In Figure [3| a simple finite closure model is shown for which the orthogonal
adjacency relation is assumed. All the points satisfying atomic predicate p are



M,z E peP & zeV(p)

Mz E -0 < M,z = ® does not hold
Mz E & APy & MzEP and M,z = Dy
Mz E NO < relC{yM,y = 2})

Mz E &8P & M,zE P, and

for all paths 7 and indexes £:
7(0) =z and M,7n(¢) | =P,
implies
there exists index j such that:
0<yj <t and M,n(j) | P2

Figure 2: Semantics of the fragment of SLCS; whenever p := « is a definition
for p, we assume x € V(p) if and only if A(z, ) yields the truth-value true.

Figure 3: An example model; the points satisfying atomic predicate p are shown
in violet, those satisfying ¢ are shown in yellow.



(a) (b)

Figure 4: The points in Figure [3| satisfying =N¢ (a) and those satisfying ¢S p
(b) are shown in green.

Figure 5: The points in Figure [3| satisfying p 7—(N ¢) are shown in green.

shown in violet whereas those satisfying ¢ are shown in yellow (no point satisfies
p A ¢ in this example). Figure shows in green the points that satisfy —Ng,
while Figure [4b[shows in green the points satisfying ¢ Sp (i.e., all g-points that
are surrounded by p-points; note that, in the example, these are exactly all
g-points).

A number of useful derived operators are defined in Figure[6l A few words of
explanation are worth for the 7 operator, while we refer the reader to [I9] for a
general discussion on SLCS derived operators. A point satisfies ®; 7 ®5 if and
only if it lays in an area Y7 C X the points of which satisfy ®; and Y7 “touches”
a non-empty area Y5, the points of which satisfy ®o; for this reason, sometimes
we call the FROM-TO0 operator “touches”. With reference to Figure 3] Figure
shows in green the points satisfying p T—(MN ¢q). Another pattern, that may be
used for filtering noise in images, is formula A’ Z ®. The effect of such a formula
is to capture the regular region [49] included in the set of points satisfying
®; point x satisfies NI ® if and only if it is adjacent to at least one point ¥
satisfying ® which, in turn, is not adjacent to points satisfying = ®. The effect
of such a filter is to eliminate small regions, e.g. those consisting of a single
point, when these are considered noise or artefacts.

10



€ 2 pA-p [FALSE]
T £ -1 [TRUE]
O VI, 2 (=D A D) [DISJUNCTION]
o £ S (N-d) [INTERIOR]
PIRDPy, 2 —(m0S-d) [REACHABILITY]
TPy £ & A (91 V P2)RDy) [FrROM-TO]
ED £ 0S1L [EVERYWHERE]
F o £ < (E-9) [SOMEWHERE]
085D, £ (P;SP)AN-ED [STRONG SURROUNDED]

Figure 6: Some derived operators.

2.1.2 Model checking SLCS

In this section we will briefly recall model checking of SLCS [I8, [19] over finite
models. Note that, in the context of the present paper, we are concerned with
so-called global model checking, i.e. a procedure that, given a finite model
and a logic formula, returns the set of all points in the model satisfying the
formula [25]. We will focus on the surrounded operator only and we will describe
the related section of the model checking algorithm by means of an example.
Model checking algorithms for the other operators of the fragment is a matter
of standard routine. We will also provide a brief description of topochecker.

Given a finite closure model M = ((X,Cg),A,V) and a formula ®, the
model checking algorithm returns all those points € X such that M,z | ®.
For a formula ®; S &5 the algorithm, roughly speaking, first identifies areas of
bad points, that is points that can reach a point satisfying ~®; without passing
by a point satisfying ®5; then returns the points that satisfy ®; and that are
not bad. A sketch of the fragment of the model checking algorithm related to
;S @, is given in Figure[7}

Below, we give a brief description of how the algorithm works, using the
graphs shown in Figure Let us consider the model of Figure as input
model, where points are represented by coloured squares and the adjacency
relation is the orthogonal one. In this example we assume that the set of atomic
predicates is the set {pink,yellow,white} — represented in the figure in the
obvious way—and that V(p) N V(p’) = ) whenever p # p’. Suppose the input
formula is yellow S pink. The result of the assignment Bad := TempBad of the
first iteration of the repeat is shown in Figure where all nodes that satisfy
—(yellow V pink) are marked blue. Note that this blue-colouring is not part of
the model; we use it at a “meta-level” and only for describing the behaviour of
the algorithm; the same will apply to points marked in cyan in the sequel. In
Figure [8¢| the (only two) yellow points in the closure of the points indicated in
blue, are shown in cyarﬂ these are the points to be selected for being added to
TempBad in the first iteration of the repeat. The new value of TempBad, resulting

2In the caption, such a closure is abbreviated by Cr(blue) for space reasons.
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Input:
A model M = ((X,Cgr),A,V)
and a formula ®;S ®s;

Output:
The set of points in X satisfying &;8 $y;

Step 1:
TempBad := {z € XM,z |= (P V P9)};

Step 2:

repeat

Bad := TempBad;

TempBad := Bad U ({z € X|M,z = &1} NCr(Bad));
until TempBad = Bad;

Step 3:
return {z € X|M,z = ®,}\ Bad.

Figure 7: Sketch of the model checking algorithm for ®; S ®,.

(a) Input model (b) {zIM,z = —(yellow v
pink)}
(¢) {z|M,z = yellow} N (d)
Cr(blue)
(e) {z|M,z [ yellow} N (f)
CR(blue)

Figure 8: Model checking yellow S pink.

12
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Table 1: topochecker syntax.

from the assignment, consists of all blue points of Figure Bdl The body of the
repeat is executed now with the new value of TempBad. In Figure the (again
only two) yellow points in the closure of the set of points in blue are shown
in cyan. Note that such a closure refers to the model of Figure this is
abbreviated in Figure ¢l as C R(blue). The new value of TempBad, resulting
from the assignment, consists of all points indicated in blue in Figure 8] The
body of the repeat is executed now for the third time and this results in no
change in the value of TempBad: the fixed point is reached, the repeat block is
exited and the points satisfying yellow S pink are the four yellow points in the
bottom-left corner of Figure In [19] it has been shown that, for any finite
closure model M = ((X,Cgr),.A,V) and SLCS formula ® of size k, the model
checking procedure terminates in O(k-(|X|+|R|)) step{’} We refer the reader to
the above mentioned paper for further details on SLCS and its model checking
algorithm.

The tool topochecker is a global model checker, capable of analysing models
specified as weighted graphs, RGB images, or grayscale medical images. In the
case of medical images, which is of interest in this work, the tool takes as input
a file describing the spatial model to be analysed, the formulas to be checked,
and a colour associated with each formula. The spatial model is described in
the form of a set of images, whose intensity values are associated by the user
to differently named attributes for subsequent usage in formulas. The output
of the tool consists of a region of interest (ROI) for each formula to be checked,
that is, an image where the specific region where such formula holds is coloured
according to the user-specified colour.

Table [1] shows the correspondence between SLCS operators (top) and their
syntax in topochecker (bottom). The syntax for assertions (extending the
syntax for atomic predicates) is [a > ¢] where a is an attribute name, >
is a comparison operator (one of =, <, > <= >=) and c is a (floating point)
constant. In topochecker, (unnamed) assertions can be used in place of atomic
predicates; moreover names can be given to complex formulas, by means of
formula definitions as in the example shown below:

Let adipose = N (N [FLAIR>1.7]);

formula N (N [FLAIR>1.7]) is given the name adipose that can be used in
other formulas; the formula exemplifies using assertion FLAIR>1.7 in place of
an atomic predicate.

3The size of a formula is given by the number of operators in the formula: size(p) =
1; size(—®) = size(N®) = 1 + size(®P); size(P1 A P2) = size(P1SP2) = 1 + size(P1) +
size(Pa).

13



In general, names introduced by formula definitions may also have parame-
ters such as

Let f(f1, f2,..., fn) = F

where F is a formula that can use names f1,f2, ..., fn, that are instantiated
to formulas when f is invoked.

The spatial model checking algorithm is entirely run in central memory,
aiming at fast interactive usage. The algorithm proceeds by induction on the
structure of formulas, and uses memoization to cache the intermediate result on
each sub-formula, so that when the same sub-formula is used more than once,
results are reused. The cache is also stored on-disk, leveraging incremental
design of complex formulas across different model checking sessions. The tool is
implemented in the functional programming language OCamﬂ which provides
a good balance between declarative features and computational efficiency. The
main loop of the algorithm has been carefully written to avoid memory allocation
and garbage collection in most cases, via the use of the “bigarray” data type,
providing direct access to memory locations and memory-mapping of large files
stored on the hard drive (such as medical images). All the arrays needed for the
computation are statically allocated prior to model checking execution. Such
optimisations result in competitive execution times, such as those described
in Section Indeed, since no memory swap takes place, one should take
into account the memory requirements of each analysis, that could render in-
memory execution unfeasible; however, the size of a typical medical image is
in the order of some megabytes, which is orders of magnitude smaller than the
available memory on modern computers (some gigabytes); in our experiments,
the algorithm never ran out of memory.

2.2 Incorporating Distance

Models of space as well as spatial logics can be extended with notions of distance
(see e.g. [9, B0, [60, [61]). Distances are very often expressed using the non-
negative real numbers R, like the Euclidean distance on continuous space.
For quasi-discrete closure spaces, especially when used as a representation
of finite graphs, it is natural to consider shortest path distance, where a path
between two nodes is a sequence of consecutive edges connecting the first node
to the second, and its length is given by the sum of the lengths of such edges.
The length of an edge is often taken to be 1; however, other notions of dis-
tance can be more appropriate. For example, sampling a multi-dimensional
Euclidean space is often done using a regular grid, that is, a graph in which the
nodes are arranged on multiples of a chosen unit interval that may vary along
each dimension of the space. Nodes are connected by edges using a chosen
notion of adjacency (e.g. the orthogonal or orthodiagonal adjacency relations
discussed before, but any choice may be reasonable, depending on the applica-
tion context). Such graphs can then be weighted by associating to each edge

4See http://www.ocaml.org.
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Figure 9: Threshold imposed on Euclidean distance from a point in the centre
of image.

the Euclidean distance between the nodes it connects. Graphs with nodes in
an Euclidean space and weighted by Euclidean distance are known as Euclidean
graphs and are naturally equipped with both Euclidean distance between nodes
and (weighted) shortest-path distance—which is also called Chamfer distance in
the particular case of Euclidean graphs with nodes arranged on a regular grid,
which is the case of interest for MI. In two-dimensional imaging, pixels—with
an application-dependent choice of adjacency—form an Euclidean graph, and
Euclidean distance is the reference distance between (the centres of) two pixels.

FEuclidean and Chamfer distances obviously divert, no matter how fine is the
grid or how many neighbours are chosen in the adjacency relation, unless all
pairs of nodes are linked by an edge (labelled with the Euclidean distance be-
tween the end-points of the edge). Therefore, in this context, Euclidean distance
is considered error-free, and Chamfer distance is considered an approximation
of the former. The chosen adjacency relation determines the precision-efficiency
trade-off of the computed distance: the more pixels are considered adjacent, the
more precise is the approximation, at the expenses of generating graphs with
larger out-degrees. This is illustrated in Figures [0] and In the first figure
we show a two-dimensional, rectangular image where all and only points at a
Euclidean distance larger than a given threshold k from the centre of the figure
are coloured in red. In Figure the points in red are those at a Chamfer
distance larger than k from the centre; in particular, orthodiagonal adjacency
has been used (each pixel has 8 other adjacent pixels). Figure shows the
percentage of error for each pixel with respect to the Euclidean distance, in a
scale from 0 to 10%. Finally, in Figure [10c| we use Chamfer distance, the same
threshold k& and an adjacency relation where each pixel has 24 other adjacent
pixels (i.e. the pixels that are adjacent to any pixel form a 5 x 5 square centred
in the pixel). Figure shows the percentage of error w.r.t. the Euclidean dis-
tance, in a scale from 0 to 2%. The percentage error é(x) for Chamfer distance
d¢ is defined for each pixel  as d(x) = W, where y is the central
point of the image and dg denotes the Euclidean distance.
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(a) Chamfer distance Percentage  error.
with 8 adjacent pixels Scale 0-10.

per node (3 x 3 square
centred on node).

(¢) Chamfer distance (d)  Percentage  error.
with 24 adjacent pixels Scale: 0-2.

per node (5 X 5 square

centred on node).

o

Figure 10: Percentage error of Chamfer distance.
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2.2.1 SLCS with distance operators

In this section we extend the fragment of SLCS presented in Section with
logic distance operators. We first introduce the notion of distance closure spaces
and, to that purpose we recall the well-known notion of metric space:

Definition 6 A metric space is a pair (X,d) where X is a non-empty set (of
points) and d : X x X — Rsq is function that satisfies the following axioms,
forall z,y,z € X:

1. d(z,y) =0 iff x = y [IDENTITY OF INDISCERNIBLE];
2. d(z,y) = d(z,y) [SYMMETRY];
3. d(z,z) < d(z,y)+d(y, =) [TRIANGLE INEQUALITY].

Whenever X is a closure space (X,C), ((X,C),d) is called a metric closure
space o

Metric functions are easily extended to sets as follows:
Definition 7 Given metric space (X,d), x € X and Y, Z C X we let

1. d(z,Y) =inf{d(z,y)|ly € Y}

2. d(Y,Z) =inf{d(y,2)|ly €Y and z € Z}

Note that if Y # 0 is finite, then inf{d(z,y)ly € Y} = min{d(z,y)ly € Y}; we
let d(x,0) = oo by definition. o

In the case of quasi-discrete closure spaces, symmetry may turn out to be too
much restrictive. This is for instance the case when the relation R underlying
the closure operator Cg is not symmetric. Similarly, the triangle inequality is
not fitting well when more qualitative distance “measures” are used, for instance
when the codomain of d is composed of only three values, representing short,
medium, and large distance respectively. For all these reasons, for quasi-discrete
closure spaces we often use the less restrictive notion of distance space, where
only Axiom 1 of Definition [f] above is required.

Definition 8 A distance closure space is a tuple ((X,C),d) where (X,C) is
a closure space and d : X x X — Rxq U {oo} is function satisfying d(z,y) =0
iff x =y.

A quasi-discrete distance closure space is a distance closure space ((X,Cr),d)
where (X,Cr) is a quasi-discrete closure space. .

Distance operators can be added to spatial logics in various ways (see [49]
for an introduction). For the purposes of the present paper, we extend SLCS
with the operator D!, where I is an interval of R>g. The intended meaning
is that a point x of a distance closure model satisfies D! ® if its distance from
the set of points satisfying ® falls in interval I. Below we provide the necessary
formal definitions.
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Definition 9 A distance closure model is a tuple (((X,C),d), A, V) consist-
ing of a distance closure space ((X,C),d), a valuation A: X x A — V, assigning
to each point and attribute the value of the attribute of the point and a valuation
V: P — 2% assigning to each atomic predicate the set of points where it holds.
A quasi-discrete distance closure model (((X,Cgr),d), A, V) is a distance closure
model where ((X,Cr),d) is a quasi-discrete distance closure space. .

As the definition of d might require the elements of R to be weighted—as in
the case of Euclidean graphs—quasi-discrete distance closure models are often
enriched with a R-weighting function W : R — R assigning the weight W(z, y)
to each (z,y) € R.

The satisfaction relation of our fragment of SLCS is extended as expected:

Definition 10 Satisfaction M, x = ® at point € X in distance closure model
M= (((X,0),d), A, V) is defined by induction on the structure of formulas, by
adding the equation below to those in Figure [J:

Mz =ED'® & dz, {yM,y=®}) er

Note that the definition of the SLCS distance operator is parametric on the
specific distance used. The particular meaning of the distance operator is fully
characterised by the specific distance d of the underlying distance closure model.
In this paper, we will use the Euclidean distance dg and the Chamfer distance
de.

We close this section with the definition of an additional set of derived op-
erators shown in Figure

D<cd £ DI

D= £ plde

D= £ Dldg

Dz¢d £ Dl

D> £ D)

T<cP 4 D<C(_|D<C_‘®)

01870y £ ((B1 A ~D2) S Do) AD! By

Figure 11: Additional derived operators.

Again, with reference to Figure |3 Figure shows in green all the points
satisfying D >2 p, according to the Chamfer distance.

Intuitively, the J<¢ operator can be used as a form of filtering, eliminating
small details caused by noise in the fine-scale structure of an image; this method
is akin to the nested application of N and Z described in Section[2.1.1] param-
eterised with respect to a chosen maximum size ¢ of details to be suppressed.
To see this, recall that Z® is defined as AN —=®, therefore NZ® is the same as
N (=N =®), which is very similar to the definition of J<¢, with N replaced by
D=,
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Figure 12: The points in Figure [3|satisfying D >2 p are shown in green.

(a) (b)

Figure 13: The points in Figure satisfying J <3¢ (a) and those satisfying J <2q
(b) are shown in green.

With reference to Figure [3] Figure [I3a] shows in green the points satisfying
J <3¢, whereas those satisfying J <?q¢ are given in Figure m

The bounded surrounded operator ® ST ®, is satisfied by a point z if and only
if x satisfies @1, is strongly surrounded by points satisfying ®, and its distance
from such points falls in interval I. Note that, in the first argument of &), it is
required that —=®5 holds as well; this ensures that all ®5-points are at a distance
of at least inf I from z.

In Figure (Figure respectively) the points satisfying ¢ S p (¢ S>3 p,
respectively) are shown in green. Note that a similar operator has been defined
in [6I], which turns out to be stronger than Slat] e, denoting the former
operator by Siaib], we have that, for all formulas ®q, P, (1 A ﬂI’g)S[a’l’] D,y
implies ®;S[®,.

We close this section pointing out that, for finite models, the operator D<¢
coincides with the operator 3=¢ proposed in [66]:

M,z =350 & Fy.d(z,y) < cand M,y = ®

and similarly for D<¢ and 3<¢. Note that, this coincidence does not hold in
general, e.g. for Euclidean spaces. Our choice of the specific distance operator is
motivated by its natural compatibility with distance transforms, as we illustrate
in Section 2.2.2] below.
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(a) (b)

Figure 14: The points in Figure [3| satisfying ¢ S p (a) and those satisfying
qS?3 p (b) are shown in green.

2.2.2 Model checking SLCS with distance operators

For distance-based operators, generally speaking, the time complexity of naive
model checking algorithms is quadratic in the size of the space (see [61] for an ex-
ample). However, given a Euclidean graph representing a multi-dimensional im-
age, spatial model checking of formulas D!® for Euclidean or Chamfer distance
can be done in linear time or quasi-linear time, respectively, with respect to the
number of points of the space. This is achieved via so-called distance transforms,
that are one of the subjects of topology and geometry in computer vision [4§],
and are extensively used in modern image processing and computer graphics [24].
In particular, effective linear-time algorithms have been recently introduced in
the literature [56] [33]. Basically, a distance transform takes a model M;, as
input and produces a model M,,; as output as follows. Let M;, be a model
(((X,CRr),d), Ain, V, W) such that every point z € X has an attribute, say a;,,
defined on a binary domain, say {0,1}—the value of such an attribute may
represent the fact that the point satisfies a given formula ® or not. The output
model will be My, = (((X,Cr),d), Aout, V, W) such that every point z € X
has an attribute, say @out, and Aput(z, aout) = d(x, {y € X|Ain(y, ain) = 1}).
The fragment of the model checking algorithm related to D!® is sketched in
Figure [I5] During the first step, the points satisfying ® are marked, so that in
the second step each point is annotated with its distance from the set of marked
points and, finally, the set of the points with a distance laying in the interval I
is returned.

In topochecker, two of the standard algorithms for distance transform are
currently implemented; one for the Euclidean distance dg and the other for the
Chamfer distance d¢o. Correspondingly, two distance operators are provided,
with syntax as in Table

For Euclidean distances, topochecker uses the linear algorithm that was
proposed by Maurer in [56]. Such algorithm computes Euclidean distance trans-
forms on anisotropic multi-dimensional grids (such as 2D and 3D medical im-
ages); it has linear complexity, its run-time is predictable, and it is among the
most efficient algorithms for the purpose [34]. The general idea of the algo-
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Input:
A model M = ((X,Cgr), A, V);

and a formula D! &;

Output:
The set of points in X satisfying D! ®;

Step 1:

Compute intermediate model M’ = ((X,Cg),A’,V) such that for all
reX:

A'(z,a')=11if M,z | ® and

A(z,a)=01if M,z £

Step 2:

Compute intermediate model M"” = ((X,Cgr),A”,V) such that for all
reX:

A'(z,a") = d(z,{y € X|A'(y,a’) = 1});

Step 3:
return {z € X|A"(x,a") € I}.

Figure 15: Sketch of the model checking algorithm for D! &.

DNC 'DNC
based on dg | based on dg
EDT(_,>1 c) | MDDT(_, c)

Table 2: topochecker syntax for distance operators.
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rithm is to proceed by induction on the number of dimensions of the image.
The distance transform problem in n + 1 dimensions is reduced to the problem
in n dimensions by a technique that relies on multi-dimensional Voronoi maps.
We refer the interested reader to [24], where a theoretical study of the algo-
rithm is provided. The specification described therein was closely followed in
our implementation.

For shortest-path distances over arbitrary directed graphs, topochecker em-
ploys a variant of the well-known Dijkstra shortest-path algorithm, called “mod-
ified Dijkstra distance transform” in [41]. The standard Dijkstra algorithm uses
a priority queue sorted by distance from a root node. The queue is initialised to
the root node of the considered graph, whose priority is set to 0. In the modified
version, when computing the distance transform from a set of nodes identified
by formula @, the queue is initialised with all the nodes that satisfy ® and have
an outgoing edge reaching a node not satisfying ®; all such nodes have priority
0. The algorithm then proceeds as the standard algorithm. As a result, after
termination, each node of the graph is labelled with the shortest-path distance
from the the set of nodes satisfying ®, as required by the specification. The
asymptotic run-time of this procedure is not linear but quasi-linear due to the
usage of a priority queue. In this respect, research is still active to optimise the
procedure in specific cases (see e.g. [(2]). However, the effective run-time be-
haviour of the algorithm is highly dependent on the structure of the considered
graph and the chosen implementation of data structures; in our tests on Eu-
clidean graphs, this procedure is typically faster than computing the Euclidean
distance transform using Maurer’s algorithm, although a precise comparison of
efficiency between the two algorithms is obviously implementation dependent,
and also depends on the precision-efficiency trade-off given by the chosen adja-
cency relation.

3 A Logical Framework for Texture Analysis

In this section we define an additional logic operator that, when incorporated in
the spatial logic presented in the previous sections, provides a logical framework
for Texture Analysis (TA).

TA can be used for finding and analysing patterns in (medical) images, in-
cluding some that are imperceptible to the human visual system. Patterns in
images are entities characterised by distinct combinations of features, such as
brightness, colour, shape, size. TA includes several techniques and has proved
promising in a large number of applications in the field of medical imaging
[47, 54, 13| 27]; in particular it has been used in Computer Aided Diagnosis
[77,[44] 6] and for classification or segmentation of tissues or organs [14} [65] [64].
In TA, image textures are usually characterised by estimating some descriptors
in terms of quantitative features. Typically, such features fall into three general
categories: syntactic, statistical, and spectral [47]. Our work is mostly focused
on statistical approaches to texture analysis. For two-dimensional images, sta-
tistical methods consist of extracting a set of statistical descriptors from the
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distributions of local features in a neighbourhood of each pixel.

In this paper, we explore the use of first order statistical methods, that are
statistics based on the probability distribution function of the intensity values of
the pixels of parts, or the whole, of an image. The classical first-order statistical
approach to TA makes use of statistical indicators of the local distribution of
image intensity around each pixel, such as mean, variance, skewness, kurtosis,
entropy [69]. Although such indicators ignore the relative spatial placement of
adjacent pixels, statistical operators are useful in MI because their application
is invariant under transformations of the image, in particular affine transforma-
tions (rotation and scaling), which is necessary when analysing several images
acquired in different conditions. It is worth mentioning that current research
also focuses on constructing features using first order operators, keeping some
spatial coherence, but loosing at least partially the aforementioned invariance
[73]. The method we propose is an attempt to improve over the classical set-
ting described above, by analysing (the histograms of) statistical distributions
directly.

In the following, we introduce a spatial logic operator that compares image
regions in order to classify points that belong to sub-areas in the image where
the statistical distribution of the intensity of pixels is similar to that of a chosen
reference region. Several similarity measures exist (see [59]), that can be used to
compare distributions in images. In particular, as a starting point, we use the
cross-correlation function (also called Pearson’s correlation coefficient), that is
often used in the context of image retrieval, but is also popular in other computer
vision tasks. In MI, cross-correlation is also frequently used in the case of image
co-registration ([1()])|ﬂ

3.1 A logical operator for statistical similarity

The statistical distribution of an area Y of a black and white image is approx-
imated by the histogram h of the grey levels of points (pixels or voxels, for
two- and three-dimensional images) belonging to Y, defined as follows. Given a
minimum value m, a maximum value M, and a positive number of bins k, let
A = (M — m)/k and define the histogram h as a function associating to each
bin i € [1, k] the number of points that have intensity in the (half-open) interval
[(i—1)-A+m,i-A+m). The minimum value m and the maximum value M
are aimed at improving the resolution of histograms, by excluding rare peaks
in the image, that may be due to artefacts in acquisition and would result in a
high number of empty bins. A formal definition is given below:

Definition 11 Given closure model M = ((X,C), A, V), we define function
H:Ax2¥ xRxRxN — (N N) such that for all values m, M € R, with

m < M, and k,i € N, with k > 0 and i € [1,k], letting A = Mgm:

5In image processing, the problem of co-registration is that of mapping two images coming
from different sources to the same spatial domain, by finding transformations of the considered
images that make given image features coincide.
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H(a,Y,m, M, k)(i) =
Hy e Y|(i —1)A < A(y,a) —m < iA}] .

So H(a,Y, m, M, k) is the histogram of the distribution of the values of attribute
a of the points in Y, in the interval [m, M| with step A. The above definition
applies also to quasi-discrete / distance closure models.

In the sequel, for histogram & : [1,k] — N we let o = L "% h(i) denote the
mean of h.

The definition of cross correlation between two histograms follows:

Definition 12 Let hy, ho : [1,k] = N be two histograms. The cross correlation
of h1 and ho is defined as follows:

i (hl() hi) (hz(')—sz)

\/Zz 1 hl \/Zz 1 2)

The value of r is normalised so that —1 < r < 1; r(hy, he) = 1 indicates
that hy and ho are perfectly correlated (that is, hy = ahs + b, with a > 0);
r(hy,he) = —1 indicates perfect anti-correlation (that is, hy = ahs + b, with
a < 0). On the other hand, r(hy,hs) = 0 indicates no correlation. Note that
normalisation makes the value of r undefined for constant histograms, having
therefore standard deviation of 0; in terms of statistics, a variable with such
standard deviation is only (perfectly) correlated to itself. This special case
is handled by letting r(hy, h2) = 1 when both histograms are constant, and
r(hy,ha) = 0 when only one of the hy or hs is constant. We are now ready for
embedding the statistical similarity operator Zs,.[ = % § | in ImgQL.

P a

h’17h’2

Definition 13 Satisfaction M,z = ® at point v € X in distance closure model
M= (((X,C),d),A,V) is defined by induction on the structure of formulas, by
adding the following equation, where m, M € R, with m < M, and k € N, with
k> 0:

Moz | D[ 7 M 5 ]® S r(he, hy) e

with:

ha(i) = H(a, S(ma p)vma M, k)(l):

hb(l) = H(bv {y|Mv Y ': q)},m’ M, k)@);

<e {=,<,>,<,>}, and

S(x,p) = {y € X|d(z y) < p} is the sphere of radius p centred in x, to the
equations in Figure[3 o

So Z&NC[ ey ]<I> compares the region of the image constituted by the
sphere of radius p centred in z against the region characterised by ®. The
comparison is based on the cross correlation of the histograms of the chosen
attributes of (the points of ) the two regions, namely a and b and both histograms
share the same domain ([m, M]) and the same bins ([1,%]). In summary, the
operator allows to check to which extent the sphere around the point of interest

is statistically similar to a given region (specified by) ®
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3.2 Model checking ImgQL with statistical similarity op-
erators

In topochecker the statistical similarity operator SCMP is provided, with the
following syntax

SCMP(a,fa,R, <xc, m, M, k) (b,fb)

corresponding to ®, A Z&Mc[ moMe ]<I>b where fa, fb and R represent ®,, P,

P a

and p, respectively, in the language of the tool. For example, formula
SCMP(a,TT,10.0,>= 0.7, 200, 2000, 100) (b,TT)

is true at voxels centred in a region—of radius 10.0—where the distribution of
the values of a has cross-correlation greater than 0.7 with the distribution of
the values of b in the whole image. In this case, cross-correlation is computed
using 100 bins, and taking into account only values between 200 and 2000.

The algorithm we use for implementing the SCMP operator is straightforward.
An array vy, sized to the number of bins &, is allocated, initialised to 0 at each
index, and the histogram hy is stored in it, by iterating over all the points y of
satisfying @, finding the index 7 of the bin corresponding to the grey level of y,
and increasing the corresponding value of v[i]. An array v,, sized to the number
of bins k, is allocated. For each pixel x, v, is (re-)initialised to 0 at each index,
and all the points y laying in the sphere of radius p centred in x are examined;
for each y, the index i of its bin is identified, and the value of v,[i] is increased,
so that when all the y have been examined, v, represents the histogram h,.
The cross-correlation value r(hg, hp) is then computed by simple calculations
that are linear in the number of bins k. This algorithm has time complexity
proportional to v - p" - k, where v is the number of pixels in the image and
n the number of dimensions (indeed the number of pixels in an n-dimensional
sphere is proportional to p™). Since p and k are usually fixed along a given
analysis, such algorithm can still be considered “linear” in the size of the image.
This basic procedure is amenable to optimisation, for instance by observing that
the spheres centred around two different points of the image may share some
pixels, therefore the histogram of each one could be computed starting from the
histogram of the other, at the expenses of more memory needed to store the
histogram of different points. We leave the study of similar optimisations for
future work as the algorithm we discussed has proved to be sufficiently fast for
our experiments.

4 Using topochecker for MI analysis with ImgQL

MR images are produced using different kinds of sequences of magnetic field gra-
dients and radio-waves. Images so obtained are called weighted images; these can
be further post-processed in various ways. For instance, typical weighted images
are those produced using Fluid-attenuated inversion recovery pulse sequence
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(MR-FLAIR), T2 weighted pulse sequence (MR-T2w), or diffusion weighted im-
ages, whereas the Apparent Diffusion Coefficient maps (ADC) are obtained via
post-processing of diffusion weighted images. A standard reference for such mat-
ters is [II]. In this section, we illustrate our approach on some of these kinds
of medical images, using a tutorial-like, step-wise style. We do this by means of
two examples of segmentation in MRI, introduced below:

1. Glioblastoma tumour and oedema segmentation in images obtained using
MR-FLAIR; this analysis is carried out in two dimensions.

2. Rectal cancer segmentation in images obtained using MR-T2w and ADC.
This analysis is carried out in three dimensions.

For glioblastoma, our procedure was successfully tested on five images from
different sources, that were acquired in very different conditions. However,
validation of the methodology for actual clinical usage requires extensive clinical
research. We refer to Section for preliminary validation results and a more
detailed discussion.

Model definitions using medical images are introduced in topochecker by
associating an arbitrary number of attribute names to files containing medical
imagesﬂ as follows:

Model "med:imgl=filel.nii,img2=file2.nii,...";
where med is a keyword indicating the file type, and img1, img2 ... are names of
pixel/voxel attributes, for which the related values are drawn from filel.nii,
file2.nii ..., respectively.

For this to work, all the loaded images must have the same voxel coordinates
and orientation (e.g., coming from the same machine and type of acquisition,
or after manual resampling). No resampling is currently done in topochecker.

4.1 Example: segmentation of glioblastoma

In this example we detail the specification of an analysis aimed at the segmen-
tation of glioblastoma (GBM) and oedema in MR-FLAIR images. Being able
to segment tumour and oedema in medical images can be of immediate use for
automatic contouring applications in radiotherapy and, in perspective, it can
be helpful in detecting the invisible infiltrations in Computer-Aided Diagnosis
applications. The procedure is non-trivial, but every step is justified by mor-
phological and spatial considerations on the arrangement of parts of the head
and the brain.

Normal tissues of the head can be divided into several classes. The outer
layer of the head consists of adipose tissue (and skin) surrounding the skull
that in turn consists of bone and bone-marrow. The skull encloses the brain

6The model loader of topochecker currently supports the NIfTT (Neuroimaging Informatics
Technology Initiative) file format (https://nifti.nimh.nih.gov/, version 1 and 2). In this
work, images downloaded from Radiopaedia.org in jpeg format, and dicom images have been
converted to NIfTI-1.
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tissues. The brain itself is suspended in cerebrospinal fluid (CSF) and isolated
from the blood stream. Thresholds in the grey levels of images can be used
to single out specific tissues in a medical image; however, in doing so, noise is
generated in the form of (small, scattered) regions not belonging to the tissue.
The relative positioning of tissues — the so-called topological information of the
image — plays an important role in suppressing such noise. We will see in the
following how such information is encoded by logic formulas in the methodology
Wwe propose.

GBMs are intracranial tumours composed of typically poorly-marginated,
diffusely infiltrating necrotic masses. Even if the tumour is totally resected, it
usually recurs, either near the original site, or at more distant locations within
the brain. GBMs are localised to the cerebral hemispheres and grow quickly
to various sizes, from only a few centimetres, to lesions that cover a whole
hemisphere. Infiltration beyond the visible tumour margin is always present.
In MR-FLAIR images GBMs appear hyperintense and surrounded by vasogenic
oedema’)

Segmentation of GBM according to our method is performed in three steps:

1. a preprocessing step (not using topochecker), aimed at normalisation of
images, to make the choice of thresholds in our experiment applicable to
different images;

2. brain segmentation, to limit the area of the image where the tumour is
searched for;

3. tumour and oedema segmentation, which is the stated goal of this example.

4.1.1 Preprocessing

Histograms of grey levels of imageﬁ of the same body part may differ from each
other due to inter-patient or inter-scanner differences or depending on the actual
acquisition volume (Figure or the file format used to store the imageﬂ
More uniform results, on different images, can be obtained by dividing the
intensity of each pixel by the average of the intensity levels of all the significant
pixels in the image. A pixel is considered significant when it does not belong to
the background. Significant pixels are selected using a Boolean mask (indicated
by the green area in Figure. In order to compute such a mask, we start from
the observation that the background (corresponding to the air surrounding the
head of a patient) is darker than the rest of the image, so it mostly contributes
to the initial part of its histogram. This situation is witnessed in the histogram

"Vasogenic oedema is an abnormal accumulation of fluid from blood vessels, which is able
to disrupt the blood-brain barrier and invade extracellular space.

8To ease visual comparison, in Figg the histograms that we show are nor-
malised so that the measure of the area below the curve is 1.

9For instance, jpeg images, as downloaded from Radiopaedia.org, typically use 8-bit preci-
sion (typical range 0-255) (see Figure whereas dicom images saved by scanners typically
use 12 or 16-bit (for MR images, the typical range is 0-4096 or 0-65536, respectively) (see

Figure .
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(a) Case courtesy of Dr.
Ahmed Abd Rabou, Ra-
diopaedia.org, rID: 22779.

(¢) Case courtesy of
A.Prof Frank Gaillard,
Radiopaedia.org, rID:
5292.

(b) A different slice of the
acquisition in Figure@

(d) Histograms of Figure

(blue), (green), (red).

Figure 16: Slice of MR-FLAIR brain acquisition of different patients and corre-

sponding histogram.
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(a) The pixels in Figure (b) The sub-mask that

with grey levels below a touches the border of the
given threshold are shown in image is shown in orange.
green.

(¢) The mask of the image (d) Histograms of normalised ver-

excluding the background is sion of images in Figure

shown in green. (blue), Figure [16b| (green), Fig-
ure (red) and Figure (or-
ange).

Figure 17: Finding the mask for normalisation.

by a peak close to 0. A threshold is thus selected for each image as the value
immediately following such peak. Using this threshold, it is possible to isolate
the background, by separating it from the head (Figure . Note that the
obtained mask also includes cerebrospinal fluid (CSF) and bone. The part
of the mask that touches the boundary of the whole image is then selected
(Figure and its complement, that is, the green area in Figure is finally
used to select the significant pixels to compute the mean value for normalisation.
Figure shows the histograms of images after normalisation.

We remark that equalisation of histograms is another form of normalisation,
frequently used for texture analysis ([45]). We do not use this method as it
changes the relationship between grey levels of different structures in the im-
age (as shown in Figure , that we use rather prominently for differentiating
different tissues; normalisation of image intensity is sufficient for our purposes.
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LA
(a) A slice of MR acquisition of brain (b) Histograms of grey levels of
(on the left) and its equalised ver- the original (red) and equalised
sion (on the right) (Case courtesy (green) version of image in

of Azienda Ospedaliera Universitaria
Senese; image and data processing
performed in compliance with EU
GRDP 679/2016)

Figure 18: Effect of histogram equalisation.

4.1.2 Brain segmentation

In this second phase of our method, topochecker is used to perform a seg-
mentation of the brain in order to limit the search area of the tumour. This
improves the accuracy of the output (e.g., avoiding areas in bone marrow or
skull) and reduces computing time.

In the process below, we fix some thresholds for identifying different tissues
in the brain; note that, thanks to the preprocessing step described above, these
can be kept uniform across different images.

Intuitively, the general model of a patient head that we use to segment the
brain in MR-FLAIR images is defined as follows:

e Darker pixels in the head belong to CSF and bones;

e Brighter pixels belong both to adipose tissue surrounding the head, and
to bone marrow;

e Also pixels belonging to the tumour and oedema are brighter than the
surrounding tissues;

e The brain region is composed of white matter, grey matter, tumour and
oedema;

e The brain (excluding the tumour) has intermediate intensities and is
mainly surrounded by CSF.

The model definition in topochecker is as follows.

Model "med:FLAIR=GBM-NORM.nii";

30



GBM-NORM.nii is the normalised NIfTT image of the MR-FLAIR acquisition
shown in Figure By the above declaration, in the rest of the analysis, the
relevant attribute, i.e. the normalised grey level, of each pixel in this image is
referred to as FLAIR. Formula definitions for general derived operators reach
and touch are given according to Figure |§| (R, T); similarly for operator J<¢,
with reference to Figure

Let reach(a,b) = !('b S 'a);
Let touch(a,b) = a & reach(alb,b);
Let flt(a) = MDDT(!(MDDT(!a,<1)),<1);

Furthermore, we define also a few operators that serve as macros and that
are specifically useful in the segmentation procedure that follows:

Let grow(a,b) = (alb) S (!b);
Let denoise(a) = touch(a,MDDT(!a,>=2));
Let closeTo(a) = MDDT(a,<3.0);

Formula grow(a,b) is inspired by the image segmentation method of seeded
region growing [I]. This method starts from a number of seed points in the
region of interest and examines neighbouring points to decide whether they
should be added to the region. We start from points that satisfy property a and
to which all points satisfying property b are added that, together with those
satisfying a, form a common region that is surrounded by points that do not
satisfy b. Formula grow(a,b) can be used only when it is guaranteed that all
points satisfying a are also satisfying b (but not the other way around).

Let A be the set of points satisfying formula a. The formula denoise(a) is
used to remove small areas from A, as follows: first A is shrunk by 2.0 units; in
doing so, some subareas of A may disappear; the areas that do not disappear are
restored to their original shape by means of the touch operator. This operation
is similar to f£1t, but it preserves the contours of the original area A. The
formula closeTo(a) denotes the points that lay at a distance less than 3.0
units from the set of points satisfying a. For this analysis the MDDT Chamfer
distance operator uses 4 adjacent pixels per node and the distance units are in
millimetres with respect to the actual dimension of the head, i.e. the real-world
coordinates.

Next we define a number of useful thresholds for the grey levels of the image
that are used to obtain a first approximation of different kinds of tissue of
interest:

Let lowIntsty = [FLAIR < 0.5];

Let medIntsty = [FLAIR > 0.5] & [FLAIR < 1.3];
Let highIntsty = [FLAIR > 1.7];

Let tumIntsty = [FLAIR > 1.17] & [FLAIR < 1.53];
Let oedIntsty = [FLAIR >= 1.47] & [FLAIR < 2.4];

We distinguish three general levels of intensity (low, medium, and high), and
two specific intensities that are typical for tumour and oedema, respectively.
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We are now ready to start the segmentation procedure. First we identify
the points that are part of the background of the image. These all have a very
low intensity, but there are other points in the image that have low intensity
as well. What distinguishes the points of the background from the other low
intensity points is that the background area touches the border of the image. In
topochecker, when loading images, a special atomic proposition named border
is defined, that is satisfied by points that form the border of an image. This way
points of the background are exactly those that satisfy the property background:

Let background = touch(lowIntsty, [border]);

The points that satisfy background are shown in red in Figure The
original image is shown in Figure

The next step is to look for the external border of the head, consisting of
skin and adipose tissue. For our purposes, it is sufficient to identify the adipose
tissue, since the brain is surrounded by the adipose tissue, which separates it
from the skin. Adipose tissue in the normalised MR-FLAIR images has intensity
above 1.7, so of high intensity. As before, there may be other points with high
intensity in the image, but we exploit the knowledge that adipose is at the
external border of the head, and thus close to the background. These points
can be found with the following formula:

Let adipose = touch(highIntsty,closeTo(background));

The points that satisfy adipose are shown in green in Figure

Using the properties background and adipose it is not difficult to specify
the points that are part of the head. These are all those points that are not
part of the background or close to adipose tissue.

Let head = !(closeTo(adipose) | background);

The points that satisfy head are the union of the green and red points in
Figure [19d (see below).

In the next steps we show how we can distinguish the various tissues within
the area of the head, namely the brain and the cerebrospinal fluid (CSF) that
contains it. We start from the identification of points that are part of CSF.
These are points that are within the head and that have low intensity:

Let CSF = lowIntsty & head;

The points that satisfy CSF are shown in red in Figure [[9¢

We proceed with segmentation of the brain in four subsequent steps. As a
first approximation we look for the points of the brain with medium intensity
within the head (and that are not belonging to CSF). Within this approximation
we select some inner areas that are most certainly part of brain tissue and that
can serve as a seed from which to ‘grow’ in a more precise way points belonging
to the brain. Finally, we remove pieces that have been erroneously identified
as part of the brain, but that are actually relatively small areas that are part
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of the skull or bone, having a similar intensity as that of the brain. This way
we obtain all pixels that are actually part of the brain. The four steps of the
specification are given below.

Let brainApprox = head & (!CSF) & medIntsty;
Let brainSeed = MDDT(!brainApprox,>10);

Let noisyBrain = grow(brainSeed,head & (!CSF));
Let brain = touch(noisyBrain,brainSeed);

The points that satisfy brainApprox (brainSeed, noisyBrain, respectively)
are shown in green in Figure (Figure Figure respectively). The
final result of the brain is shown in Figure

4.1.3 GBM segmentation

In the final part of our analysis, we identify tumour and oedema regions. Since
in MR-FLAIR, GBM and oedema are hyperintense areas, and the oedema is
brighter than the tumour, we start by using the thresholds we introduced before
that provide a rough segmentation of the image shown in Figure

Let tumO = flt(tumIntsty S (brain|CSF));
Let 0ed0 = flt(oedIntsty S (brain|CSF));

In Figure[I9L] we show in red the points that satisfy formula oed0 referring to
the oedema, and in green those satisfying formula tum0 referring to the tumour.
These are points that have the selected intensity (oedIntsty and tumIntsty,
respectively) and are part of the brain tissue, i.e. they are surrounded by brain
or CSF. Note that the regions oed0 and tum0 are partially overlapping. Moreover,
we remove from these identified regions areas whose radius is smaller than 1mm
using the f1t operator defined above.

An important constraint, that drastically reduces noise in the output of our
analysis, is the a priori knowledge that oedema and tumour are very close to
each other. We exploit this knowledge using the distance operator MDDT as
follows:

Let oeddst = MDDT (o0ed0,<=2.0);
Let tuml = touch(tumO,oceddst);
Let oedl = 0ed0 & reach(oeddst,tuml);

We first define the region oeddst at distance less than 2mm from oed0; then
select sub-regions of tum0 that touch oeddst (formula tuml) and sub-regions
of 0ed0 that can reach points satisfying tuml by passing only through points
satisfying oeddst (formula oed1). The result is shown in Figure[I9] Comparing
the latter with Figure [I9L] we can observe that some green areas, located in
the left half of the brain, have disappeared. These were points with a similar
intensity as that of tumour tissue, but not actually part of it since they were
not connected to the tumour. In this example, we used shortest-path distance
as an approximation of Euclidean distance, for the sake of execution speed, as
high accuracy for the distance is less important in this particular case.
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Let tum2 = denoise(tuml);
Let oed2 = denoise(oedl);

Figureillustrates the areas defined by tum?2 (green) and oed2 (red). Com-
pared to Figure this removes a number of small detached areas of oedema
that were located in the tumour area and should be considered as noise.

Finally, tumor and oedema are defined as being inter-reachable. This part
could remove some separate areas that have tumour or oedema intensity but
should not be considered as such since they are too far apart. In this partic-
ular case no such areas were present apparently as can be observed comparing
Figure with the final output of the segmentation in Figure

Let tumor = touch(tum2,oed2);
Let oedema = touch(oed2,tum?2);

As a further result, in Figure 20| we show the final segmentation of tumour
and oedema on two other images from a different patient applying the same
specification. Fig[20b] shows the segmentation of the image in Figure [I6a] and
Figure shows the one of the image in Figure The original images are
also shown aside of the result in Figure [20| for more convenient comparison.

For completeness, we show the code outputting the resulting images in
topochecker. Output is saved in image GBM-seg.nii, colours for formulas
are as specified in the first parameter of the Check instructions; a colour palette
(mapping 8 to red and 7 to green) has been applied to display the images.

Output GBM-seg.nii
Check "8" oedema;
Check "7" tumor;

The whole analysis presented in this section has been carried out in 2D.
The same approach also works in 3D, with minor modifications. Figure
shows some slices of the segmentation of MR-FLAIR acquisition of the patient
in Figure using topochecker on the whole 3D volume image. Minor mod-
ifications to the model checking session presented in this section were required.
For space reasons, we omit the details. However, in Section [£.2]we detail rectum
carcinoma segmentation, that has been carried out in 3D for accuracy reasons.

In the GBM case we have not used the statistical comparison operator, which
will instead be used in the example in Section In general there may be
many different ways to obtain an accurate segmentation. Ideally, these should
be robustly working for many different images, both in 2D and in 3D. In future
work we plan to investigate this in more detail and compare various variants
from the point of view of robustness, accuracy and computational efficiency.
Regarding the latter, the 2D analysis of GBM was performed on a standard
laptop (equipped with an Intel CORE i7 CPU, and 8 gigabytes of RAM) and
performed in a little less than 1 minute, which as a first indication is in line
with the current state-of-the-art.
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(a) Original image.  (b) Background (red) (c¢) Output showing (d) Output of
and adipose (green).  head (red+green) and brainApprox.

CSF (red).
Output of (f) Output of (g) Output of brain. (h) Output of
bralnSeed noisyBrain. (green) and oedO
(red).
(i) Output of tuml (j) Output of tum2 ) Output of tumour
(green) and oed1 (red)  (green) and oed2 (green) and oedema
(red). (red).

Figure 19: Experimental results of using topochecker for segmentation of
glioblastoma (green) and oedema (red) (case courtesy of A.Prof Frank Gail-
lard, Radiopaedia.org, rID: 5292).
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(a) Slice of rID: (b) Output of tumour (c) Another slice of (d) Output of tumour
22779. (green) and oedema rID: 22779. (green) and oedema
(red). (red).

Figure 20: Additional results of using topochecker for segmentation of glioblas-
toma (green) and oedema (red) (Case courtesy of Dr. Ahmed Abd Rabou,
Radiopaedia.org, rID: 22779).
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publication publication publication
approval approval approval

(a) (b)

(c)

Awaiting for Awaiting for Awaiting for

publication publication publication
approval approval approval
(d) (e) ®)

Figure 21: Slices of an image obtained using the method we presented for seg-
mentation of glioblastoma (green) and oedema (brown) on a 3D volume. The
top row shows the original slices. The bottom row is the output of segmen-
tation (Case courtesy of Azienda Ospedaliera Universitaria Senese; image and
data processing performed in compliance with EU GRDP 679/2016).
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4.2 Example: segmentation of rectal carcinoma

As a further example we detail an analysis aimed at segmentation of rectal
cancer. Rectal carcinoma is a frequent pathology [67] and the survival rate
after radical surgery is much improved in case of early diagnosis. Therefore,
identifying the tumour by diagnostic imaging has a key role in the output of the
treatment. Furthermore, segmenting the tumour in images is an important step
in preparation for radiotherapy. Rectal cancer MR imaging protocols usually
include T2w images of the pelvic district, which is considered the key sequence
for the diagnosis of rectal cancer. However, several studies have underlined the
importance of using DWI (Diffusion-weighted imaging) sequences for a more
detailed study of the disease [70]. Briefly, MR-DWI images measure the degree
of diffusion of water molecules through imaged tissues. Changes in tissues caused
by the growth of a tumour (apoptosis, necrosis, increased vascularity) modify
the effective diffusive capacity of water molecules in that area, and DWI is useful
to capture this phenomenon. The properties of diffusion are quantified out of
DWI images building so-called ADC (apparent diffusion coefficient) maps. ADC
maps are hyperintense in areas where water diffusion is free and hypointense in
areas where water diffusion is restricted due to the presence of obstacles. Rectal
carcinomas have intermediate grey levels in T2w and are hypointense in ADC
maps.

Since positioning of regions of interest (ROIs) has a considerable influence
on tumour ADC values [51], instead of using the T2w images and then co-
registering segmentation output to ADC maps, we perform the segmentation of
rectal cancer directly on ADC maps for more accurate results.

Differently from Section segmentation of rectal cancer is performed us-
ing the 3D volume of the image as a whole, rather than considering separate
slices. In our experimentation, 3D analysis has yielded better results, as the
considered regions are rather small and reasoning simultaneously on different
slices maximises the information which is available to each analysis pass. The
segmentation process is composed of four steps:

1. preprocessing (performed without use of topochecker), aimed at normal-
isation of images;

2. rectum segmentation in T2w images, to limit the area of the image where
the tumour is searched for; rectum segmentation is done in T2w as the
contrast of ADC is not sufficient to properly distinguish organs;

3. co-registration of rectum segmented in T2w to ADC, using patient posi-
tioning information that is stored in images by the scanner;

4. tumour segmentation in the ADC map, which is the stated goal of this
example.

4.2.1 Preprocessing

Figure 22| shows one axial and one sagittal view of T2w and ADC acquisitions.
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(a) T2w axial slice. (b) T2w sagittal slice.
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(¢) ADC map axial slice. (d) ADC map sagittal slice.

Figure 22: Rectum acquisition (Case courtesy of Azienda Ospedaliera Univer-
sitaria Senese; image and data processing performed in compliance with EU
GRDP 679/2016).
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(a) DWI slice. (b) ADC slice. (¢) Mask on ADC.

Figure 23: ADC mask (Case courtesy of Azienda Ospedaliera Universitaria
Senese; image and data processing performed in compliance with EU GRDP
679/2016)

Since the FOV (Flield of View) of the T2w acquisition lies entirely within the
patient body (Figure and Figure , normalisation of the T2w volume is
obtained dividing the grey level of each voxel by the average of voxel intensities.
For ADC maps instead, a mask is created using a procedure similar to that
described in Section However, we used the DWI images to obtain the
mask, because in the ADC maps the background is very noisy (see Figure 7
note that DWI and ADC masks have the same coordinate system).

4.2.2 Rectum segmentation

The model definition for rectum segmentation defines the relevant attribute,
i.e. the normalised grey level of each pixel in this image, as T2, which is used
throughout the analysis.

Model "med:T2=T2-NORM.nii";

We slightly change the definition of £1t (defined in Figure[11] (), and used
in Section to remove small regions attributed to noise). We consider regions
that only appear on one slice as noise, even when these are not filtered out
by the previous definition. In order to remove such regions, we employ nested
application of I and N on top of the definition of f1t.

Let f1t3D(a) = N(I(flt(a)));

The area corresponding to the rectum in T2w images is identified as the
union of a hyperintense region, called hyperT2r, a hypointense region, called
hypoT2r, and a region having an intermediate intensity, called intermT2r, that
are close to each other. This is detected using the touch operator.

The aforementioned hyperintense region is defined as hyperT2r below.

Let hyperT2=f1t3D([T2>1.6]);
Let hyperT2Super = f1t3D([T2>2.5]);
Let hyperT2r = touch(hyperT2,hyperT2Super) ;
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The hypointense region hypoT2r is defined below as being within 5mm from
hyperT2r.

Let hypoT2 = £1t3D([T2>0.17] & [T2<0.5]);

Let hyperT2rS = MDDT (hyperT2r,<5);
Let hypoT2r = touch(hypoT2,hyperT2rS);

Finally, the region of intermediate intensity intermT2r is defined as follows.

Let rectumlS = MDDT(hyperT2r | hypoT2r,<5);

Let intermT2 = f1t3D([T2>0.9] & [T2<1.41);
Let intermT2r = touch(intermT2,rectumlS);

The segmented rectum (formula rectum below) is defined as the union of
the three regions (the green, brown and red areas in Figure ; the area is
expanded, in formula rectumS, to cater for loss of precision that occurs in the
co-registration to the ADC map (see the green area in Figure .

Let rectum = hyperT2r | hypoT2r | intermT2r;
Let rectumS = MDDT(rectum,<5);

Co-registration T2w and DWI images are acquired in the same acquisition
session with the patient. Co-registration between the T2w and the ADC maps
makes use of the image header, that in medical images contains the necessary
information to translate image coordinate systems to the scanner (world) co-
ordinate system. More precisely, each voxel has coordinates (¢, j, k) within the
image and dimension (ps;, ps;, psx). In addition, also the corresponding position
of the voxel in world coordinates is stored in the header. Using such informa-
tion, the coordinates (i, j, k) of each voxel within the image is mapped to the
position (z,y, z) of the voxel in world coordinates (Figure [26]).

In order to co-register the ROI of the rectum segmented in T2w to the ADC
map, we map the image coordinates (7, j, k)72 of the T2w image to the world
coordinates (x,y,z) and back to the image coordinates (i, j, k) apc of the ADC
map. In Figure the green area represents voxels on the ADC map that
correspond to voxels in T2w satisfying rectums.

4.2.3 Tumour segmentation

Finally, tumour segmentation is performed on the ADC map. Below, we load
the (normalised) ADC map (ADC) and the rectum segmented on T2w and co-
registered to ADC (ROI). We define formula rectumS selecting voxels defined in
ROI.

Model "med:ADC=ADC-norm.nii,
ROI=ROI_T2-2-ADC.nii";

Let rectumS=[R0OI>O0];
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(c) T2w sagittal slice.
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(b) T2w axial slice.

Awaiting for
publication
approval

(d) T2w coronal slice.

Figure 24: Hyperintense (green), hypointense (brown) and intermediate inten-
sity (red) regions used to segment rectum in T2w (Case courtesy of Azienda
Ospedaliera Universitaria Senese; image and data processing performed in com-
pliance with EU GRDP 679/2016).
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(a) T2w axial slice.
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(c) T2w sagittal slice.
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(b) T2w axial slice.
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(d) T2w coronal slice.

Figure 25: Final output of segmentation of rectum in T2w. In green rectumS
(Case courtesy of Azienda Ospedaliera Universitaria Senese; image and data
processing performed in compliance with EU GRDP 679/2016).

Figure 26: World (z,y, z) and image (i, j, k) coordinate systems. Image based
on image shared in https://www.slicer.org/wiki/Coordinate_systems
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(c) ADC sagittal slice. (d) ADC coronal slice.

Figure 27: Co-registration of rectum ROI (green) segmented in T2w to ADC
map (Case courtesy of Azienda Ospedaliera Universitaria Senese; image and
data processing performed in compliance with EU GRDP 679/2016).
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We delineate the initial estimate of the tumour based on grey levels (the green

area in Figure 281)).

[ADC>0.96] & [ADC<1.56];
£1t3D(tumorl) ;

Let tumoril
Let tumor2

Formula tumour3, below, constrains the tumour region to an area that
touches the ROI that has been segmented for the rectum (see the green area in

Figure |28gI28hl|28i)

Let tumor3 = touch(tumor2,rectums);

Statistical texture analysis is then used to find regions that are similar to
tumor3 (cross correlation > 0.8). The search is restricted to areas close to
tumor3, i.e. the region of radius 20mm around tumor3 defined as tumorSpace

(Figure 29).

Let tumorSpace = MDDT(tumor3,<20);

Let tumorStat =

SCMP (ADC, tumorSpace,3,>0.8,0.01,2.7,100)
(ADC, tumor3) ;

Finally, the tumour region is the union of tumor3 and tumorStat shown in
green in Figure 30

Let tumor = tumor3 | tumorStat;

4.3 Validation

The work presented in this section is aimed at providing an illustration of the
analysis capabilities of our logic-based methodology, rather than providing com-
plete clinical case studies. For instance, consider the glioblastoma specification,
which is rather concise, consisting of a less than 30 lines long logical specifica-
tion, and a simple preprocessing step. Although such procedure was success-
fully tested on five images from different sources and acquired in very different
conditions, this is certainly not sufficient to validate our example as a glioblas-
toma segmentation methodology for future clinical usage. Future work aims
at improving the method, eliminating corner cases in the formulas as much as
possible, making it robust to different acquisition conditions and properly vali-
dating it. More generally speaking, clinical experimentation is the next step in
our research program.

However, some conclusions can already be drawn from the data we have, both
with respect to efficiency and to accuracy of the obtained results. We do so for
the glioblastoma case study, as there is enough literature for a comparison with
the state of the art. For rectum carcinoma, less data is available, and clinical
testing will be essential in understanding the applicability of the procedure.

Analysis time is proportional to the size of the image (the algorithm is linear).
In the glioblastoma example, MR-FLAIR very often have a slice size of 256 x 256
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(g) Output of touch operator (h) Output of touch operator (i) Output of touch operator
on one ADC axial slice. on one ADC sagittal slice. on one ADC coronal slice.

Figure 28: Output of segmentation of the tumour (green) and the rectum
(brown) (Case courtesy of Azienda Ospedaliera Universitaria Senese; image and
data processing performed in compliance with EU GRDP 679/2016).
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(a) ADC axial slice. (b) ADC sagittal slice. (¢) ADC coronal slice.

Figure 29: Output of the SCMP operator (green) and the searching space
tumorSpace (brown) (Case courtesy of Azienda Ospedaliera Universitaria
Senese; image and data processing performed in compliance with EU GRDP
679/2016).
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(a) ADC axial slice. (b) ADC axial slice.
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(c) ADC sagittal slice. (d) ADC coronal slice.

Figure 30: Final output of rectal cancer segmentation in green (Case courtesy of
Azienda Ospedaliera Universitaria Senese; image and data processing performed
in compliance with EU GRDP 679/2016).
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pixels, multiplied by 20 — 30 slices. As a rough estimate, the execution time for
the analysis of a single 1024 x 1024-voxels slice—including preprocessing—on
a standard laptop (equipped with an Intel CORE i7 CPU, and 8 gigabytes of
RAM), currently stays below one minute. This information, although not being
a fully-fledged benchmark, provides a first indication that, efficiency-wise, our
approach is in par with the state-of-the art in semi-automatic glioblastoma
segmentation procedures (see [35]). We remark that our procedure makes use of
a prototype general-purpose model checker, that could be amenable to further
optimisation, e.g. employing specialised, well-known flood-filling algorithms for
images for model checking the surrounded connective — in place of the current
graph-theoretical method.

A preliminary assessment of the quality of the obtained results in the case
of glioblastoma was performed for the patient in Figure The patient un-
derwent first surgery and then radiotherapy. We compared our results on the
post-surgery MR-FLAIR with target volumes delineated on the pre-treatment
Computed Tomography (CT) by one experienced radiotherapist. In particular,
we considered the gross tumour volume (GTV), i.e. what can be seen or imaged,
and the clinical target volume (CTV), which contains the GTV, plus a margin
for sub-clinical disease spread which therefore cannot be fully imaged [12]. Usu-
ally for glioblastomas the CTV is defined as a 2-2.5 cm isotropic expansion of
GTV within the brain. In order to quantify the effectiveness of our segmen-
tation we computed the Dice coefficient (DC'), that we used to measure the
morphological similarity between the manual segmentation MS and automatic
segmentation AS. The coefficient is defined as DC = %7 where V(a)
is the volume of a, that is, the number of voxels that belong a; DC' ranges from
0 to 1, 0 indicates no overlap and 1 indicates complete overlap.

The CT volume was co-registered to the FLAIR volume. Then, we consid-
ered the region R obtained as the union of the oedema and tumour regions, as
found using our method. We compared R to the GTV contour, and furthermore
we compared R, expanded by 2.5¢m (as explained above) to the CTV contour.
We obtained DC = 0.76 for GTV and DC = 0.81 for CTV. Although a sin-
gle case does not have clinical significance, these results are very encouraging,
and aligned with state-of-the-art methods for automatic and semi-automatic
segmentation of glioblastoma [32].

In [7], a variant of the method we described was assessed on a dataset of
7 patients affected by GBM, that have undergone radiotherapy. The obtained
results, and average execution time per patient on the same machine used for
the experiments in the current paper, were in line with the state-of-the-art.

Finally, we note that numeric thresholds and other parameters (e.g., the
number of nested N constructs in some formulas, the number of bins for statis-
tical analysis, etc.) have been chosen by the medical physicist in charge of the
analysis, on the basis of expert knowledge on the matter and in some cases by
trial-and-error. The values that we used might prove stable in clinical valida-
tion (and this is the purpose of the preliminary normalisation of images that we
use), but this is not yet to be taken for granted, or even to be expected in more
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general situations. Instead, parameter calibration on a per-image or per-study
basis will be an important subject in our future research. Such calibration may
be fully automatic (e.g. through machine learning techniques), but this is just
one possibility. It would also make sense to adopt a semi-automatic approach
(which is also frequent in state-of-the-art techniques, see e.g. [32], 35| 68| [78]),
involving human interaction with an expert to merely calibrate the parameters,
rather than performing a full manual segmentation, in order to save a large part
of the time (and costs) required for preparation to radiotherapy or surgery.

5 Conclusions and future work

This work provides a first, promising exploration of logical methods for declar-
ative medical image analysis in the domain of radiotherapy. A declarative ap-
proach makes analysis transparent, reproducible, human-readable, exchange-
able, and permits domain experts who are not technicians to understand the
specifications. Such advantages are akin to those obtained in other domains,
such as the application of the Structured Query Language (SQL) in the field
of databases, or the introduction of query languages (XPATH, XSLT, ...) in
semi-structured data management.

Logical properties are used as classifiers for points of an image; this can be
used both for colouring regions that may be similar to diseased tissues, and
therefore being diseased tissue in turn, and for colouring regions corresponding
to organs of the human body. Envisaged applications range from contouring
to computer-aided diagnosis. Our logic ImgQL is able to predicate on both
shortest-path and Euclidean distance at the same time, and topochecker im-
plements both operators. In MI, shortest-path distances proved useful so far
mostly to speed up interactive development; this is implementation-dependent,
as the Modified Dijkstra transform that we use (see Section [2.2.2)) currently
performs faster than Maurer distance transform in our tests. We also consid-
ered the embedding of specific operators for MI in ImgQL such as an operator
for texture analysis based on first order statistical methods. Other options and
operators could be considered following a similar approach, providing a way to
include state-of-the-art analysis techniques that can be conveniently combined
using the spatial operators of the logic.

It is noteworthy that the analysis we designed for glioblastoma segmentation
can be used, with mild modifications, also to analyse the whole 3D volume
of an image at once. 3D analysis is a relatively new application in medical
imaging, leveraging the precision/efficiency trade-off of more classical methods.
Furthermore, 3D analysis may be combined with existing applications of 3D
printing in preparation for surgery (see [63]), by providing practitioners with
models of a patient’s body, with the relevant regions, identified by our method,
printed in different colours. Such aspects constitute a further interesting line of
research for future work.

Part of our ongoing work consists in identifying novel logical operators that
are useful in medical imaging. So far, we only used operators that classify indi-
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vidual pixels or voxels. However, drawing inspiration from the family of region
calculi (see [2]), one could also classify regions, taking advantage of “collective”
observations on sets of voxels that belong to the same area. Some work in
this direction is [19], including the definition of operators related to connected-
ness of regions; further work will be directed to the investigation of properties
related to the size of regions, or to their morphological properties. Also, the
“distance-bounded surrounded” operator defined in [61] could be useful in medi-
cal imaging. A limitation of the model checking algorithm in [61] is its quadratic
complexity. We have shown that the application of distance transforms yields
a linear algorithm for a weaker variant of the bounded surrounded operator for
the case of images (that is, regular grids).

We recall that topochecker is a spatio-temporal model checker. Tempo-
ral reasoning could be exploited in future work to consider, for instance, the
sequence of acquisitions of a patient in order to reason about the evolution of
image features such as tumours, which is very important in radiotherapy appli-
cations.

Our experiments show that typical analyses carried out using spatial model
checking in medical imaging require careful calibration of numeric parameters
(for example, a threshold for the distance between a tumour and the associated
oedema, or the size of areas identified by a formula, that are small enough to be
considered noise, and ought be filtered out). The calibration of such parameters
might be performed using machine-learning techniques. In this respect, future
work could be focused on application, in the context of our research line, of
the methodology used in the development of the logic SpaTeL, aimed at signal
analysis (see [42] [39] Bl [6]), that pursues machine learning of the logical struc-
ture of image features. We emphasise that such a development, if implemented,
would be a radical improvement in application of machine learning to medical
imaging. It can be framed under the recent research trend on explainable arti-
ficial intelligence, as it would yield a procedure that can explain in terms of a
human readable language the methodology that a machine learning algorithm
extrapolates from data. Our topological approach to spatial logics would be a
key enabling technique for this purpose, as the formulas obtained in the Spa-
TeL. approach are not meant to be intelligible by humans. It is worth noting
that machine learning and deep learning methods have also been applied to the
detection of tumours in very recent literature [71l [4]. On the other hand, our
application of machine learning could as well be focused simply on the identifi-
cation of numeric parameters, rather than logic formulas, that may depend on
complex features of images.

The example of glioblastoma that we illustrated in Section [£.1 has immediate
practical relevance. As we already mentioned, cleanup and clinical validation
of the procedure is in progress. The normalisation step that we employ could
be improved using state-of-the-art methods (see [55, (2], and the references
therein).

Planned future developments also include means for interactive refinement
of analysis, based on visual fine-tuning of specific values (e.g. thresholds or
distances) that may have a non-linear effect on the results of complex queries,
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with significant impact on methods that require human interaction—e.g. inter-
active segmentation in preparation for surgery, or contouring for radiotherapy
planning.
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