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ABSTRACT

A growing amount of evidence in literature suggests
that germline sequence variants and somatic muta-
tions in non-coding distal regulatory elements may
be crucial for defining disease risk and prognostic
stratification of patients, in genetic disorders as well
as in cancer. Their functional interpretation is chal-
lenging because genome-wide enhancer–target gene
(ETG) pairing is an open problem in genomics. The
solutions proposed so far do not account for the hier-
archy of structural domains which define chromatin
three-dimensional (3D) architecture. Here we intro-
duce a change of perspective based on the definition
of multi-scale structural chromatin domains, inte-
grated in a statistical framework to define ETG pairs.
In this work (i) we develop a computational and sta-
tistical framework to reconstruct a comprehensive
map of ETG pairs leveraging functional genomics
data; (ii) we demonstrate that the incorporation of
chromatin 3D architecture information improves ETG
pairing accuracy and (iii) we use multiple experimen-
tal datasets to extensively benchmark our method
against previous solutions for the genome-wide re-
construction of ETG pairs. This solution will facilitate
the annotation and interpretation of sequence vari-
ants in distal non-coding regulatory elements. We
expect this to be especially helpful in clinically ori-
ented applications of whole genome sequencing in
cancer and undiagnosed genetic diseases research.

INTRODUCTION

Distal non-coding regulatory elements (enhancers) are cru-
cial players in the control of gene expression. These are also

the genomic features carrying the most marked epigenetic
differences across cell types, thus constituting a fundamen-
tal component of the molecular and genetic mechanisms
defining cell identity (1,2). Enhancer activity status is it-
self regulated by epigenetics, chromatin accessibility and its
three-dimensional (3D) architecture (3). In fact, the forma-
tion of chromatin loops allows distal regulatory regions to
come in close physical proximity to their target gene pro-
moters to regulate transcription (4). Their importance for
human physiology is attested by their enrichment in poly-
morphisms associated to genetic diseases and cancer risk
(5,6). More mechanistic studies have shown the functional
role of enhancer alteration in several pathologies, some-
time collectively termed enhanceropathies (7,8). Therefore,
a genome-wide definition of the regulatory network consti-
tuted by enhancers and their target genes would be a valu-
able resource in biomedical research. For example, it would
be instrumental for the annotation and interpretation of
non-coding somatic mutations or germline sequence vari-
ants, to understand their effect on the broader gene regu-
latory network, in basic biology as well as in more transla-
tional studies.

Despite its importance, the reconstruction of a compre-
hensive network of enhancer–target gene (ETG) pairs re-
mains elusive, especially because enhancers position with
respect to the target genes is highly variable. Indeed, they
can regulate one or more genes that appear distant in the
linear sequence of the genome but may be in close physical
proximity in the 3D chromatin organisation (9).

In this context, the development of molecular biology
methods to study the 3D chromatin organization has been
pivotal for achieving a better understanding of distal reg-
ulatory elements. In particular, the methods based on lig-
ation by proximity, i.e. Chromosome Conformation Cap-
ture (3C) (10) and its high-throughput derivatives (11–13)
(e.g. 4C, 5C and Hi-C), allow quantifying the frequency
of physical interactions between distant chromatin regions
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(chromatin loops). Hi-C is the high-throughput genome-
wide version of this technique, allowing researchers to map
the contact frequency between virtually any pair of genomic
loci (14).

In principle, Hi-C data could be used for the genome-
wide identification of specific points of contact, such as
ETG loops. However, Hi-C data is generally analysed by
binning read counts at a resolution of few kilobases (kb),
with the highest coverage datasets available to date reach-
ing 1 kb (15–17). This resolution level is lower than what
is needed to map ETG pairs when multiple enhancers are
close to each other, or close to promoters. In all these cases,
a distance smaller than 2 bins would not allow discriminat-
ing the interacting partners. Even the most recent literature,
based on ENCODE3 data, reported that using Hi-C inter-
action calls to directly map ETG contacts is not a valu-
able strategy (18) to annotate distal regulatory elements,
due to the resolution limit. Another challenge in this ap-
proach, is that different algorithms for calling point inter-
actions in Hi-C data have generally discordant results and
are influenced by the sequencing coverage (19). Additional
experimental approaches aimed to define physical pairing
of ETG with higher resolution include capture Hi-C (cHi-
C) (20–23), HiChIP (24) and ChIA-PET (25). These tech-
niques have been instrumental to define experimentally val-
idated ETG physical contacts. However, these experimental
methods are generally considered cell-type specific.

Thus, chromatin 3D architecture has not been opti-
mally incorporated in the ETG network reconstruction al-
gorithms proposed in literature so far. Some publications
marginally used chromatin conformation data to define
true positive contacts (26–29), despite the resolution and
methodological shortcomings discussed above. Moreover,
these approaches have been applied to a limited number of
cell types, due to the reduced availability of cell-type specific
experimental datasets. Alternatively, chromatin structural
domains have been used only to restrict the initial search
space of ETG pairs (30–33).

We hypothesised that the effective incorporation of chro-
matin 3D architecture data would enhance the accuracy of a
generalizable genome-wide definition of ETG pairs. To this
concern, here we introduce a change of perspective based on
the current biological knowledge. Namely, there is a general
consensus in the field about enhancer–target gene interac-
tions occurring within the insulated boundaries of the so-
called Topologically Associated Domains (TADs) (34,35),
which are relatively insulated domains enriched in local in-
teractions. Moreover, several studies reported that TADs
are largely conserved across different cell types (36–38). On
the other hand, it is generally accepted that TADs can be de-
fined at different levels of resolution, i.e. there is a hierarchy
of TADs (17,39,40). More recent literature indicates that al-
ternative TADs structures may indeed co-exist within a cell
population, and the stochastic dynamics of active loop ex-
trusion mechanisms could explain their formation and the
patterns detected in Hi-C data (41–43). Therefore, we use
multi-resolution TAD definitions as prior-knowledge to in-
form the selection of ETG pairs.

In this work, (i) we develop a computational and statisti-
cal framework to reconstruct a comprehensive map of ETG
pairs leveraging functional genomics data. Namely, we use

a large panel of epigenomics datasets to define enhancer ac-
tivity across multiple cell and tissue types, along with high
resolution Hi-C data. (ii) Then we demonstrate that the in-
corporation of chromatin 3D architecture information im-
proves the accuracy in defining ETG pairs. In this context,
we compute a score encoding the multiscale hierarchical
structure of chromatin and use it as side information for
controlling false discoveries and achieving high statistical
power. (iii) Finally, we extensively benchmark our method
against previous solutions for the genome-wide reconstruc-
tion of ETG pairing. We show that our method is a valuable
general-purpose solution, providing good ETG pairing per-
formances for both long- and mid-range interactions.

MATERIALS AND METHODS

Definition of reference set of enhancer and gene promoter re-
gions

We defined a reference set of enhancer regions using
epigenomics datasets based on high-throughput sequenc-
ing across a compendium of cell and tissue types. In
particular, we used ChIP-seq (Chromatin ImmunoPre-
cipitation followed by high-throughput sequencing) data
for specific histone modifications, as detailed in the rel-
evant results sections, as well as chromatin accessibility
data based on DNase I hypersensitive sites (DHS), iden-
tified with DNase-seq. We downloaded histone H3 ly-
sine 27 acetylation (H3K27ac) ChIP-seq and DHS nar-
row peaks (based on MACS v2.0.20 calls by the Roadmap
Epigenomic consortium) called for 44 uniformly processed
and consolidated cell and tissue types from Roadmap
Epigenomic portal (https://egg2.wustl.edu/roadmap/data/
byFileType/peaks/consolidated/narrowPeak/). H3K27ac is
a post-translational histone modification associated with
active enhancer and promoter regions, whereas DNase-seq
allows assessing chromatin accessibility. We focused on the
subset of cells and tissue types for which both H3K27ac
ChIP-seq and DNase-seq were available (Supplementary
Table S1A). We further filtered the results for subsequent
analyses considering only peaks with strong significant en-
richment, i.e. −log10(adj.P-value) ≥5. Both the number
(Supplementary Figure S1A) and size (Supplementary Fig-
ure S1B) of DNase-seq and H3K27ac ChIP-seq peaks vary
across cell and tissue types. Namely, DNase-seq peaks were
123 400 on average, with average size 358 bp. Conversely,
H3K27ac peaks were fewer (53 721 on average) and larger
(940 bp average size).

To obtain a comprehensive list of cis-regulatory elements
we conducted a two-step procedure. Firstly, for each cell
type, the intersection between H3K27ac and DHS peaks
with overlapping regions (≥1 bp) were used to define cell-
specific enhancers. Additional filters were applied ex-post,
such as the removal of interval portions overlapping anno-
tated exons (for both coding and non-coding genes) and the
removal of intervals shorter than 10 bp or larger than 2.5 kb.

Secondly, cell-specific enhancers with overlapping inter-
vals across different cell types were merged (union) together
to define a consensus set of enhancer regions. This set was
further annotated with respect to the transcription start
site (TSS) as promoter-proximal (within 3.5 kb upstream
and 1.5 kb downstream of TSS) or distal, and only the
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promoter-distal ones were retained as reference list of en-
hancer elements, hereinafter referred as enhancer catalogue
(n = 347 777). This is meant to be a comprehensive refer-
ence set of regulatory regions, that can be active enhancers
in at least one of the cell and tissue types considered.

In the subsequent analyses to identify ETG pairs, we ac-
tually focused on the epigenetic status of the gene promoter
regions, used as a proxy for the activity of the target genes.
Thus, hereinafter we will refer to enhancer−promoter (EP)
pairs when explicitly focusing on these genomic regions or
epigenetic features, whereas we will refer to ETG pairs when
focusing on the functional interaction to regulate the target
gene. We defined reference promoters as 2 kb regions (1.5 kb
upstream and 0.5 kb downstream) around the transcription
start site (TSS) of annotated protein coding genes, based on
RefSeq annotations in UCSC (refGene.txt.gz, May 2019,
hg19 genome assembly). Non-canonical and Y chromo-
some were excluded. To reduce possible ambiguities, in case
of multiple alternative transcripts for the same gene, only
the most upstream TSS was maintained as reference for
each gene. Moreover, promoters were merged in case of two
close TSSes (±0.5 kb interval), e.g. divergent transcripts on
opposite DNA strands, so as to obtain the final reference
set of promoter regions (m = 18 027).

To compare our enhancer catalogue with alternative
functional genomic definitions we employed: (i) the atlas of
active enhancers provided by FANTOM5 project (https://
fantom.gsc.riken.jp/5/data/) (44), based on 808 human Cap
Analysis of Gene Expression (CAGE) experiments (45) and
(ii) the collection of in vivo validated enhancers coming from
the VISTA Enhancer database (46), based on transgenic
mice reporter assays in 23 tissues of mouse embryos (47).

We downloaded enhancer coordinates
from FANTOM5 repository (https://fantom.
gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
human permissive enhancers phase 1 and 2.bed.gz),
and we retrieved positive (i.e. elements that show consistent
reporter gene expression among at least three embryos)
‘Human only’ enhancers from VISTA Enhancer Browser
(date version: 12 February 2020). In line with the procedure
used to define our enhancer catalogue, interval portions
overlapping annotated exons and promoter proximal
elements were removed to obtain the final set of enhancers
from each of these alternative sources. These filtered
FANTOM and VISTA enhancer sets were used in the
subsequent analyses and are composed of 58 200 and 894
enhancers, respectively.

Hi-C dataset processing

We leveraged chromatin 3D architecture data from genome-
wide chromosome conformation capture experiments based
on high-throughput sequencing (Hi-C). Namely, we pro-
cessed eleven Hi-C datasets (Supplementary Table S1B)
covering different cell lines and primary tissues from a com-
pendium of public datasets (17,48–52).

For each Hi-C dataset we retrieved the raw FASTQ
files from the NIH SRA database (https://www.ncbi.
nlm.nih.gov/sra). The sequencing reads were aligned
with the iterative mapping procedure (single-end mode)

as implemented in hiclib (https://github.com/mirnylab/
hiclib-legacy)(version from gitHub commit d38f198, date:
28 September 2017) based on botwie2 (version 2.3.4.3)
aligner (53) (https://github.com/BenLangmead/bowtie2).
Briefly, in this iterative alignment procedure reads were
truncated at 30 bp and aligned to the reference genome
(hg19). Reads that were not uniquely aligned were elon-
gated (5 bp) and the alignment procedure repeated, with ad-
ditional iterations until full read length or successful align-
ment is achieved. For each FASTQ file the information on
uniquely mapped reads were stored in a HDF5 (Hierarchi-
cal Data Format) file. Biological or technical replicates be-
longing to the same dataset were merged in a single HDF5
file (hdf5 library, version 2.9.0). We filtered read pairs with
a sum of distances from the downstream restriction site
not compatible with the expected fragment size: i.e. events
originating from non-canonical enzyme activity or non-
enzymatic physical breakage. The distance cut-off was esti-
mated for each dataset based on the frequency distribution
of distances and the expected fragment length. Duplicated
read pairs, as well as read pairs derived from unligated or
circularized fragments, were also removed.

Finally, the genome was binned at 10 kb bin size, and the
raw read counts were summarized in a Hi-C contact matrix
for each chromosome, accounting for intra-chromosomal
interactions. To allow comparability among all tissues and
cell types and correct for technical biases, chromosome-wise
iterative correction (ICE) with default parameters (54,55)
was applied (using cooler version 0.8.5, https://github.com/
open2c/cooler). This procedure returned a balanced matrix
of relative contact probabilities, in which each row (exclud-
ing the elements in the first two removed diagonals) summed
up to one. The output files (cool format) were converted to
txt files and compressed.

Hierarchical contact score

To account for the 3D spatial proximity of regulatory ele-
ments, we devised a score proportional to the likelihood of
enhancer−promoter (EP) pairs co-localization, named Hi-
erarchical Contact (HC) score (Figure 1B). HC accounts
for the TADs hierarchical structure across multiple tissue
and cell types. For HC definition we relied on the Local
Score Differentiator (LSD) TAD borders calling procedure
(56), as implemented in the HiCBricks (version 1.8.0) Bio-
conductor package (57). We defined TADs as regions be-
tween two consecutive domain boundaries. LSD is based
on the directionality index (DI) score originally proposed
by Dixon et al. (36). Among the user defined parameters
in this algorithm, the DI-window (i.e. the number of up-
stream and down-stream bins over which the DI score is
computed) influences the scale of the TAD domains that are
identified: the larger the DI-window, the larger the average
resulting TAD size.

The HC score is thus defined by considering a collection
D of Hi-C contact matrices (all binned at the same bin size)
and an ensemble of TADs boundaries for each D ∈ D, de-
noted by TADD(w), where w ∈ W is the DI-window (Fig-
ure 1B, top panel). We considered W = [5, 10, 20, 50] for
the DI-window size. Thus, each TADD(W) represents the
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Figure 1. Methodological framework overview. Schematic illustration of the workflow of our methodological framework. Throughout this figure panels
the (i,j) labels refer to enhancer (i) and promoter (j) pairs. (A) Starting from a reference catalogue of enhancer and promoter regions, it is possible to
quantify their respective activity status using two sets of p and q functional genomic data (e.g. ChIP-seq data for chromatin marks), respectively. Then, the
Canonical Correlation Analysis (CCA) is used to investigate the synchronised activity of each enhancer−promoter (EP) pair across k cell and tissue types.
The two original sets of chromatin marks are transformed through linear combinations that allow maximizing the relationship between the two sets, and
the respective canonical correlation is tested. The procedure returns a P-value for each specific EP pair. (B) For each Hi-C dataset in the selected collection,
the boundaries of Topologically Associating Domains (TADs) are identified across multiple levels of resolution. The resulting ensemble of boundaries
represents the hierarchical structure of TADs for a specific cell or tissue type. Considering the occurrence of each EP pair within these ensembles called
from D Hi-C datasets, we can describe their broader spatial co-localization pattern through the Hierarchical Contact (HC) score. A high score is associated
to pairs supported by several combinations of Hi-C datasets and hierarchical levels (e.g. E2 − P1 pair). Conversely, a weak score is associated to pairs
supported only in few combinations (e.g. E1 − P1 pair). (C) The 3D co-localization information encoded in the HC score is used to estimate an adaptive
rejection threshold to control for FDR in the multiple testing hypothesis of EP pairs synchronisation. On similar equal nominal p-value (y-axis) a less
conservative significance criterion is used for the EP pair showing higher HC score (x-axis and color gradient). Namely, even if one enhancer (E1) will
exhibit a stronger synchronization with a specific promoter (P1), being at greater 3D distance will be less likely to regulate it than the closest one (E2).

multi-resolution TADs structure for a specific Hi-C contact
matrix in a specific cell and tissue type.

Given a list of n enhancers and m promoters, we can de-
fine a binary matrix MD(w), in which an element (i, j) is set
to 1 if the ith enhancer and the jth promoter are within the
same TAD belonging to the ensemble TADD(w). The ma-
trix MD(w) is thus an n × m co-occurrence matrix. To es-
timate the overall spatial relationships between enhancers
and promoters over the hierarchical structure of each Hi-C

contact matrix D, we propose the aggregate score:

S(D) =
∑

w∈W
λ (w) MD (w) (1)

where λ (w) = √
max(W)/w is a scaling factor that gives

higher weight to smaller TAD hierarchies according to the
set W. Namely, we are setting the highest level to have a
weight equal to one. To extend the score to the entire col-
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lection D of Hi-C matrices, we define the HC score as:

S =
∑

D∈D S(D) (2)

Each element of the matrix sij is meant to capture the
broader spatial co-localization pattern of the ith enhancer
and the jth promoter across both different layers of TADs
hierarchy and tissue or cell types (Figure 1B, bottom panel).
By definition, for the set W = [5, 10, 20, 50] and using
11 Hi-C datasets, the lower and upper limits of the score
are min(S) = 0 and max(S) = 87.8, respectively, where
the maximum for each Hi-C contact matrix is equal to
max(S(D)) = 7.98.

As the HC score can be calculated whenever a hierarchy
of TADs is provided, for comparison purposes we consid-
ered TopDom (58), a public available tool meant to iden-
tify TADs at sub-mega base resolution. TopDom identi-
fies TAD boundaries looking at significant local minima
of the bin signal function, which is computed with a pro-
cedure similar to the previously proposed insulation score
(59). Namely, the bin signal function is the average contact
signal in the neighbourhood of each bin along the diagonal,
considering a diamond-shape area of width 2ŵ, where ŵ is
a tuneable parameter that defines the window size. We used
TopDom R package (https://github.com/HenrikBengtsson/
TopDom, version 0.8.1) to call TADs, defined as regions
between two boundaries flagged as significant minima (lo-
cal.ext = -1). For the ŵ parameter we used the same set
of values adopted for LSD DI-window sizes, i.e. W = Ŵ =
[5, 10, 20, 50].

We also considered alternative definitions of the HC
score that we show in specific analyses as indicated in
the text and related Supplementary Figures. These were
based on alternative definitions of the scaling factor λ(w) in
(1), including: unweighted sums with λ (w) = 1; weighted
and rescaled sums with λ (w) = max(W)/w; logarithm
(base 10) of weighted and rescaled sums with λ (w) =
log10(max(W)/w); weighted sums using the inverse of the
DI-window with λ (w) = 1/w; square root of weighted and
rescaled sums with λ (w) = √

max(W)/w (default choice of
our method in the manuscript).

Enhancer-promoter pairs synchronization analysis with
Canonical Correlation

We adopted the Canonical-Correlation Analysis (CCA)
(60) to quantify the strength of coordinated activity in each
EP pair (Figure 1A). We considered enhancer and promoter
regions separately, and quantified their respective activity
status using two sets of epigenetic marks: we used the en-
richment of DNase-seq and H3K27ac ChIP-seq (p = 2)
for enhancers and DNase-seq, H3K27ac and H3K4me3
(q = 3) for the promoters.

Namely, we downloaded H3K27ac, H3K4me3 and
DNase-seq consolidated fold-change enrichment signal
tracks (bigwig format) from the Roadmap Epigenomic con-
sortium web portal (https://egg2.wustl.edu/roadmap/data/
byFileType/signal/consolidated/macs2signal/foldChange/)
for all the cell and tissue types for which all the three
epigenetic marks were available (k = 44) (Supplementary
Table S1A). For each enhancer and promoter region, we

computed the maximum signal from the proper bigwig
genomic tracks, using rtracklayer R package (version
1.44.4) (61).

We then used CCA to investigate the inter-set correlation
patterns (Figure 1A, bottom panels). More formally, let X(i )

denote a p-dimensional random vector of quantitative fea-
tures describing the activity of the i th enhancer. Let Y( j )

denote a q-dimensional random vector of quantitative fea-
tures describing the activity of the j th promoter. Our data
consist of k independent observations of X(i ) and Y( j ) across
k cell and tissue types. We are interested in testing the null
hypothesis of independence between X(i ) and Y( j ), i.e., the
lack of synchronized activity:

H(i j ) : X(i ) and Y( j ), are independent (3)

against a general alternative. Assuming normality of X(i )

and Y( j ), the null hypothesis of interest can be equivalently
expressed as:

H(ij) : ρ
(ij)
1 = . . . = ρ

(ij)
min(p,q) = 0 (4)

where ρ
(i j )
l is the lth canonical correlation coefficient as-

sociated to X(i ) and Y( j ). Briefly, the canonical correlation
coefficients measure the correlation over subsequent linear
transformations of the original p and q variables, that allow
maximizing the relationship between the two sets, while en-
suring independence within each set. The maximum num-
ber of linear transformations is min(p, q), i.e., two in our
case. The key advantage of CCA is to reduce the dimension-
ality and the inter-confounding factors of each set, while
extracting the major correlation patterns.

Following the CCA, we calculate the P-value for the null
hypothesis (4) by testing the sequential hypotheses that the
first canonical correlation coefficient, and all the following
ones, are zero using the Wilk’s lambda statistics (60):

λ =
∏min(p,q)

l=1

(
1 −

(
r (i j )

l

)2
)

(5)

where r (i j )
l is the estimated lth canonical correlation coeffi-

cient. To improve the accuracy for small sample sizes, we
adopted the Rao’s F-approximation (62). Namely, λ was
transformed to an F-statistic using Rao’s approximation as
implemented in the candisc R package (version 0.8-3).

The procedure returned a single P-value p(i j ) for the over-
all dependence of the jth promoter on the ith enhancer. p(i j )
quantifies the amount of evidence provided by the data for
the presence of the synchronized activity between a specific
EP pair.

3D architecture integration in the enhancer−promoter pairs
FDR control

The reconstruction of the EP pairs based on CCA, as de-
scribed above, is based on testing millions of hypotheses
(i.e. one for each EP pair), thus requiring some control over
the number of false discoveries. In large scale testing prob-
lems of this kind, the typical goal is the control of the False
Discovery Rate (FDR), defined as the expected fraction of
false discoveries. The Benjamini-Hochberg (BH) (63) cor-
rection is a frequently used method for controlling FDR in
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genomics data analyses. In this work, however, we aim to
increase statistical power over the standard BH procedure
by considering relevant contextual information. An exam-
ple is provided by the 3D co-localization information en-
coded in the HC score. To include this information in the
testing problem, we relied on the Adaptive P-value thresh-
olding procedure (AdaPT), recently proposed by Li and col-
leagues (64) and implemented in the adaptMT R package
(version 1.0.0). AdaPT estimates Bayes-optimal P-value re-
jection threshold based on user-defined side information,
and controls FDR in finite samples. Five logistic-Gamma
generalized linear models with natural cubic splines as can-
didate models were explored to identify the best threshold
estimate, as proposed by default parameters of AdaPT im-
plementation. This choice implies that the results of our
method are robust with respect to different definitions of the
scaling factor λ(w) in (1) (e.g. unweighted sums or logarith-
mic transformation) or the HC score (e.g. usage of a smaller
subsets of input Hi-C matrices), as long as a linear relation-
ship among alternative score definitions is preserved.

Formally, we considered our collection of hypotheses
{H(i j ), i = 1, . . . , n, j = 1, . . . , m}, as defined in (4)
for which we computed (i) a P-value p(i j ) ∈ [0, 1] quanti-
fying the strength of evidence for the presence of a synchro-
nized activity between the i th enhancer and the j th pro-
moter and (ii) a score si j ∈ R capturing the likelihood of
their 3D proximity. Then, we used AdaPT to determine a re-
jection threshold in function of the HC score (Figure 1C),
such that the estimate FDR is bounded by α. A more de-
tailed exposition of the theoretical framework can be found
in the original article (64). AdaPT has been shown (64,65) to
significantly increase statistical power in situations in which
the considered side information provides a useful basis for
prioritizing most promising hypotheses. Nevertheless, sta-
tistical guarantees regarding FDR control are preserved
also when the side information is inaccurate or not relevant
for the problem at hand: in this case, the weight given to the
side information will be low and AdaPT will converge to the
standard BH method.

Reference benchmarking datasets

Expression quantitative trait loci databases. Expression
quantitative trait loci (eQTLs) are Single Nucleotide Poly-
morphisms (SNPs) associated to an alteration in the ex-
pression of a specific gene. We considered multiple eQTL
datasets as reference for benchmarking the pairing of dis-
tal regulatory elements to their target gene. In particular,
we considered eQTL data from i) the Genotype-Tissue Ex-
pression (GTEx) project (66), with eQTLs inferred from a
panel of 15 201 samples in 48 tissue types; and ii) the pan-
cancer eQTL (PanCanQTL) analysis (67), with eQTLs in-
ferred from a panel of 9196 tumour samples in 33 cancer
types from The Cancer Genome Atlas (TGCA).

Cis-eQTL files from the v8 GTEx data release for
48 tissue types (Supplementary Table S1C) were down-
loaded from GTEx portal (https://www.gtexportal.org/
home/datasets). All *.sign variant gene pairs.txt.gz files
were converted to GenomicRanges (1.36.1, Bioconductor
package) objects and merged maintaining only one eQTL
in case of redundancy. The *.egenes.txt.gz files were used to

convert Ensemble gene IDs to Gene Symbols. Genomic co-
ordinates were converted from hg38 to hg19 genome build
using liftOver tool (rtracklayer R package version 1.44.4
(61)).

Cis-eQTL files from PanCanQTL (Supplemen-
tary Table S1D) were downloaded from URL
http://gong lab.hzau.edu.cn/PancanQTL/cis (filenames
with suffix * tumor.cis eQTL.xls). All Cis-eQTL files
were converted in GenomicRanges objects and merged
maintaining only one eQTL in case of redundancy.

An EP pair was considered supported by an eQTL
(i.e. validated) if the corresponding SNP was located within
an enhancer genomic region and associated with the expres-
sion of the cognate promoter. If multiple SNPs were within
the same enhancer genomic region, they were considered
only once. If the same eQTL was predicted in multiple tis-
sue types to regulate a specific target gene, it was also con-
sidered only once.

Capture Hi-C datasets. We also considered nine capture
Hi-C (cHi-C) experiments (Supplementary Table S1E) com-
ing from seven different studies (68–74), specifically de-
signed to identify DNA-DNA interaction between promot-
ers and distal chromatin regions. All the downloaded inter-
action lists (washU format) were already pre-processed in
the original articles, and CHiCAGO (Capture Hi-C Anal-
ysis of Genomic Organization) (70) algorithm was used
to select significant interactions (CHiCAGO score ≥5).
Genomic coordinates were converted from hg38 to hg19
genome build using liftOver tool (rtracklayer R package
version 1.44.4 (61)), when needed.

An EP pair was considered supported by a cHi-C inter-
action if the promoter region overlaps (≥1 bp) with the ‘bait
fragment’ and the enhancer with the ‘other end fragment’,
or vice versa. Ambiguous EP pairs due to the cHi-C reso-
lution (i.e. pairs supported by the same cHi-C interaction)
were not discarded.

CRISPR-based perturbation datasets. As alternative and
independent functionally validated sets of ETG pairs, we
used the datasets by Fulco et al. (75) and Gasperini et al.
(76), two recent publications adopting CRISPR-based per-
turbation techniques coupled with single cell transcriptomic
readout (Supplementary Table S1F). We focused on K562
human erythroleukemia cells, which is the most character-
ized cell line in both datasets.

For Fulco dataset we downloaded the ‘Dataset of ex-
perimentally tested noncoding element-gene connections in
k562 cells’ from the supplementary materials of the origi-
nal paper (Supplementary Table S1F). From the complete
list of candidates ETG pairs, we removed those involving
non-coding elements classified as ‘promoter’. Following the
original authors suggestions, we considered as validated the
pairs with an adjusted P-value lower than 0.05 and 0.8
power to detect 25% effects. This selection resulted in 3836
candidate pairs, of which 141 (3.7%) were validated.

For Gasperini dataset (Supplementary Table S1F),
we downloaded the complete list of gRNAs-target
gene pairs of the scaled multiplex enhancer-gene pair
screen from the Gene Expression Omnibus repository
(‘GSE120861 all deg results.at scale.txt.gz’). From this
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list we maintained only gRNAs associated to DHS peaks,
i.e. we removed those classified as promoter proximal
elements (‘TSS’ and ‘selfTSS’) or positive and negative
controls (‘NTC’ and ‘positive ctrl’). According to the filters
applied by the original authors, we retained only gRNAs
flagged as ‘top two’ in the ‘quality control’ field and for
which an adjusted empirical P-value was available. To
identify validated gRNAs-target gene pairs we applied the
recommended threshold of 0.1 at the adjusted empirical
P-values. This selection resulted in 40 322 candidate pairs,
of which 664 (1.6%) were validated.

BENGI benchmark. As an additional reference dataset,
we considered the Benchmark of candidate Enhancer–
Gene Interactions (BENGI) dataset (77). We downloaded
All-Pairs.Natural-Ratio files from BENGI GitHub reposi-
tory (https://github.com/weng-lab/BENGI/). This included
a total of 21 lists of curated interactions (Supplemen-
tary Table S1G) supported by ChIA-PET, Hi-C, eQTL
and CRISPR genome editing experiments and covering
seven cell lines and six tissue types. For each file, only
the enhancer-like signatures (i.e. the ones marked as high
DNase and H3K27ac signal) were considered. In line with
the previous section (‘Definition of enhancer and gene
promoter regions’), but using BENGI gene definitions
(GENCODEv19-TSSs.bed.gz annotation file), we defined
promoter intervals as 2 kb windows (1.5 kb upstream and
0.5 kb downstream) around the transcription start site
(TSS). Only the most upstream TSS for each gene was pre-
served. Enhancer intervals were annotated using the hg19-
cCREs.bed.gz file. All 21 lists of enhancers and promoters
were pooled to perform the EP pairing analysis based on
our framework and then split for the assessment. An EP
pair was deemed as true positive if supported by a specific
BENGI curated interaction (i.e. the internal flag was equal
to 1).

ETG pairs by other tools

To benchmark our ETG pairing framework against other
algorithms, we considered state-of-the-art methods among
the 36 listed in a recent review (78). To overcome limita-
tions related to the lack of user-friendly software, we consid-
ered only algorithms with publicly available ETG pairs lists,
called as described in the original publications. Namely, the
selection resulted in eight tools (Supplementary Table S1H):
FOCS (FDR-corrected OLS with Cross-validation and
Shrinkage) (79), JEME (Joint Effect of Multiple Enhancers)
(27), RIPPLE (Regulatory Interaction Prediction for Pro-
moters and Long-range Enhancers) (80), PETmodule (Pre-
dicting Enhancer Target by modules) (28), TargetFinder
(29), DeepTACT (Deep neural networks for chromatin con-
TACTs prediction) (81), PreSTIGE (Predicting Specific Tis-
sue Interactions of Genes and Enhancers) (82) and ABC
(Activity-By-Contact model) (75).

For each algorithm, we downloaded the lists of ETG
pairs for all the available cell and tissue types and we pro-
cessed them to obtain a uniform format of annotations.
Namely, for each ETG pair we stored: (i) enhancer ge-
nomic region coordinates (chr:start-end); (ii) promoter re-
gion or TSS genomic coordinates (chr:start-end), depend-

ing on the information reported by the authors; (iii) gene
symbol; (iv) prediction flag (i.e. 1: predicted, 0: not pre-
dicted), as sometimes the original authors reported only
the predicted pairs and sometimes also the entire set of ini-
tial candidates; (v) distance between enhancer mid-point
and promoter mid-point (or TSS); and other optional in-
formation returned by the specific algorithm (e.g. score,
etc.). Genomic coordinates were converted from hg38 to
hg19 genome build using liftOver tool (rtracklayer R pack-
age version 1.44.4 (61)), when needed. Gene symbol and
TSS coordinates were retrieved from BioMart database,
through R Bioconductor interface (version 2.40.5, host
= ‘grch37.ensembl.org’, path = ‘biomart/martservice/’,
database = ‘hsapiens gene ensembl’). ETG pairs associated
to Ensemble gene IDs without any match with gene symbols
were discarded. To make enhancers of the other tools com-
parable with our enhancer reference catalogue, we applied
the filters described in section ‘Definition of reference set of
enhancer and gene promoter regions’ with minor modifi-
cations. Namely, we removed interval portions overlapping
annotated exons (for both coding and non-coding genes,
RefSeq annotations in UCSC) and promoter proximal ele-
ments. If one or more exons were completely located within
an enhancer interval, the enhancer was split and the pair
duplicated in concordance with the number of resulting en-
hancers. A promoter proximal element was defined as a pair
with distance between enhancer mid-point and promoter
mid-point (or TSS) smaller than 3 kb.

ETG pairs in cell specific context

To evaluate the performances of our method in identifying
cell-type specific ETG pairs, we performed a direct com-
parison with JEME, using the initial set of enhancers, gene
and candidate ETG pairs, inferred from 127 cell and tissue
types, collected by the Roadmap Epigenomic consortium
(Supplementary Table S1H). In line with JEME annota-
tions, we defined promoter intervals as 1 kb windows (0.5
kb upstream and 0.5 kb downstream) around the transcrip-
tion start site (TSS). Interval portions of enhancers overlap-
ping promoters were removed. Pairs with distance between
enhancer and TSS smaller than 0.5 kb were considered as
promoter-proximal and removed from the list of candidate
pairs. All lists of enhancers and promoters were initially
pooled together to perform the EP pairing analysis based
on our framework, and then split for the assessment. The
HC scores were calculated based on EP pairs co-localization
and no cut-off was applied (i.e. we did not filter pairs with
HC >11). Candidate pairs were sorted based on the ‘con-
fidence score’ (descending order) and P-values (ascending
order), for JEME and our framework, respectively.

To investigate the expression of the predicted target
genes we downloaded all the available matched consoli-
dated RNA-seq profiles (57 out of 127) from Roadmap
Epigenomics portal (https://egg2.wustl.edu/roadmap/data/
byDataType/rna/expression/57epigenomes.RPKM.pc.gz).

We further validated the results in the cell-type spe-
cific context by using the two CRISPR-based pertur-
bations datasets on K562 cell line, described above
(i.e. Fulco and Gasperini). Using the JEME initial set
of candidates ETG pairs for the matched cell line (‘en-
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coderoadmap lasso.121.csv’ file), we retained only those
for which the enhancers described in Fulco and Gasperini
datasets overlaps (≥1 bp) with the JEME set of enhancers.
Moreover, since Fulco dataset is the training set for the
ABC predictor, we further filtered ETG pairs in Gasperini
dataset, so as to allow a comparative assessment against
ABC as well. Namely, we used ‘K562.AllPredictions.txt’ file
for the ABC algorithm.

This selection resulted in 581 and 4185 candidates ETG
pairs for Fulco and Gasperini, respectively, of which 18
(3.1%) and 62 (1.5%) were validated.

Assessment of predicted ETG pairs and other indices

For each ETG calling algorithm (Supplementary Table
S1H) we define as Z the number of candidate pairs, i.e.,the
initial number of input EP pairs for which a score or P-
value was calculated by the original authors; V the num-
ber of true pairs, i.e. all the EP pairs contained in at least
one of the reference benchmarking datasets; z the number
of predicted pairs, i.e. the EP pairs that satisfied the selec-
tion criteria as applied by the original authors (e.g. P-value
≤ α); v the number of true predicted pairs, i.e. the predicted
EP pairs contained in at least one of the reference bench-
marking datasets.

We used four different indices for performance assess-
ment: Precision (P), the percentage of true predicted pairs
over the total number of predicted pairs (v/z); Recall (R),
the percentage of true predicted pairs over the total number
of true pairs (v/V); F1 score, the harmonic mean of preci-
sion and recall (2 × P×R

P+R); and Relative Improvement (RI),
the improvement respect to random choice ( v/z

V/Z). Precision-
recall curves were computed by sorting EP pairs based
on distance, HC score, canonical correlation or HC-based
AdaPT corrected P-value, and calculating precision and re-
call for all the possible cut-offs (Z) of the candidate pairs
list.

The Jaccard Index (JI) between two sets of genomic re-
gions was calculated as i) the number of elements that over-
lap (≥1 bp) over the total number of elements in the two sets
(i.e. JI on overlap); or ii) the total length of intersections di-
vided by the total length of the union of the two sets (i.e. JI
on coverage).

RESULTS

Methodological framework overview

Here we present a general framework for the definition of
enhancer–target gene (ETG) pairs leveraging the current bi-
ological knowledge on chromatin 3D architecture and inte-
grating heterogeneous functional genomics data into a rig-
orous statistical framework. Its three key features are:

Statistical framework for quantifying enhancer−promoter
pairs synchronization. The method is flexible in terms of
input, as it starts from user-defined sets of (i) enhancer and
promoter regions and (ii) functional genomics data to quan-
tify their activity (Figure 1A). This flexibility is ensured by
the use of Canonical-Correlation Analysis (CCA) to quan-
tify the synchronization of enhancer−promoter (EP) pairs

activity across cell types. Moreover, it is designed to leverage
multiple types of functional genomics data, also accounting
for the correlation within sets of features.

Hierarchical contact (HC) score. It incorporates chro-
matin architecture as experimentally measured by Hi-C, to
compute the HC score accounting for ETG pairs 3D co-
localization (Figure 1B). Differently from previous meth-
ods, we leverage biological knowledge on TADs multi-scale
hierarchical organization and their conservation across cell
types.

Chromatin 3D architecture and functional genomics data in-
tegration. The information on chromatin 3D architecture
is used to increase the statistical power to detect ETG pairs
synchronization, while controlling false discoveries (Figure
1C). This is the first time that chromatin 3D architecture
is directly integrated as side information in the statistical
model for defining ETG pairs.

Definition of the reference enhancer catalogue

The first challenge in the definition of ETG pairs is the lack
of a universal reference list of enhancer regions, as they
do not have a univocal nucleotide sequence. A comprehen-
sive definition of enhancers based on functional genomics
data in principle would require analysing virtually every cell
and tissue type. This is practically impossible, despite am-
bitious large-scale collaborative projects such as the EN-
CODE (83), FANTOM (84) and Roadmap Epigenomics
consortia (1). However, the goal of our work was not to de-
fine the ultimate set of enhancers, but rather to verify if ac-
counting for chromatin 3D organization can improve ETG
pairing.

Thus, we primarily relied on Roadmap Epigenomics
dataset as (i) it covers a broad range of cell and tissue
types; (ii) it adopted shared protocols and quality stan-
dards, which is preferable to merging data from heteroge-
nous sources; iii) the use of enhancers defined with epige-
nomics data facilitates the comparison against previously
published algorithms for ETG pairing. More specifically, we
used the peaks called by Roadmap Epigenomics for DNase-
seq and H3K27ac ChIP-seq to define active enhancer re-
gions for each of the selected 44 cell and tissue types (see
Materials and Methods section and Supplementary Ta-
ble S2A). The average number of cell-specific enhancers is
33 560 (Figure 2A), with average size 316 bp (Supplemen-
tary Figure S1B). Their pairwise comparison showed on av-
erage 50.6% of similarity (JI on overlap) (Figure 2B and
Supplementary Table S2B). On the other hand, the mean
JI for coverage was 24.4% (Supplementary Table S2A), due
to the variable range of enhancer region sizes.

To define a comprehensive reference enhancer catalogue,
we considered the union of genomic intervals for cell-
specific enhancers, resulting in n = 347 777 enhancer re-
gions, with average size 416 bp (Supplementary Figure
S1B), i.e. slightly higher than the cell-specific enhancers, as
the final catalogue is derived from their union.

This reference enhancer catalogue can be considered ex-
haustive and representative also for other cell types. To
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Figure 2. Definition of the reference enhancer catalogue. (A) Number of cell-specific enhancers resulting from the intersection of DNase-seq and H3K27ac
ChIP-seq peaks in a selected set of 44 cell and tissue types collected by the Roadmap Epigenomics consortium, coloured by Roadmap groups. (B) Similarity
(Jaccard index on overlap) among cell-specific set of enhancers. Each data point in the boxplots represents the ratio between the intersection of two cell-
specific sets of enhancers over their union, taking as reference the group on the row. The median is marked with a line across each box, the box margins
mark the interquartile range (IQR), the whiskers extend up to 1.5 IQR and individual data points are shown for outliers beyond this range. (C) Number
of H3K27ac ChIP-seq peaks of 54 additional cell and tissue types from the Roadmap Epigenomics project that overlap (darker colour shade) or do not
overlap (lighter colour shade) with the union of H3K27ac ChIP-seq merged peaks of the set of cell and tissue types used to define the reference catalogue
of active enhancers. The percentages of total H3K27ac peaks extension overlap are reported as text labels on top.
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this concern, we considered 54 additional Roadmap Epige-
nomics H3K27ac profiles, that were omitted from our en-
hancer catalogue definition because they lack a correspond-
ing DNase-seq profile (Supplementary Table S2C). On av-
erage, 91.3% of the additional cell-specific H3K27ac peaks
overlap to the union of H3K27ac peaks across the 44 cell
types considered above. This overlap is 89.9% if we con-
sider its extension over the total coverage in the respective
cell type (Figure 2C). The large overlap can be considered
indicative for the completeness of our catalogue.

We also compared our reference enhancer catalogue to
enhancer definitions by CAGE, from the fifth release of the
FANTOM project (Functional ANnoTation Of the Mam-
malian genome) (84). We found that 57% out of the 58
200 filtered FANTOM enhancers (median length 270 bp)
were also represented in our catalogue (Supplementary Ta-
ble S2D). It is noteworthy that FANTOM enhancer defini-
tions were based on functional data from a much larger set
of cell and tissue types including 432 primary cells, 135 tis-
sue types and 241 cell lines (808 in total) (44). Thus, we deem
our strategy a good compromise as FANTOM is based on
18 times more cell and tissue types.

Finally, we compared our catalogue to an in vivo vali-
dated set of enhancers coming from the VISTA Enhancer
Browser database (46). Out of the starting 894 filtered
VISTA database enhancers (median length 1676 bp) (Sup-
plementary Figure S1C and Table S2D), 55% are present in
our enhancer catalogue. It is worth remarking that VISTA
is made of enhancers validated to be active in mouse em-
bryos at development day 11.5. Thus, it is based on a dif-
ferent model organism and a very specific embryonic de-
velopment stage, as opposed to our epigenomics datasets,
which are derived from human samples, including several
from differentiated tissues and cells from adult individu-
als. Moreover, superimposing the filtered FANTOM5 en-
hancers, only a minor residual number is detected in addi-
tion to our enhancer catalogue (Supplementary Figure S1C
and Table S2D). This observation confirms that alternative
functional genomics definitions of enhancers, such as the
CAGE-based FANTOM5, are overall comparable to ours.

Enhancer–promoter interactions in the 3D context

Enhancer-promoter contacts are generally confined within
the boundaries of TADs (85), i.e. structurally separated do-
mains relatively insulated from surrounding regions. TAD
boundaries are mostly stable across cell types, but their in-
sulation is far from absolute. Moreover, it is possible to iden-
tify a hierarchy of TADs, as any given Hi-C contact matrix
can be analysed at different scales to derive alternative def-
initions of insulated domains (39,86).

In order to account for these known features of chro-
matin 3D organization, we devised the HC score, which is
proportional to the likelihood of 3D co-localization of EP
pairs (see Materials and Methods) (Figure 1B). We used 11
high-coverage Hi-C datasets (on average 660 million aligned
reads), covering 10 different cell and tissue types (Supple-
mentary Table S1B) and binned at 10 kb resolution. We
then applied the LSD algorithm to identify TAD bound-
aries at multiple scales, thus obtaining different segmenta-
tions of the genome that account for the hierarchy of struc-

tural domains. The number and size of TADs show a trend
related to the LSD DI-window size parameter. Namely, we
find fewer and larger TADs when increasing DI-window
(hierarchy level) (Supplementary Figure S2A): with aver-
age number ranging from 18 254 to 8953, and average size
from 183 to 525 kb (Supplementary Table S3A). This pat-
tern is comparable across datasets, despite differences re-
lated to sequencing depth. The pairwise comparison of do-
main boundaries across datasets, and across hierarchy lev-
els, shows an average JI (coverage) ranging from 44.9 (for
DI-window 5) to 35.8 (for DI-window 50) (Supplementary
Figure S2B). These results are in line with previous studies
(87) and with the notion that several TADs are conserved
across cell types.

We mapped our catalogue of enhancers (347 777) and ref-
erence set of promoters (18 027) to the inferred TADs (Sup-
plementary Table S3B), which are expected to compartmen-
talize the interactions between distal regulatory elements
and target genes, and then we computed the HC score for
each EP pair. About 70% of EP pairs are within the same
TAD in two or more Hi-C datasets, with a frequency distri-
bution that is similar across all TAD hierarchy levels (Fig-
ure 3A). Nevertheless, the number of EP pairs grows as the
hierarchy considered increases, as expected.

The EP pairs mapped within at least one TAD definition
(i.e. HC score > 0) are 12 949 150 (Supplementary Table
S3C) of which ∼75% have a weak score (HC score ≤ 11),
i.e. they are supported only in few combinations of datasets
and hierarchy levels. Possible scenarios above this threshold
include EP pairs supported by all 11 datasets in at least one
hierarchy level, or EP pairs supported by 2 or more datasets
across multiple hierarchy levels. We deliberately designed
the score to give comparable weight to these alternative sit-
uations.

This pattern, together with the overall trend observed in
the HC score, is robust respect to the TADs calling algo-
rithm that is adopted. For example, we used as alternative
input the TADs called by TopDom (58), another method
that allows calling TADs at different levels of resolution
by adjusting a tuning parameter (see Materials and Meth-
ods). We observed a similar percentage of poorly-supported
pairs (79.8% with HC score ≤ 11), as well as a per chro-
mosome average 0.76 correlation (Spearman) between HC
scores based on TopDom or LSD TADs (Supplementary
Table S3D). While our observations are robust to differ-
ent TADs calling algorithms, we noted that the number
of candidate EP pairs based on LSD TADs is almost to-
tally (98%) included in the set based on TopDom TAD def-
initions (Supplementary Figure S2C). To this concern, it
should be considered that the total number of candidate
EP pairs for TopDom is approximately three-fold higher
(38,527,013 pairs). This disparity is partly explained by the
variable TAD calling performance of the two algorithms
across datasets, which tend to give more different results
when the coverage is lower (Supplementary Figure S2D).
Nonetheless, the comparison and benchmarking of TAD
callers is beyond the scope of this work and has been ex-
tensively addressed in previous literature (19,88,89).

To ensure the robustness of the downstream results, we
discarded poorly-supported EP pairs (HC score ≤ 11) from
subsequent analyses, as they may be the consequence of
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Figure 3. Enhancer-promoter interactions in the 3D context. (A) Number (bar, left y-axis) and percentage (point, right y-axis) of EP pairs located within the
same TAD for one or multiple of eleven analysed Hi-C datasets (x-axis), considering different TADs hierarchical levels (i.e. DI-window, panels), grouped
by chromosomes (colours). (B) Fold enrichment (y-axis) of eQTL-supported ETG pairs coming from two public datasets (GTEx, left panel; PanCanQTL,
right panel) with respect to candidate pairs as defined with HC score over a fixed-width window around the promoter of the target gene, for different cut-
offs (score, colours; window-width, x-axis). As illustrated in the cartoon on top of the figure, values greater than one imply an enrichment of TAD-based
pairing over results obtained with a fixed-window.
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noise in the data depending on technical variables (e.g. cov-
erage). This filter resulted in a total of 3 192 806 candidate
ETG pairs.

There is a consensus on the fact that enhancers may not
target the closest gene, in terms of linear sequence of the
genome. Nevertheless, previous literature on genome-wide
reconstruction of ETG pairs often adopted a fixed-width
window around TSS to restrict the EP pairs search space. A
commonly adopted boundary is a 1 Mb window (±500 bp
around the TSS) to define the initial set of candidate pairs
(90). Likewise, also the literature on expression quantitative
trait loci (eQTLs) adopted a similar simplification. Indeed,
cis-eQTL are often defined as SNPs within a 1 Mb window
around the TSS, as opposed to trans-eQTL if the SNP falls
beyond that distance threshold (or beyond 5 Mb for some
other studies) or in another chromosome (91).

To verify if the use of chromatin 3D architecture as in-
corporated in the HC score brought an advantage over the
standard choice of a fixed-width window, we used a true
positive set of ETG pairs based on eQTLs from the GTEx
project (66) and PanCanQTL (67). Specifically, we verified
the proportion of eQTL-supported ETG pairs with respect
to the total number of considered pairs as defined with HC
or fixed-width windows. Since eQTLs are explored only for
SNPs at a maximum distance of 1 Mb from the candidate
target genes, to make a fair comparison we removed from
our list all candidate pairs more distant than this thresh-
old for a total of 3 102 154 remaining candidates. This fil-
ter was applied also for any subsequent analysis in which
eQTLs were considered for comparison. We observed that
in both eQTLs datasets there is generally a higher frequency
of validated pairs when accounting for the chromatin 3D
architecture, even if varying the threshold on HC score and
fixed-width window parameters (Figure 3B). These results
highlight the existence of a stronger relationship between
eQTLs and 3D distance, rather than linear distance.

Physical proximity increases power of detection

We then reconstructed the enhancer regulatory map by inte-
grating information on physical co-localization of EP pairs
(HC) and their activity synchronisation (CCA).

Enhancers are expected to show the properties of an
active regulatory region in the specific cell context where
they are contributing to activate a target gene (92). Thus,
searching for ‘synchronised’ enhancer and promoter activ-
ity across multiple cell types is a commonly adopted strategy
in ETG pairing literature (93), although there is no consen-
sus regarding a measure that best conveys their synchroni-
sation. Differently from previously published methods, we
adopted CCA as a convenient statistical framework to as-
sess the synchronisation between activity of enhancers and
promoters across multiple cell types in a fast and efficient
way. We chose CCA because (i) it is flexible with regard to
the set of input functional genomics data used to estimate
the activity level of enhancers and promoters; and (ii) it ac-
counts for the confounding factor of multiple types of func-
tional genomics data being correlated with each other (Fig-
ure 1A).

In our case, we used a combination of DNase-seq and
ChIP-seq enrichment profiles to quantify the activity of
enhancers and promoters. Namely, we used the maximum
enrichment of DNase-seq and H3K27ac ChIP-seq for en-
hancers (347 777) and DNase-seq, H3K27ac and H3K4me3
for the promoters (18027), as described in Materials and
Methods (Supplementary Figure S3A). To minimize the
influence of possible outliers and make the distributions
comparable across all cell types, we used log2(x + 1) trans-
formed enrichment values and adopted a chromosome-wise
quantile-normalisation, respectively. We also tested cycle
loess and variance stabilizing normalisation (VSN) as alter-
natives. They all yield similar results (Supplementary Fig-
ure S3B-C), thus we selected the quantile normalisation as
it preserves the original range of values.

To assess the association between the ith enhancer and
the jth promoter, we performed the CCA considering the
enrichment in these chromatin marks across the selected set
of 44 cell and tissue types. The procedure returns a single P-
value p(i j ), for each EP pair under consideration (see Mate-
rials and Methods). We performed CCA on the subset of EP
candidate pairs filtered by HC score >11, resulting in a total
of N = 3 192 806 hypotheses to be tested (Supplementary
Table S3C). For each chromosome we estimated an adaptive
P-value rejection threshold using the AdaPT procedure (64)
with side information derived from the physical proximity
of enhancer−promoter (HC score) (Figure 1C). A represen-
tative example of the estimated thresholding rules for chro-
mosome 19 is depicted in Figure 4A. We can see an increas-
ing trend of the rejection curve in relation to HC, implying
that on equal nominal P-value our framework uses a less
conservative significance criterion for the EP pairs showing
higher likelihood of 3D contact interaction across cell types.
Similar trends are observed for all chromosomes.

To illustrate the improvement achieved by integrating
the score on chromatin 3D architecture, we adjusted the
CCA P-values using Benjamini-Hochberg (BH) and HC-
based AdaPT correction (Figure 4B), and Bonferroni ap-
proach. Using the union of the GTEx and PanCanQTL
datasets as reference true positive benchmark, we assessed
the three methods in terms of Precision, Recall and F1
score (Supplementary Table S4A). In Figure 4C we ob-
serve that, regardless of the level of confidence chosen,
integrating the HC in the P-value correction leads to an
appreciable increase of the power (almost twice) with-
out affecting the accuracy of the predictions. These re-
sults are highly robust with respect to different definitions
of the score (e.g. unweighted sums, logarithmic transfor-
mation; Supplementary Figure S3D) and the input Hi-
C datasets (e.g. usage of a smaller subsets of input Hi-
C matrices; Supplementary Figure S3E), as long as a
linear relationship among alternative score definitions is
maintained.

The complete list of candidate enhancer−promoter pairs
annotated with the HC score, corrected and uncorrected P-
values, validations according to multiple reference datasets
are publicly released (see Data Availability). For the subse-
quent analyses we maintained the EP pairs with HC-based
AdaPT adjusted P-value ≤ 0.05 resulting in a total of 233
304 predicted pairs.
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Figure 4. Physical proximity increases power of detection. (A) Estimated iterative adaptive rejection threshold (AdaPT) leveraging side information derived
from HC scores (x-axis), for a representative subset of chromosome 19 at different alpha levels (green-shadow areas). Each point reports the CCA P-value
for the synchronised activity between an EP pair (y-axis). Highlighted, two EP pairs with the same nominal P-values, but different HC scores, for which
the null hypothesis of independence is rejected at a confidence level of 0.95 (green point, high score), and not rejected (red point, low score). (B) P-values
associated to a representative subset of EP pairs for chromosome 19 adjusted with Benjamini-Hochberg (x-axis) and AdaPT (y-axis) approaches, coloured
by HC score thresholds. Highlighted with a solid black dot, an example EP pair located within the same TADs for all cell and tissue types and hierarchies
(i.e., HC score>81), for which the null hypothesis of independence is rejected at a confidence level of 0.95 only by HC-based AdaPT approach. (C) Precision,
recall and F1 score of predicted EP pairs based on eQTLs-supported ETG pairs (GTEX and PanCanQTL) over different alpha levels (x-axis), adopting
three different multiple-testing correction approaches: Bonferroni (yellow), Benjamini-Hochberg (orange) and HC-based AdaPT (green). These same
precision and recall curves are reported in Supplementary Figure S3D and S3E along with the curves obtained with alternative versions of HC score.

Benchmarking against other ETG pairing methods

To benchmark our ETG pairing framework against other
methods, as described more in details in the Materials and
Methods section, we selected eight algorithms (Supplemen-
tary Table S1H): FOCS (79), PreSTIGE (82), RIPPLE (80),
PETmodule (28), TargetFinder (29), JEME (27), Deep-
TACT (81) and ABC (75). Overall, these approaches rep-
resent the evolution of ETG predictors proposed between
2014 and 2019, covering all the categories as defined by
Hariprakash and Ferrari (94) (i.e. regression/correlation,
supervised learning and distance/score-based methods).

It is worth noting that previous publications used differ-
ent definitions for the reference set of enhancers and pro-

moters, thus introducing heterogeneity in the input candi-
date pairs which we considered in our analyses.

The ETG pairs called by the selected tools showed promi-
nent differences in terms of EP distance distributions (Sup-
plementary Figure S4A). For this reason, in addition to the
eQTLs datasets we also considered as true positives a set of
nine capture Hi-C (cHi-C) datasets (68–74) (Supplementary
Table S1E), designed to identify contacts between promot-
ers and distal chromatin regions. Taken together, the two
types of data provide a broader coverage of functional and
physical interactions occurring at different distance ranges.
Namely, eQTLs and cHi-C data are representative of mid-
range (average distance of 82 kb) and long-range (average
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distance of 326 kb) interactions, respectively (Supplemen-
tary Figure S4B).

Figure 5 and Supplementary Table S4B summarize the
performance of algorithms grouped into two categories:
i.e. methods that rely on (i) a unique set of promoters
and enhancers as input (our framework and FOCS) or (ii)
cell-type specific definitions of enhancers and promoters
(JEME, RIPPLE, PETmodule, TargetFinder, DeepTACT,
PreSTIGE and ABC). In the first group performances are
assessed directly on the unique list of ETG pairs, whereas
in the second group performances are reported as average
across the cell-type specific lists.

Considering mid-range interactions (based on eQTLs,
Figure 5A), our method ranked above most of the other al-
gorithms with a precision ranging from 4.8% to 9.4%, de-
pending on the HC score cut-off. Only ABC, JEME and
PreSTIGE showed remarkable performances with 10.1%,
13.1% and 16.4% precision, respectively. However, our
method exhibited recall values ranging from 12% to 27%,
depending on the HC score cut-off, which were comparable
to JEME (21.9%). Conversely, ABC obtained the poorest
recall performance (4.4%). The recall cannot be computed
for PreSTIGE and other methods not providing the starting
set of candidate ETG pairs.

Instead, focusing on FOCS, which among the selected al-
gorithms is the only other one with a unique EP list, our ap-
proach showed better performances for HC scores greater
than 71, while a decline was observed for the remaining cut-
offs. This pattern is mainly due to the use of a candidate EP
pairs which is about 16 times larger than FOCS (3 099 004
versus 192,800 pairs) and the exploration of interactions
over longer distances, up to 8 times more distant (average
distance: 334 kb versus 42 kb). These two peculiarities result
in a large imbalance in the initial proportion of true pairs,
making their detection more challenging. Indeed, consider-
ing an index that is not affected by this bias (i.e. the rela-
tive improvement, RI), we estimated that the observed to
expected ratio of true pairs (Supplementary Table S4B) in
FOCS was equal to the random choice over the initial can-
didate pairs (0.99), contrary to our algorithm (from 1.15 to
1.59).

Instead, when considering long-range interactions (based
on cHi-C, Figure 5B), we observed that precision for Deep-
TACT (75%) and TargetFinder (60%) were clearly above
average, whereas the other methods had a comparable per-
formance (with values around 13%), except for the slightly
better PETmodule (17.9%) and ABC (18.1%). Although the
precision for our approach was slightly lower than the other
tools (ranging from 9.2% to 12.1% with different HC thresh-
olds), the recall proved to be good (ranging from 10% to
24.5%). Moreover, it should be stressed that DeepTACT
was trained on a large portion of long-interactions used for
our validation (i.e. Javier et al. (69) dataset), which may af-
fect the high precision measured in our benchmarking.

Interestingly, the worst-performing algorithms in the
mid-range interactions (RIPPLE, PETmodule, Tar-
getFinder and DeepTACT) include the best-performing
ones in the long-range interactions. These tools are all
based on supervised classifiers trained on physical inter-
action datasets (e.g. 3C, 5C or Hi-C experiments, cHi-C
and ChIA-PET). The only exception over these classifiers

is JEME that employed both eQTLs and physical interac-
tions in the training process, reaching good precision and
recall performances in both conditions, together with our
approach.

Cell specificity of the predicted enhancer−promoter pairs

To further appraise the performance of our method, and in-
vestigate its behaviour in identifying cell-type specific ETG
pairs, we performed an additional direct comparison with
JEME. This choice was motivated by the consideration that
JEME is the most comprehensive in terms of cell-type spe-
cific ETG lists (127 cell types from the Roadmap Epige-
nomics dataset, Supplementary Table S1H) and overall re-
sulted as the best-performing among the eight algorithms
selected for our benchmarking.

We used JEME initial set of enhancers, genes and candi-
date ETG pairs (see Materials and Methods section). This
choice allows us to minimise the sources of heterogeneity in
the comparison, and to test the flexibility of our algorithm
with inputs other than those used as reference in our work.
In particular, we considered all 127 cell-type specific lists of
candidate ETG pairs provided by JEME authors.

It must be noted that JEME does not return a formal
P-value, thus it is not possible to directly compare results
based on a common threshold on statistical significance.
Thus, we computed precision using increasing cut-offs on
the top-ranked ETG pairs (1000, 3000 and 5000). As re-
ported in Figure 6A and Supplementary Table S4C, the
median precision over the 127 cell and tissue types for the
mid-range interactions is higher in JEME (19.6–18% range
across cutoffs) as opposed to our method (15.5–11.8%).
However, in the long-range interactions we obtained com-
parable performances for JEME (9.8–10.4% range) and our
method (8.6–10.6%). It is worth remarking that our choice
of using JEME definitions of enhancers, genes and candi-
date ETG pairs, might put JEME in an advantageous po-
sition and render the comparison of the two approaches
somewhat biased.

Surprisingly there is a limited overlap between the top
ranked ETG pairs identified by JEME and our approach.
Among the top 1,000 pairs on average only 0.5% and 0.2%
of the mid- and long-range true pairs are identified by both
approaches, respectively.

We noted that the majority of pairs predicted by JEME
are in the distance range 5–50 kb (Figure 6B). On the con-
trary, our method exhibits a wider coverage over all the
linear distances, with the frequency distribution across dis-
tances resembling the distribution of validated ETG pairs
(Figure 6B and Supplementary Figure S5A).

When considering the target genes in the top ranked
ETG, we noted that on average only 53% are common to
both methods. To better characterise the differences in the
sets of target genes in the top ranked ETG pairs, we used the
matched gene expression data available for 57 out the 127
considered cell types (Figure 6C). Although JEME identi-
fied a slightly higher percentage of targets that are strictly
cell-type specific (15% versus 8.8%, respectively), more than
one third are generally low expressed genes (38.1% ver-
sus 24.8%). On the contrary, our framework leads to the
identification of ubiquitously expressed targets (44.4% ver-
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B

Figure 5. Benchmarking against other ETG pairing methods. Performances of our approach (evaluated at different HC score cut-offs) and other eight ETG
pairing algorithms assessed based on mid-range (A, eQTLs supported) and long-range (B, cHi-C supported) true positive EP interactions. Bars (left y-axis)
report the number of predicted (upper panel), and true predicted EP pairs (bottom panel). Points (right y-axis) report precision (upper panel) and recall
(bottom panel). Recall is available only for tools for which the list of EP candidate pairs was released. Algorithms are grouped in two categories: methods
that rely on a unique set of promoters and enhancers as input (left panels) or rely on cell-type specific definitions of these sets (right panels). For methods in
this last category, the ±1 standard deviation (whiskers) and the number of evaluated cell and tissue types (numbers in brackets) are reported. An additional
schematic annotation is reported on the top margin of each panel, to highlight the main categories of ETG pairing methods (i.e., regression/correlation,
supervised learning and distance/score-based methods).
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D

Figure 6. Cell specificity of the predicted enhancer−promoter pairs. (A) Average precision (bars) and ±1 standard deviation (whiskers) assessed based on
mid-range (eQTLs supported, left panel) and long-range (cHi-C supported, right panel) true positive interactions for ranked predicted ETG pairs by only
JEME (blue bars), only our framework (red bars) and both tools (grey bars) in 127 cell types coming from Roadmap Epigenomics datasets for different
cuts-off of the ranked lists of predictions (x-axis). Initial sets of enhancers, genes and candidate ETG pairs are the ones described in the original publication
of JEME. (B) Number (y-axis, logarithmic scale) of predicted ETG pairs by JEME (blue bars) and our method (red bars) considering the top 1000 for each
of the 127 cell types coming from Roadmap Epigenomics datasets, grouped by enhancer–target gene distance classes (x-axis). The distance distribution of
mid- and long-range true pairs predicted by at least one of the two methods, is reported with black line and dots. (C) Gene expression density (contour
plots, bottom panels) and percentages (bars, upper panels) with ±1 standard deviation (whiskers) of target genes on top 1000 predicted interactions by
only JEME (left panels), only our framework (middle panels) and both tools (right panels) in matched 57 out of 127 cell types considered in the original
publication of JEME. Contour plots are calculated merging the set of predicted target genes (y-axis: expression of the target gene in the cell type considered;
x-axis: median expression in all the cell types, both axes in logarithmic scale) for each of the 57 cell types. For each cell type, a target gene is classified based
on its expression in the specific cell type versus the median expression profiles in all the cell types as: commonly low (salmon, common low) or highly
expressed (dark pink, common high), expressed only in the cell type considered (light pink, cell specific) or expressed only in a small subgroup of other
cell types (light green, other cells). The threshold used for the classification is highlighted with dotted grey lines in the contour plots. (D) Enrichment of
validated ETG pairs with respect to the random choice (y-axis, Relative Improvement) over an increasing number of predicted interactions (x-axis), for
our method (red lines), JEME (blue lines) and ABC algorithm (grey lines), in two datasets (left and right panels) of CRISPR-based enhancer perturbation
experiments on K562 cell line. The cut-offs suggested within the original articles are reported as coloured points, and the associated performances are
highlighted with coloured dotted lines. The initial sets of enhancers, genes and candidate ETG pairs (further filtered for compatibility with CRISPR-based
datasets) are the ones described in the original publication of JEME, for our method and JEME. The predicted and filtered ETG pairs by ABC method,
using Fulco dataset as training set, are used. The plot is reporting an expanded x-axis in the initial part of the curve (up to 50 pairs left panel, and up to
150 pairs in the right panel) to provide a more detailed visualization of the most informative part of the chart.
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sus 61.2%). It may be worth remarking that this analysis
is based on cell type specific enhancer lists, thus genes ex-
pressed in multiple cell types can be under the control of
different enhancers in distinct cells.

We further validated the results in a cell-type specific con-
text by using data from CRISPR-based enhancer perturba-
tion experiments by two recent studies, hereinafter referred
as Fulco (75) and Gasperini (76) datasets, which provide
a more direct functional validation of interactions. We fo-
cused on the data for K562 cell line, which is characterized
in both datasets, as well as in JEME, and we filtered the
data to ensure comparability (see Materials and Methods).
We also included the ABC method in this comparison, i.e.
the algorithm proposed in the Fulco dataset article.

As the CRISPR-based benchmark datasets are not as
comprehensive as the eQTL and cHi-C datasets, for a more
robust comparisons among methods we focused on the Rel-
ative Improvement (RI) metric. RI evaluates the enrichment
of validated ETG pairs over an increasing number of pre-
dicted interactions with respect to the random choice (Fig-
ure 6D).

In the Fulco dataset (Figure 6D, Supplementary Figure
S5B left panels and Supplementary Table S4D) our method
performed better than JEME for any threshold on its list of
predicted pairs (blue dot). In the same settings our approach
is slightly worse than the ABC model, which is, however,
trained on this very same set of validated ETG interactions.
In the Gasperini dataset (Figure 6D, Supplementary Fig-
ure S5B right panels and Supplementary Table S4E), our
approach shows an RI better than or equal to ABC for
the top ranked pairs up to FDR <0.025 and better than
JEME for FDR <0.01. Notably, both ABC and JEME re-
turn a score which is not formally bound to FDR, thus
compromising their applicability on independent datasets.
Lastly, investigating the activity of predicted targets within
the top ranked ETG pairs (Supplementary Figure S5C), our
method showed the higher number of cell-specific genes,
comprising almost all the ones predicted by the other tools
(i.e. HBE1, RHAG, GATA1, ALAS2 and COL6A5, or-
dered by expression level).

Overall, these results confirmed the reliability and versa-
tility of our proposal in detecting relevant ETG pairs along
the whole search space with results that can be general-
ized to other cell types. Even if we may identify a greater
portion of ubiquitously expressed genes compared to algo-
rithms trained on a specific cell line, our method is also good
at identifying target genes with cell-type specific expression
(Figure 6C, right panel, and Supplementary Figure S5C).

Benchmarking against independent reference dataset

A recent publication proposed a curated benchmarking
dataset for ETG pairing: the Benchmark of candidate
Enhancer−Gene Interactions (BENGI) (77). This is not
a method to identify ETG pairs, but rather a database of
interactions, that can be used as independent reference to
assess the performance of current and future algorithms.
The BENGI database contains a collection of uniformly
processed datasets that integrate the Registry of candidate
cis-regulatory elements (cCREs) (83) with experimentally
derived genomic interactions (Supplementary Table S1G).

Thus, we used their enhancers, genes and candidate ETG
pairs as input for our framework.

To appreciate the distinct features captured by the ex-
perimental datasets used to curate BENGI interactions, we
computed precision-recall (PR) curves for the GM12878
cell line (a lymphoblastoid cell line), which is the most ex-
tensively surveyed one in BENGI (Figure 7A and Supple-
mentary Figure S6A). The PR curves include: AdaPT cor-
rected P-values (sorted in ascending order); canonical cor-
relation (decreasing order); HC score (decreasing order); EP
distance (increasing order). We noticed two scenarios: (i)
in top-ranked pairs supported by ChIA-PET or 3C-derived
methods, which include the majority of the BENGI vali-
dated interactions (1 706 837 pairs, 95%), the distance does
not provide any insight in the identification of true EP pairs,
resulting in close to random selection or worse; (ii) instead
in eQTL datasets (87 982 pairs, 5%), the distance classifier
remains consistently above the performance of our method,
although CCA is initially aligned. It is also worth mention-
ing that a true positive EP pair in one BENGI experimental
dataset list could be a true negative in another BENGI list.

To further clarify this observation, we considered the
twenty individual experimental datasets used by BENGI
and we computed the relative improvement (RI) achieved
by our method or EP distance alone (Figure 7B and Sup-
plementary Table S4F). As shown, the pattern described
above is consistent across all validation datasets. Indeed,
our method obtains robust and significantly enriched per-
formances (i.e., higher than random classification) both for
eQTLs (from 2.15 to 3.65) and ChIA-PET or 3C-derived
interactions (from 1.36 to 3.14). Instead, the distance alone
yields performances lower than what expected by chance in
seven out of eight datasets of 3C-derived interactions.

DISCUSSION

Here, we present a new approach to refine the pairing of en-
hancers and target gene promoters. The three principles un-
derlying our approach are: (i) the flexibility, with respect to
all input data; (ii) the use of prior-knowledge, as we lever-
age 3D chromatin architecture to inform EP pairing; (iii)
the robustness of the statistical framework, as the method
does not require arbitrary parameter tuning decisions and
guarantees statistical control of the false discovery rate.

The flexibility of the method allows the end users to
provide any preferred definition for the reference set of
enhancers, genes, and functional genomics data used to
quantify their activity. This versatility is primarily guar-
anteed by the use of CCA which provides the foundation
for a very general statistical framework. Indeed, other cor-
relation tests, as well as several parametric tests (includ-
ing ANOVA, linear or multivariate regression, discriminant
analysis, and chi-squared test), can be described as special
cases of CCA, as demonstrated in literature (95).

Then the prior-knowledge on chromatin 3D organization
has been carefully considered in defining the HC score to
quantify EP pairs physical proximity. We took into account
the general consensus in literature that ETG pairs primarily
occur within TAD domains, but they should not be consid-
ered as a hard constraint as EP interactions may also span
TAD boundaries (69,96). We also considered that alter-
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Figure 7. Benchmark against independent reference datasets. (A) Precision-recall curves for GM12878 cell line BENGI benchmark datasets, assessed
employing two datasets of ChIA-PET supported true ETG positive interactions (RNAPII, left panel; CTCF, right panel). Performances are calculated
for: AdaPT HC-based adjusted P-values (dark purple lines), canonical correlation (light purple lines), HC score (aquamarine lines) and linear EP distance
(grey lines). The total number of ETG pair considered is reported on the upper right corner of each panel. The plot is reporting an expanded x-axis in
the initial part of the curve (corresponding to recalls up to 20%) to provide a more detailed visualisation for the most informative part of the chart. For
higher recall values, the precision-recall curves reported here tend to converge without further crossing each other. (B) Relative improvement (y-axis) for
all twenty BENGI benchmark interactions, assessed employing different sources of true ETG positive interactions. Namely, chromosome conformation
capture (left panels), ChIA-PET (middle panels) and expression quantitative trait loci (right panels). Random choice (RI = 1) is marked by red dashed
lines. Performances are calculated for AdaPT HC-based adjusted P-values (dark purple bars) and linear EP distance (grey bars), based on the same cuts-off
on FDR = 0.01 for adjusted P-values.

native TAD definitions at multiple scales are concurrently
present in the cell population. Indeed, TADs should be in-
tended as a probabilistic structure dynamically defined by
loop extrusion mechanisms (41–43). This biology-derived
knowledge has been directly used to compute the HC score
integrated as side information in the adjustment of CCA P-
values for each EP pair.

This may seem a counter-intuitive solution as opposed to
directly using the EP loci contact frequency from the Hi-
C matrix. However, using the multiscale TAD structure in-
stead is a fundamental change of perspective that allows
overcoming relevant technical limitations. First of all, Hi-C
contact matrices are generally binned at few kb resolution,
thus at a scale that does not allow distinguishing regulatory
regions close to each other. Indeed, even the most recent
ETG pairing attempted with this strategy could not go be-
yond 5 kb resolution (75). Moreover, Hi-C point interaction
calling algorithms have been shown to yield very variable
results even across biological replicates (19). Finally, Hi-C
point interactions are generally considered to be very dy-

namic across cell types, thus they would always require a
precise match between the cell and tissue type used for Hi-
C and other genomics data required for the ETG pairing.
Instead, TADs are expected to be more conserved across
cell types, thus allowing to extend the applicability of the
HC score to different cell contexts.

It is also worth remarking that our method is flexible for
what concerns the hierarchy of TAD structural domains
provided as input. As such, the end user may adopt the pre-
ferred algorithm for calling TADs at multiple scales.

Additionally, the robustness of the method is safeguarded
by the use of AdaPT multiple testing correction which is
combining the CCA P-value and the HC score for each EP
pair. This solution increases statistical power by prioritizing
most promising hypotheses based on side information. As
a representative example attesting the importance of such
strategy we noted the HBB-LCR region, which is a known
complex distal regulatory region, responsible for the coor-
dinated regulation during development of the human beta
globin genes (HBE1, HBG2, HBG1, HBD and HBB). The
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LCR region contains several enhancers that are paired to
one or multiple beta globin genes in our list of EP pairs (see
Data Availability). For several of them, the BH adjusted P-
value is not significant, whereas the AdaPT adjustment is
able to detect a significant association to the beta globin
genes. In particular, the enhancer at chr11:5297767-5298471
has a significant AdaPT P-value for all of the five beta
globin gene promoters, whereas the same enhancer would
be significantly associated only to HBG1 and HBG2 based
on BH correction.

We also note that our strategy of using HC as side infor-
mation to control FDR is in principle a generalizable ap-
proach, that could also be applied to P-values for ETG pairs
coming from other methods. Unfortunately, all the meth-
ods that we surveyed (78) did not really address the multi-
ple testing correction problem, as most of them are either
based on a classifier, or some other custom score, thus not
returning an actual P-value for individual EP pairs.

Thus, we reconstructed the map of ETG regulatory in-
teractions by applying our framework using genome-wide
profiles of epigenetic marks for 44 cell and tissue types, to-
gether with multi-scale TAD calls derived from 11 high-
coverage Hi-C datasets. To this concern, it may be worth
remarking that we quantified the gene activity using the epi-
genetic marks at promoters, as opposed to the expression
level of the gene transcripts. This is a commonly adopted
choice in the literature of this field. The rationale behind
this solution is based on the role of enhancers in trigger-
ing transcription: hence enhancers will show a synchronised
activity with markers of transcription initiation in their
targets. Instead, the actual transcripts abundance will de-
pend also on multiple levels of co-transcriptional (e.g. RNA
polymerase pausing, processivity in elongation, splicing and
poly-adenylation) and post-transcriptional regulation (e.g.
mRNA stability). All of these mechanisms will confound
the synchronisation between enhancers activity and tran-
scriptional output.

We identified a total of 233 304 EP pairs with adjusted
P-value ≤ 0.05 and extensively benchmarked our results
against eight pre-existing algorithms representing multi-
ple categories of ETG pairing methods. We used multiple
sources of true positive ETG pairs, including eQTLs, cHi-
C, CRISPR-based perturbations and a recently published
curated database (BENGI), which is relying as well on mul-
tiple sources of experimental data.

We observed consistent performances in both mid- and
long-range interactions for our method, as opposed to pre-
viously published algorithms that generally perform better
on one of the two distance ranges (Figure 5). Moreover,
we showed that our method compares well also to algo-
rithms capturing cell-type specific ETG pairs (Figure 6),
even though we aim to provide a generalizable ETG map
that can be extended to multiple cell types.

It is worth noting that some of the previous algorithms
based on supervised methods were actually trained using
eQTLs or cHi-C data as true positive sets, that we have used
for the benchmarking as well. Thus, other methods may
have an advantage in the benchmarking statistics presented
here.

We also must note that the definition of true positive ETG
pairs may suffer some limitations. Namely, cHi-C and sim-

ilar techniques can confirm a physical proximity between
specific genomic regions, but this is not always resulting in
a functional regulatory interaction between them. Likewise,
eQTLs confirm a correlation between a gene expression and
a genetic variants (SNP), but the actual distal regulatory re-
gion may be in a different position within the SNP linkage
disequilibrium block. As such, it may be argued that both
data types provide only an indirect validation of interaction.

Considering these limitations, which are anyway affect-
ing also the previous benchmarks of ETG pairing algo-
rithms, we further dissected our method performances us-
ing CRISPR-based perturbation datasets. CRISPR-based
strategies have been proposed to identify functional connec-
tions in ETG pairs, in particular in combination with sin-
gle cell transcriptomics readout (97,98). Using two recently
published datasets we confirmed the reliability and versa-
tility of our method in detecting relevant ETG pairs, with
good performances even if compared to algorithms specifi-
cally trained on these settings (Figure 6D and Supplemen-
tary Figure S5B, C).

However, CRISPR-based perturbation datasets cannot
be considered as a comprehensive and generalizable bench-
mark, because even the latest and largest datasets are lim-
ited to a few enhancer and cell types. Therefore, we also as-
sessed our method against the BENGI database, contain-
ing an independent curated reference benchmark for ETG
pairs. Even in this case, our method confirmed consistent
performances across all types of ETG supporting data, cov-
ering both mid- and long-range interactions (Figure 7B).

As discussed in detail by (99), performing a quantita-
tive comparison of ETG pairing methods is a challenging
task, where critical points should be considered such as (i)
properly separating training and validation sets; (ii) con-
sidering the distance as a relevant feature affecting ETG
pairing; (iii) paying attention to different definitions of en-
hancer and promoter windows adopted by distinct algo-
rithms. Throughout our work we carefully took into ac-
count these critical points as discussed in details for each
individual analysis. The resulting framework proved to yield
coherent results across different test datasets and cell types,
thus confirming its value as a generalizable approach for
ETG regulatory interactions reconstruction. In order to fa-
cilitate reproducibility of results, and widespread adoption
in the community, we are publicly releasing the code and in-
put datasets used for this study (see Data Availability). This
tool will provide a valuable resource especially for transla-
tional studies aiming to annotate the functional role of non-
coding sequence variants in distal regulatory elements. In
particular, we envision possible applications in clinical ge-
nomics studies of cancer and undiagnosed genetic diseases.
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All public datasets used in this manuscript are described in
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