*
Organized by

Software
Research
Institute

Y A S

In conperéﬁon with Industry Sponsors ‘ Media Sponsors

e Volid Micresoft aEEAL

Whate ¢o you want fa gu taday? TRSTIHG LABGRATO MIES

American Socialy far Quiy Yfour e-Business Parfrer
Famil T

AS(Q COMPUWARE.
Software Division Rational VANTEON

Ihe e-davelopment company © O TR e RC %%?]’%]ﬂeﬁ -

Quality Evaluation of Software Requirements
Specifications

F. Fabbrini, M. Fusani, S. Gresi, G. Lami

LEL - CN.R. Pisa, Italy

The criticality of the Software Requirements Specifications (SRS) phase of the software life cycle for
the success of the whole software project is widely recognized and the attention played on it by software
developers is more and more significant. The software science developed in the past methods and
techniques for producing quality SRS: structured languages, controtled languages, formal languages.
Nevertheless the SRS phase is, especially in the Small and Medium Enterprises (SME) community,
still one of tiie weakest steps of the whole software process. One of the principal reasons of this
situation is that SMEs, stressed by the time-to-market, do not have enough resources for establishing
rigorous methods for the SRS. Furthermore such rigorous methoeds should be shared among all the
parties involved in a software project, customer included, asking for a further effort in terms of
resources to be expended.

It is not surprising then that Natural Language (NL) SRS are, in splte of their inherent inaccuracies,
still the most used technique for SRS.

In this paper we describe the effort made at I.LE.I - C.N.R. for'realizing an automatic tool (called
QuARS - Quality Analyzer of Requirements Specifications) supporting the analysis and quality
evaluation of NL SRS, The adopted approach has been first to define a Quality Model for SRS, then to
verify this Model on real cases of SRS in order to be sure that the Quality Model provides a real
contribution for solving some NLSRS related problems for SMEs. Finally we have developed an
automatic tool for the verification of the requirements to guarantee their conformance to the Quality
Model itseif. .

This paper is organized as follows: in Section | we provide gencral considerations on Software
Requirements Specification by considering NI techniques and other more formal techniques. In Section
2 we describe the proposed Quality Model for NL SRS. In Section 3 we describe the outcomes of the
experimentation of the proposed Quality Model on real industrial cases. In Section 4 we describe the
functionalities of the QuARS tool. In Section 5 we focus on the Quality Evaluation Process of NL
SRS, and, finally, in Section 6 we discuss conclusions and future works.

* This work was partially supported by SSSUP S.Anna in the framework of the LINK project,
MURST L. 488/92.

1. Techniques for producing Software Requirements
Specifications

The Requirements Engineering is the process of establishing the services the system should provide and
the constraints under which it must operate [13].

1deally the Requirements Engincering process should be separated into three sub-processes, each needing
different styies, levels of detail and people to be invoived. The separation of these processes should
guarantee the production of a suitable final output toward the sofrware designer. The next table
summarizes the principal aspects of these processes [13]:

Requirements Engineering phase Level of Detail People involved
Requirements Definition: General Managerial Level
statement, in a natural language plus diagrams, of End-users
what services the system is expected to provide : System architects
and the constraints under which it must operate. It -1 Client engineers
is generate using customer-supplied information.

Requirements Specification: Intermediate - | End-users
a structured document which sets out the system System architects
seryices in detail. This document should . be .} Client engineers
precise. It may serve as a contract between the SW devclopers
system buver and software developer
Software Specification: Highly detailed System architects
abstract’ description of the sofiware whick is a SW developers

: basis for design and implementation.

The expected outputs.of the previous phases are documents that gradually fill the gap between the
conceptual understanding of the system we want to build and the detailed description of its
functionalities that have to be fed to the system architects. T e
The phase of the Requiremenis Engineering Process addressed in tins paper is the Requirements
Specification.

The scheme presented bhefore is an ideal scheme and often it doesn't correspond to the practices of

software firms, In fact, the real software process of many firms considers the Requiremems Engineering

process as composed of an unique phase aimed to provide a document describing, in some way, the

Requirements of the system to be developed.

There are several risks associated with this practice, as, for example, those listed below:

+ The requirements related to d_ifférent functionalities of the system may be not expressed with the
same level of detail and precision;

= The reguirements may be too abstract and then not easily usable by the software designers.

» The involvement of some people in the Requirements Engineering process may be not fully
adequate (e.g. software developers, end-users, ..).

We will focus our attention on a product that we can assume will be anyway provided as an outcome of

the Requirements Specifications phase: a document describing somehow and with a certain level of

precision the fimctionalities and the constraints of the system under construction.

Several approaches to producing Reguirements Specification exist and their precision and cost may vary
considerably. We will concentrate our attention on one of these approaches: the use of Natural
Language for writing Requirements Specification. Even though it is out of the scope of this paper to
compare weaknesses and strengths of different Requirements Specifications approaches and to establish
if one of them is better than another, in tha next scheme we provide a brief description of the most used
approaches.

App}‘oach to Requirements Description
Specifications

Natural Languape -
Structured Natural Language restricted natural language where the terminology is limited
and templates can be used. Control constructs denved from
programming languages can be included.

Semi-formal Languages they are usually special-purpose graphical notations with a
precise. syntax and a non-rigorous semantic.
Formal Langnages mathematics based languages with vocabulary, syntax and

semantics formally defined.

It is clear that the effects of the use of each of them on the quality of the Requirements Specifications
are different and it is also quite clear that the order in which they are listed into the scheme correspond -
to an increasing "quality” of the Requirements Specification they produce. In other words, it is clear
that Requirements Specifications written by using NL may contain ambiguities, while SRS writien by
using Formal Methods are more precisely and rigorously understandable. :
However, the establishment of a formal method for the SRS needs some initial additional costs. Thcse
costs are due to the training of people in order to make them able to use the formal techniques. In other
words it is necessary to make all the people involved in the SRS phase, often coming from different
social, business and technical contexts, able to share these formalisms.
In spite of these considerations, many SMEs, even though they recognize both the importance and the
_ benefits of the use of formal methods, and the risks due to the use of NL in writing SRS, continue to
write SRS using natural languages unless they are not obliged to do otherwise by precise contractual
constraints. S

Then the fact that writing SRS in NL is not a good practice because they are prone to ambiguities and .
that they are neither a good input for the design phase nor a good basis for the contractual issue
between the customer and the supplier doesn't mean that we have to renounce achieving an acceptable
level of quality even in NL SRS. On the contrary we are persuaded that it is useful to have a pragmatic
approach to the question and then it is a worth-while effort to provide a contribution in the quality
improvement of NL SRS. This approach has been adopted in the definition of the Quality Model and in
the consequent realization of the QuARS prototype.

2. A NLSRS Quality Model

The Quality Model defined in this paper aims to provide the means for evaluating quaniitatively two
aspects of the SRS quality, called Goal Properties:
» Requirements Sentences Quality (RSQ): the syntactical quality of single sentences
considered separately; {4] '
+ Requirements Document Quality (RDQ): the quality of the sentences LOﬂSldEI’Ed in the
context of the whole requirements documents.

These two Goal Properties are obviously too abstract for being directly evaluated. For this reason some
Properties have been associated to each Goal Property in order to provide quality characteristics less
abstract and then easier to evaluate. Table 1. shows the Quality Model Goal Properties and the related

Properties:
I Goul Propertics Praperties
Requirement Sentences Quality S Non-Ambiguity
RSQ)" : 1 Completeness
co L L | Understandability
Requirement Document Quality - -| Completeness
(RDQ) : S * “{ Understandability
Table 1.

The Properties related to the RSQ Goal Property included within our Quality Model are:

- Non-Ambiguity: the capability of a Requirement to have a unigue interpretation.

- Completeness: the capability of each Requirement to make reference to precisely identified entities.

» Understandability: the capability of each Requirement to be fully undersiood when used for
developing software. :

‘The Properties related to the RDQ Goal Property included within Quality Madel are:
- Completeness: the capability of the Requirements Specification Document to avoid potential or

actual discrepancies.
- Understandability: the capability of the Reguirements Specification Document to be fully

understood when read by the user.

The above Goal Propertics and Properties have been included into the Quality Model because they can
be automatically evaiuated by means of tangible Indicators that can be counted/detected during the
parsing of the requirements document, and because possible problems related to these Properties can be
pointed out precisely so that corrective actions may be easily done, ' '

This Quality Model is focused on linguistic properties of SRS and cannot be considered complete
because other aspects of the SRS quality, as for example semantic consistency aspects, cxist and they
are not taken into account.

2.1 Quality Indicators

Quality Indicators are syntactic aspects of the requirements specifications [14] that can be automatically
calcutated and that provide information on a particular quality Property of the requirements
specifications themselves. Several Indicators have been included in the Quality Model, each associated

to a Property.
In the following, the Indicators are listed and described, then the association between them and the

Properties of the Quality Model is shown.

The Quality Indicators included in the Quality mode] are divided into Indicators related to Requirement
Sentences Quality (RSQ) and Requirement Documnent Quality (RDQ):

Requirement Sentences Quality (RSQ) related Indicators:

Implicit Subjects Sentences
Multiple Sentences
Optional Sentences
Subjective Sentences
Underspecified Sentences
Vague Sentences

Weak Sentences

Requirements Document Quality (RDQ) related Indicators:

Comment frequency,
Readabiiity Index
Underreferenced Sentences
Unexplained Sentences

In the following the definition of each Quality Indicator is provided along with some examples.

Implicit Subject Sentences:
A sentence is an implicit subject sentence if its subject:

.

contains a demonstrative adjective: this, these, that, those

1s expressed by means of pronouns: it, they.

is specified by a preposition as such: above, below, ..

is specified by an adjective as such: previous, next, fotllowing, last, first, ...

Examples:

Implicit Subject Sentences:

= This counter shall be incremented by 1 each time a RTT ocears..
< [t shall be stored in non-volatile memory.

= The above requirements shall be verified by test.

Non-implicit Subject Sentences:

+ The MC counter shall be incremented by | each time a RTT occurs.
= The detected erroneous data shall be stored in non-volatile memory.
+ The requirements number | to 56 shall be verified by test.

Multiple Sentences:
A Sentence is multiple if:

it has more than one subject or more than one main verb

it has more than one direct or indirect complement that specifies its subject

Multiple sentence: -

« The System shall provide for the generation of stub/driver skeleton and for the simulation
of module interface,

+ The customer perception of System Down Time and Partial System Down shall be zero.

Non-multiple sentences:
» The System shall provide for the generation of stub/driver skeleton.

+ The System shall provide for the simulation of module interface.

+ The customer perception of System Down Time shall be zero.

» The customer perceptior of Partial System Down shall be zero.

Optional Sentences:)

A sentence is optional if it contains an option .

Note: A sentence is to be considered as optional if it contains words as such: possibly, eventually, if
appropriate, if needed -

Examples:
Optional sentence:
« The system shall be such that the mission can be pursued, possibly without performance

degradation.

Non-optional sentence:
« The system shall be such that the mission can be pursued, with perfonnance degradation
not greater than 10%.

Subjective Senitences:
A sentence 13 subjective if it refers to personal opinion or feeling.
Note: sentences contatning the following kinds of wording are to be pointed out ‘as
potentially subjective:
» having in mind, take (into) account, take into consideration, ...
= similar, better, similarly, worse, ...
* as[adjective] as possible.

Examples:

Subjective Sentences:

« The System should allow computation analysis results to be presented on-line during the
coding phase (having in mind the basic set of metrics).

= Software tasks shall be as much as possible synchrenous.

Non-subjectivi Sentences.

« The System should allow computatmn analysis results to be presented on-line during the
coding phase by showing values of the basic set of metrics.

« Software tasks shall be synchronous.

Underspecified Sentences:
A sentence is underspecified if its subject contams a word identifying a class of objects without a
modifier specifying an instance of such class.

E;(é;nple's:
Underspecified Sentence;
+ The testers shall be independent of the software developers.

Non-underspecified Sentence:
= The module testers shall be independent of the software developers.

Vague Sentences:
A sentence 15 vague if it includes words holding inherent vagueness.
Note: Vague adjectives are:

« adjectives related to intrinsic characteristics as such: clear, well, easy, strong, weak, good,

bad, efficient, low _....
+ adjectives related to environmental characteristics as such: useful, significant, adeguate,

fast, slow....
+ adjectives related to time characteristics as such: old, new, future, recent, past, today’s, ...
- adjectives related to location characteristics as such: near, far, close. back, in front, ... <
Examples;

Vague Sentences:

« The C code shall be clearty commented.

= The User Manual shall provide adequate information about the installation procedure.
» The Reports shall be preduced according to the today’s trend.

Non-vague Sentences:

« The sentences of the comments o the code shall be no longer than 20 words.
« - The User Manual shall provide step by step procedure for the installation,

< The Reports shall be produced according to the template provided in figure 1.2,

Weak Sentences:

A sentence is weak if it contains a weak verb.
Note: Weak verbs are: '
- can/could
* may

Examples:
Weak Sentence:
= The resuits of the Initialization checks may be reported in a special file,

Non-weak Senfence:
= The results of the Initialization checks shall be reported in a special file.

Comment Frequency:)

The Comment Frequency of a Requirements Document is the value of the CFI (Comment Frequency
Index). {CFI=NC / NR where NC is the total number of Requirements having one or more comments,
NR. is the total number of Requirements of the document)

Underreferenced Sentences:
A sentence of a Requirements Document (RD) is underreferenced if it contains explicit references to:
« rot-numbered sentences of the RD itself,
« documents not-referenced into the RD itself,
+ entities not defined nor described within the RD itself.
Note: The following kinds of wording are to be considered as explicit references:
« according fo
« on the basis of
« relatively to
+ compliant with
* conformant to

Underreferenced Sentence:

S —

+ The Software shall be designed according to the rules of the Object Oriented Design

Non-underreferenced Sentence:
- The Software shall be desighed according to the rules contained in [TD.4]. (where {TD4]
is included into the list of references of the same Requirements Document).

Unexplained Senfences: _
A sentence of a Requirements Specification Document (RSD) s unexplained if it contains acronyms

not explicitly and completely explained within the RSD itself.

Unexplained Sentences:
« The handling of any received valid TC packet shall be started in Jess than 1 CUT.
« The results of the Initialization checks shall be reported in the HK TM.

Readability Index: ‘ : _
The unreadability index is the vatue of ARI (Automated Readability Index) [6] (ARI=WS + 95W where

WS is the average words per sentence, SW is the average letters per word)

Fach of the above Quality Indicators has been associated with a Property and the Quality Model has
been then completed. The table 2 shows the Quality Model obtained by including the previously
defined Quality Indicators.

Goal Properties | Properties Quality Indicator
Requirement Non-Ambiguity Implicit Subjects Sentences,
Sentences ' Optional Phrases,

Quality Subjective Sentences,

Vague Sentences,
Weak Sentences

) Completeness Underspecified Sentences -
i Understandability Multiple Sentences

Requirement . . | Consistency Underreferenced Sentences -

Document |

Quality

' Understandability Commemt Frequency,
Readability Index,
Unexplained Sentences
Table 2.

2.2 Quality Requirements for Software Requirements Specifications

The Quality Indicators can be automatically detected and counted during the analysis of the requirements
specification document. The results of this analysis have to be provided in order to make the user able
to point out the sentences that are potentially incorrect. Then the user, on the basis of his experience
and skill has to judge if the pointed out sentences are really incorrect or if they can be accepted by
taking into account the following quality requirements.

The quality requirements for cach Indicator are listed below.

A Requirements Document shall not contain:

. Impiicit Subjects Sentences ;
- Multiple Sentences;
. Optional Sentences;
. Subjective Sentences;
. Underspecified Sentences;
. Vague Sentences,
. Weak Sentences;
. " Undemeferenced Sentences;
. Unexplained Sentences;

A Requirements Document shall:
- have the Comments frequency value greater than an established target value X*;
. have the Readability Index value greater than an established target value Y*.

*: the target values determination is project dependent.

3. Validation of the Quality Model

In order to verify if the defined Quality Model provides significant and useful resuits on real cases, it
has been applied to two different sets of documents of real industrial requirements specifications.

The first is a set of Telecommunication Software Requirements Specification documents, the second is
a case of Safety Critical Space Software Requirements Specification documents. In both cases the
organizations that produced these requirements specifications use standards for writing them, perform
review sessions and produce the related reports.

The results achieved are shown below:

Telecommunication Software Requirenents Specification documents analysis and
evaluation results
Indicators taken into account:

a) Implicit Subjects Sentences
b} Multiple Sentences

c) Optional Sentences

d Subjective Sentences

e) Underspecified Sentences

f) Vague Sentences

2} Weak Sentences

h) Underreferenced Sentences
1} Unexplained Sentences

Total number of evaluated requirements: 395

The foliowing table shows the number of requirements that don’t satisfy the quality requirements:

Quality Indicator number of not| frequency
conformances
Implicit Subjects Sentences 5 1,3%
Multiple Sentences - 72 18,2%
Optional Sentences ‘ 3 _ 0.8%
Subjective Sentences 8 2%
Underspecified Sentences 41 10.4%
Vague Sentences 95 24.1%
Weak Sentences 0 (%
Undenreferenced Sentences 7 1,8%
Unexpiained Sentences 58 14.7% .

Number of non-conformancies

100

Faults rate = 73%
Note: Fauits rate = (number of non-conformances) / (number of requirements)

Safety Critical Space Sofiware Requirements Specification documents analysis and
evaluation results:
Indicators taken into account:

a) Implicit Subjects Sentences
b} Multiple Sentences

c) Optional Sentences

d) Subjective Sentences

€) Underspecified Sentences

) Vague Sentences

£) Weak Sentences
Total number of evaluated requirements: 444

The following table shows the number of requirements don’t satisfy the quality requirements:

Quality Indicator ' ' number of not] frequency
conformances
Implicit Subjects Sentences ' 88 19.8%
Multiple Sentences 97 21.8%
Optional Sentences ' 3 0,7%
Subjective Sentences 4 0,9% _ %
Underspecified Sentences 7 1.6%
Vague Sentences 17 3,8%
Weak Sentences .] 3 0.7%

Number of non-confarmancies

120

100

80

60 3

40 1

0l] ; [oxmes £ : s |
Implicit Multiple Optional Subjactive Underspecified Vague Weak
Subjacts
Faults rate = 49%
note: Faults rate = (number of non-conformances) / (aumber of requirements)
Joint results:
Total number of evaluated requirements: 839 .
‘I Quality Indicator L number of not | frequency
conformances
Impiicit Subjects Sentences ‘ 93 11,1%
Multiple Sentences] 169 20,1%
Optional Sentences) 6 0.7%
Subjective Sentences 12 1.4%
Underspecified Sentences 48 5,7%
Vague Sentences] 112 13,3%
Weak Sentences . 3 0.4%
Underreferenced Sentences ’ T**
Unexplained Sentences 58%*

**: caleulated only for the Telecommunication Software Requiremenis Specification documents.

Mumber of non-conformancies

120

100

80 5

60 4

40

20 1

mpliclt Multiple Optional Subjective Underspecified Vague Weak
Subjects

Faults rate = 53%
note: Faults rate = (number of non-conformances) / (namber of requirements)

The firms that provided the analyser with the requirements were presented these results in order to
achieve their comments and, in particular, to understand if the potential lacks of quality outlighted by
QuARS are considered actually significant and noteworthy by their Requirements Engineers. The
outcomes of the discussion with the Requirements Engineering have been encouraging, since QuARS
has been considered a valid support for solving part of the problems they encounter during the SRS
phase.

4. QuARS (Quality Analyzer of Reqguirements
Specifications) tool '

In order to make the analysis of NL SRS automatic, a prototype has been rezlized at I.E.1.. This
prototype named QuARS (Quality Analyzer of Requirements Specifications} has been conceived to

perform a parsing of the SRS phrases written in Natural Language and point out'a number of potential
sources of errors into the SRS themselves. :

bz

by
o
2
&
o

A

The principal functionalities provided by QuARS are listed below:

Lexical Analysis of the SRS sentences;

Syntactical Analysis of the SRS sentences based on a special-purpose grammar and constructton of
the derivation trees {structures that represents the possible derivations of the analyzed sentence by
using the grammar};

Analysis of each sentence of the SRS against the Quality Properties by using the Quality
Indicators provided within the Quality Model;

Provision to the user of wamings messages indicating those sentences having potential problems
and explanation of these problems;

We don't want to provide implementation details of QUARS in this paper, but figure I can heip

understand how the prototype works.

The structure of QuARS is composed of the following key components:

Lexical Analyser: it reads the input SRS sentences, performs a morphological analysis of the
items of the sentences, verifies if they are in the English Dictionary and produces on output file
the appropriate lexical category associated to each word of the sentence.

Syntactical Analyser: it is composed of two sub-components: the Syntactical Recogniser and the
Tree Builder. The first is a parser that on the basis of a special grammar and of the output of the
Lexical Analyser recognise if a seatence is syntactically correct. The second component builds the
derivation irees for each sentence. A derivation tree is a tree representing a possible derivation of
the sentence by using rules of the grammar.,

Properties Evaluator: it is composed of two sub-components: the Evaluator of Indicators of Class
A and the Evaluator of Indicators of Class B. The first performs the computation of those
Indicators of the Quality Model for which information on the syntactical structure and semantic
value of the items of the sentence is needed {e.g. the Underspecified Sentences Indicator). The
second component performs the compilation of those indicators that don't reguire information on
the syntactical structure and semantic value of the items of the sentence (e.g. the Vague Sentences
Indicator).

Special Dictionaries: each Indicator has a special dictionary associated that contains the special’

words necessary for its computation. These Dictionaries have to be considered modifiable when-it
is necessary to make the evaluation more suitable for particular SRS.

QuARS then has a Grammar, Special Dictionaries and the SRS Sentences as input data and provides
the user with messages where the sentences having some potential problems are shown and the
problems are outlighted.

In the rest of this section we p

GRAMMAR

SYNTACTICAL
ANALYSER
=B SyNTACTICAL
RECOGNISER
o1
E v
Rt o o B TREE BUILDER
SRS o
Phrases
QUALITY QUALITY
| EVALUATOR EVALUATOR
TYPE A TYPE B
__.=.=§

SPECIAL
DICTIONARIES

Evaluation:

The main menu that ask against which Property we need the SRS Evaluation.

Figure 1

resent the user interface of QUARS in three phases of the SRS Quality

WARNING MESSAGES

14

GRS - 201 v

PR B vt BEETR U

| LOAD FILE ¥ o

FAGUENESS | 1

| IMPLICITY

'EEFFF

éléxxommx' AT‘\: &L:{S& S i Z

» A possible output in case of potential Vagueness prablems detected.

SUBJECTIVETY

“WEAKNESS - |8

- MULTIPLICITY |

. READABILITY:

| a&:irnhamtowrfmbmkwqbakm (&g ovemight wdhulu:hangng the hmk—up media]"

: mjdbevag.n am‘thewd

5. The NL SRS Quality Evaluation Process

The Quality Model discussed in Section 2 drove the realization of the QuARS prototype, in fact this
tool provides the rea) calculation of the Indicators of the Quality Model on SRS documents.

In this section we discuss how to integrate QuARS within the SRS process and in particular the SRS
Evaluation process.

As mentioned in Section 1, the object of the evaluation by means of QuARS is the SRS, that, in the
framework of the 'ideal' Requirements Engineering process, are precisely identified as the intermediate
level between Requirements Definition and Software Specifications, or they are elsewhere simply a
more or less precise definition of the tasks to be performed by the system (or by the Software
compoenent of the system). In this second case the SRS document may be the only outcome of the
* Requirements phase of the software life-cycle and then it may be closer to Requirements Definition or
Software Design. In any case, since we aim to perform a linguistic analysis of the SRS sentences, we
can, in this context, consider any document containing SRS sentences the object of the Quality
Evaluation.

A typical evaluation of SRS written in NL is performed by an expert reviewer (or a team of expert
reviewers} who by reading the SRS documents outlights ambiguities, inconsistencies or, in general,
inaccuracies. Other actors may be involved in the preparation of these documents, but at evaluation
(review) time the reviewer is the key actor. '

QuARS can be helpfully included in this scheme (see figure 2). The document on which the Reviewer
performs the Evaluation is analysed by QuARS that with its outputs supports the Reviewer in the
detection of inaccuracies, ambiguities and linguistic inconsistencies in the document.

Requirements

Specification
Process

Requirements

Document

Review
Process -

" roduce Expert Reviewer

figure 2

The QuARS Tool, for its nature, can be changed in order to make it more adequate to particular context
or type of SRS. Then the inclusion of the QuARS tool in the SRS Quality Evaluation process allows
the reviewer to change the Quality Model if necessary in order to make it more respondent to the
particular SRS under evaluation. Typically, these evolutive changes concetn the contents of the special
dictionaries that are the basis for the calculation of the Indicators (figure 1). The conceptual changes on
the Quality Model can be easily transferred on QuARS for its modularity. Finally, the corrective
actions are made on the SRS document and the process can be re-started on the modified document,

The tole of the cxpert reviewer is then crucial in the SRS Quality Evaluation process because, not only
he performs the analysis the outputs of QUARS in order to determine if the potential errors pointed out
are or not concrete erTors to be removed from the SRS document but he has to make also the evaluation
environment suitable for the particular SRS under evaluation, by performing evolutive changes to the
Quality Mode! and then to QuARS, if needed.

6. Conclusions and Future Work

This paper reports the work made for realizing an analyser of Software Requirements Specifications
(SRS) using a Quality Model for SRS sentences based on linguistic quality properties of the
Requirements. In order to automatize the application of the Quality Model to real cases, we have
defined, for each Property, a set of Indicators that are tangible aspects of the requircments
specifications, can be automatically calculated and provide information on the related Property.

The Quality Model has been experimented on industrial real cases of SRS in order to verify the
usefulness and significance of its basis. The resulis of the experimentation are encouraging, since a
significant number of inaccuracies and ambiguities have been detected and pointed out, and the firms
that provided us with these real SRS have judged these results very interesting and useful.

Then, on the basis of this experience, we have developed a prototypal tool, named QuARS (Qualiry
Analyzer of Requirements Specifications), that automatically performs the quality evaluation of SRS
by measuring the Indicators and pointing out the sentences confaining potential tnaccuracies and
ambiguities. The underlying idea is that avoiding these inaccuracies decreases the risk of errors in the
software product due to misunderstandings or incompleteness of the SRS.

Several possible evolutions of this work may be foreseen. Engineering QuARS in order to make it a
free tool for the Enterprises interested in this area will be the next step. Another evolutionary.direction
is to use this Quality Model and this approach to the guality of NL SRS for developing an on-line
editor for the SRS. In this case the Quality Model will be used for guiding the production of SRS and
not for their ex-post evaluation. Another interesting area of study can be the definition of guidetines for
tailoring the Quality Model (and consequently the toof) according to particular Application Areas of the
software to be developed or other criteria. These guidelines should be used by the Reviewer for the
~ evolutionary changes to perform on the Quality Model.

7. References

[11 J. Allen: Natural Language Understanding. The Benjamin/Cummings Publishing Company,
1987.

[2] F.Fabbrini, M.Fusani, V.Gervasi, S.Gnesi, S.Ruggieri. On linguistic guality of Natural
Language Requirements. In 4" International Workshop on Requirements Engineering:
Foundations of Software Quality REFSQ’98, Pisa, June 1998.

[3] A.Fantechi, M.Fusani, 5.Gnesi, G.Ristori. Expressing properties of software requirements
through syntactical rules. Technical Report. IEI-CNR, 1997

[4] J. Krogstie, O.L Lindland, G. Sindre. Towards a deeper understanding of quality in requirements
engineering. In 7% [nternational CAISE Conference, vol. 932 of Lecture Notes in Computer
Science, pages 82-95, 1995,

{51 G. Lami. Towards an Automaric Quality Evaluation of Namural Language Software
Specifications. Technical Report. B4-25-11-99. IEI-CNR, 1999. .

[6] FLehner. Quality control in software documentation based on measurement of (ext
comprehension and text comprehensibility. Information Processing & Management, vol; 29,
No. 5, pp 551-568, 1993.

[7]
(8]
[91
[10]
[11]
(12]

[13]
[14]

O.Lindland, G. Sindre, A. Salvberg. Understanding quality in conceptual modeting. IEEE
Software, 11 (2); 42-49, March 1994.

B.Macias, 3.G. Pulman. Natural Language processing for requirements specifications. In
Redmill and Anderson, Safety Critical Systems, pages 57-89. Chapman and Hall, 1993,

M. Mannion, B.Keepence, D.Harper. Using viewpoints to define domain requirements. TEEE
Software, January-February 1998, pages 95-102.

K.Matsumura, H.Mizutani, M.Arai, An application of structural modelling to software
requirements analysis and design. TEEE Transactions on Software Engineering, vol. SE-13, No.
4, April 1987. '

B.Meyer. On formalism in specifications. IEEE Software, January 1985, pages 6-26.

P. Sawyer, 1. Sommerville, S.Viller. Capturing the benefits of requirements engineering. IEEE
Software, March/April 1999, pages 78-85.

1.Sommerville Software Engineering, Fifth Edition, Addison-Wesley, 1995,

W.M.Wilson, L.H. Rosenberg, L.E. Hyat. Automated quality analysis of Natural Language
requirement specifications. PNSQC Conference, October 1996.

1]

