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Summary

� Atmospheric nitrogen (N2)-fixing nodules are formed on the roots of legume plants as result

of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of car-

bon and energy, and therefore legumes have developed finely tuned mechanisms to cope

with changing external environmental conditions, including nutrient availability and flooding.

The investigation of the role of nitrate as regulator of the symbiotic N2 fixation has been lim-

ited to the inhibitory effects exerted by high external concentrations on nodule formation,

development and functioning.
� We describe a nitrate-dependent route acting at low external concentrations that become

crucial in hydroponic conditions to ensure an efficient nodule functionality. Combined genetic,

biochemical and molecular studies are used to unravel the novel function of the LjNRT2.4

gene.
� Two independent null mutants are affected by the nitrate content of nodules, consistent

with LjNRT2.4 temporal and spatial profiles of expression. The reduced nodular nitrate con-

tent is associated to a strong reduction of nitrogenase activity and a severe N-starvation phe-

notype observed under hydroponic conditions. We also report the effects of the mutations on

the nodular nitric oxide (NO) production and content.
� We discuss the involvement of LjNRT2.4 in a nitrate-NO respiratory chain taking place in

the N2-fixing nodules.

Introduction

Nitrate and ammonium are the two main sources of nitrogen (N)
controlling plant growth and development. Plants have evolved a
complex molecular network to sense the external and endogenous
N status in order to efficiently satisfy rapidly changing demands.
Nitrogen sensing may involve proteins involved in N-uptake,
such as transceptors of nitrate or ammonia (Ho et al., 2009;
Rogato et al., 2010), or sensors of internal N-status (Gutierrez
et al., 2008; Swift et al., 2019). In the case of nitrate, a primary
role in the networks governing nitrate assimilation, storage and
distribution among different plant tissues and organs, is played
by two protein families – the low-affinity Nitrate Transporter
Peptide (NPF) and the high-affinity Nitrate Transporter (NRT2;
Wang et al., 2018). NPF is a large family of 53, 80 and 86 mem-
bers in Arabidopsis thaliana, Oryza sativa and Lotus japonicus,
respectively (Tsay et al., 2007; L�eran et al., 2014; Sol et al.,
2019). The NPF members are divided into eight subfamilies and
able to transport different substrates (L�eran et al., 2014). NRT2
proteins form small families of plant transporters in plants
including seven, four and four members in A. thaliana, O. sativa
and L. japonicus, respectively (Glass et al., 2001; Cai et al., 2008;
Criscuolo et al., 2012). By contrast to NPF proteins, all of the
NRT2 proteins characterized thus far in higher plants transport
only nitrate, displaying a high-affinity activity with the exceptions

of the Lycopersicon esculentum LeNRT2.3 that shows a low-affin-
ity nitrate uptake activity in Xenopus oocytes (Fu et al., 2015) and
the O. sativa NRT2.4 that was reported to behave as a dual-affin-
ity nitrate transporter in Xenopus (Wei et al., 2018). NRT2 pro-
teins are proton-coupled transporters and four of seven NRT2
genes found in Arabidopsis show a nitrate-related phenotype
when mutated (Chopin et al., 2007; Kiba et al., 2012; Wang
et al., 2018). In particular, AtNRT2.1; 2.2; 2.4 and 2.5 are
involved in nitrate uptake into the root system, where these genes
display different spatial profiles of expression (Kiba et al., 2012;
Lezhneva et al., 2014). Recently, a post-transcriptional regulation
through a phosphorylation reaction, which increases the stability
of the protein under nitrate-limited conditions, has been reported
for AtNRT2.1 (X. Zou et al., 2019). AtNRT2.4 and ATNRT2.5
also are expressed in the phloem tissue where they play a role on
nitrate loading and mobilization to the shoot under conditions of
N starvation (Kiba et al., 2012; Lezhneva et al., 2014). A similar
function was reported for OsNRT2.3a that is expressed in the
xylem parenchima of rice roots (Tang et al., 2012). NRT2s are
not functional alone, as an additional component called NAR2/
NRT3, that interacts physically with NRT2s, is normally
required for plasma membrane targeting and NRT2 stability
(Kotur et al., 2012). The exceptions are represented by
AtNRT2.7 and OsNRT2.4 that achieve nitrate uptake in
Xenopus alone, without NAR2 co-expression (Chopin et al.,
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2007; Wei et al., 2018). AtNRT2.7 shows a peculiar vacuolar
membrane subcellular localization and is involved on nitrate
accumulation in the seeds (Chopin et al., 2007), whereas
OsNRT2.4 is required for nitrate-regulated root and shoot
growth (Wei et al., 2018).

The biological N2-fixation (BNF) which evolved in legume
plants represents an objective advantage owing to the capacity of
converting atmospheric N2 into plant-assimilable NH3. How-
ever, both formation and functioning of N2-fixing nodules
require high amounts of carbon and energy, and, therefore, it is
not surprising that legumes have developed finely tuned mecha-
nisms to regulate nodule formation, development and function-
ing in relation to the N demand of the plants. In particular, when
a N source is available in the rhizosphere, nodule formation
capacity declines as well as the efficiency of existing N2-fixing
nodules (Carroll & Gresshoff, 1983; Fujikake et al., 2003; Bar-
bulova et al., 2007; Omrane & Chiurazzi, 2009; Naudin et al.,
2011; Cabeza et al., 2014). In the case of nodule functioning, the
short exposure of nodulated roots to 5 mM nitrate strongly
inhibits N2-fixation activity and this response is quickly reversed
once nitrate is removed (Cabeza et al., 2014). Different hypothe-
ses have been developed to explain such a strong impact of high
nitrate on nodule functioning: (1) reduction of oxygen perme-
ability (Minchin et al., 1986; Vessey et al., 1988), (2) competi-
tion of the nitrate reduction activity as sink for assimilates and
energy (Vessey & waterer, 1992; Fujikake et al., 2003) and (3)
nitrate-mediated effect on the shoot allocation of photosytate
products (Fujikake et al., 2003). Very recently, the involvement
of NIN-like transcription factors on the nitrate-mediated nitroge-
nase activity inhibitory pathway has been reported in L. japonicus
and Medicago truncatula (Nishida et al., 2018; Lin et al., 2018)
that could play a role in the significant transcriptional regulation
observed after the nodule nitrate treatment (Cabeza et al., 2014;
Schulze et al., 2020). N2-fixing invaded cells are filled with
organelles called symbiosomes that are the result of an endocyto-
sis process enclosing invading bacteria in a plant-derived mem-
brane, the peri-bacteroidal membrane (PBM). Inside the
symbiosome, bacteria stop dividing and differentiate into the N2-
fixing bacteroids. N2-fixation occurs via the action of the nitroge-
nase enzyme through an energy-intensive process requiring O2

for respiration to generate ATP and reducing equivalents for
reduction of N2 to NH3. A finely tuned mechanism is active in
the N2-fixing cells to ensure a correct balance between the micro-
aerophilic condition that must be maintained to avoid nitroge-
nase inactivation, and the high rates of respiration in mitochon-
dria and bacteroids of invaded cells (Bergensen, 1996; Witty &
Minchin, 1998). To satisfy these conflicting demands, a crucial
role is played by the high-affinity O2

� binding protein leghe-
moglobin (Lb), which is present at millimolar concentrations in
the N2-fixing cells, allowing the delivery of O2 efficiently to mito-
chondria and bacteroids for respiration while buffering free O2 at
the required level (Appleby, 1984). Furthermore, a nitrate–NO
respiration pathway that provides an alternative electron transfer
chain has been also reported in M. truncatula nodules under nor-
moxic conditions, which becomes particularly important under
hypoxia conditions to support the energy status required for

efficient N2-fixation (Horchani et al., 2011). Consistently,
hypoxia or flooding conditions trigger NO accumulation in
M. truncatula and soybean nodules (Sanchez et al., 2010; Hor-
chani et al., 2011).

The metabolic pathways of functioning nodules strictly aimed
to ensure an efficient N2-fixation process, are mirrored by specific
gene expression profiles for related metabolic enzymes. Several
transcriptomic analyses allowed the classification of genes
induced in N2-fixing nodules that encode a significant percentage
of transporter proteins (Colebatch et al., 2004; Hogslund et al.,
2009; Takanashi et al., 2012). NPF and NRT2 proteins are
largely represented among this category of nodule-induced trans-
porter genes (Criscuolo et al., 2012; Valkov & Chiurazzi, 2014;
Clarke et al., 2015). However, at the moment the involvement of
nitrate transporters on the regulation of the nodulation process
has been reported only for MtNPF1.7 controlling the nodule
meristem formation and invasion (Teillet et al., 2008; Yendrek
et al., 2010) and LjNPF8.6 that plays a role in the regulation of
nodule functioning (Valkov et al., 2017).

We report here the functional characterization of a member of
the L. japonicus NRT2 family involved in the control of nodular
nitrate content that indicates a critical role for this pathway on
the efficient functioning of N2-fixing nodules.

Materials and Methods

Plant material and growth conditions

All experiments were carried out with Lotus japonicus ecotype B-
129 F12 GIFU (Handberg & Stougaard, 1992; Jiang &
Gresshoff, 1997). Plants were cultivated in a controlled growth
chamber with a light intensity of 200 lmol m�2 s–1 at 23°C with
a 16 h : 8 h, light : dark cycle. Seed sterilization was performed as
described in Barbulova et al. (2005). Five days after sowing in
axenic conditions on H2O agar Petri dishes, unsynchronized
seedlings were discarded. Mesorhizobium loti inoculation was per-
formed at 7 d after sowing as described in Barbulova et al. (2005).
The strain R7A used for the inoculation experiments is grown in
liquid TYR-medium supplemented with rifampicin (20 mg l�1).

Three different plant growth conditions were used in the
described experiments. For those shown in Figs 2, 3, 6 and 7, 5 d
after sowing, seedlings were transferred in Petri dish axenic condi-
tions, on solid growth media with the same composition as Gam-
borg B5 medium (Gamborg, 1970), except that (NH4)2SO4 and
KNO3 were omitted and substituted by the proper N source at
the required concentration. KCl was added, when necessary to the
medium to replace the same concentrations of potassium source.
The media containing vitamins (G0415; Duchefa) were buffered
with 2.5 mM 2-(N-morpholino)ethanesulfonic acid (MES,
M1503.0250; Duchefa) and pH-adjusted to 5.7 with KOH.
After germination, unsynchronized seedlings were discarded.

For the experiments shown in Figs 8 and 9, the same proce-
dure described above was followed for germination and inocula-
tion, except that at 4 d post-inoculation (9 d after sowing), plants
were transferred into hydroponic cultures, with the same B5-
derived medium used for axenic conditions. The pH of the
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nutrient solution was monitored every 4 d and KNO3 was re-sup-
plied every 5 d at the required concentrations. Roots were com-
pletely submerged and the level of the solution was maintained
daily if needed. Moderate stirring was applied every 2 d to the
medium to ensure homogenous distribution.

For the experiment shown in Fig. 9(a), plants grown in nor-
moxic conditions (N), were transferred at 4 d post-inoculation
into pots with clay granules (leca). Plants were watered every 5 d
with the same B5-derived solution.

Estimation of anthocyanin

Stem tissue from three plants per assay was weighed and then
extracted with 99 : 1 methanol : HCl (v/v) at 4°C. The OD530

and OD657 for each sample were measured and relative antho-
cyanin concentrations determined with the equation OD530 –
(0.259OD657)9 extraction volume (ml)9 1/FW of tissue
sample (g) = relative units of anthocyanin/g FW tissue.

Determination of Acetylene-Reduction Activity (ARA)

The ARA assay has been described in D’Apuzzo et al. (2015) and
Garc�ıa-Calderon et al. (2012). Detached roots with comparable
number of nodules were placed in 10-ml glass vials and sealed
with parafilm. The vials were injected with 1 ml acetylene
(C2H2 : air = 1 : 9 v/v) by using an autosampler syringe. After
30 min of incubation at 25°C, 1 ml of sample was collected and
injected through the septa of the gas chromatograph (Clarus 580;
PerkinElmer, Beaconsfield, UK) and the area of the obtained
peak of ethylene measured. After the analysis, the nodules were
detached from the root samples under the microscope to carefully
isolate these from the root material and weighed collectively. The
acetylene reduction activity of the nodules was calculated as the
amount of ethylene produced per time and mass of nodules
(lmols9 1/h9 1/g nod) by using the following formula:
ethylene area9 nodule weight (g)�19 t(h)�19 4.12/8880 000,
where 4.12 is the lmols of ethylene in 1 ml of gas mixture kept
at 1 atm at 20°C.

Determination of nitrate content

Detached nodules were first weighed and then frozen at �80°C.
Crude extracts were prepared by grinding the frozen samples with
a tissue lyser (85220; Qiagen) at 29 Hz for 1 min 30 s. The pow-
der was immediately resuspended in H2O (6 ml H2O g�1 FW),
vortexed and centrifuged at 16.2 g to recover the supernatant.
The colorimetric determination of nitrate content in leaves and
roots extracts followed the procedure described by Pajuelo et al.
(2002). 200 ll of 5% (w/v) salicylic acid in concentrated H2SO4

was added to 50-ll aliquots from the crude extracts and left to
react for 20 min at room temperature. NaOH (4.75 ml of 2 N)
was added to the reaction mixtures and the absorbance at 405 nm
scored after cooling. A calibration curve of known amounts of
NaNO3 (74246; Sigma) dissolved in the standard extraction
buffer was used for analytical determinations. Controls were set
up without salicylic acid.

NO production assay

We used the procedure described in Horchani et al. (2011) using
the following detection medium: 10 mM tris-HCl, pH 7.5,
10 mM KCl, in the presence of 10 lM DAF-2 (D23844; Ther-
mofisher, Waltham, MA, USA). First 15–30 mg of detached
nodules (normally from two to three plants) were incubated in
the dark at 23°C in 1.5-ml Eppendorf tubes containing 500 ll of
detection medium with the fluorescent probe DAF-2 (10 ll).
Different pO2 in the incubation medium were obtained with a
permanent bubbling of either ambient air (21% O2; normoxic
conditions) or a 1% : 99% oxygen : N2 (v/v; 1% O2; hypoxic
conditions) gas stream. The 1% oxygen value for hypoxic condi-
tions was based on the pO2 data reported in waterlogged soils by
Gibbs & Greenway (2003). The NO released into the detection
medium was analyzed by taking aliquots at various times and
measuring at the Jasco spectrofluorimeter FP-8200 (Jasco Europe
Srl, Cremella, Italy), the fluorescence of DAF-2T, the reaction
product from DAF-2 and NO. Excitation was 495 nm and emis-
sion 515 nm fluorescence. In these conditions, NO release was
found to be linear from 30 min to ≥4 h incubation time. Blank
samples contained detection buffer with DAF-2 without nodules.

NO content assay

Fifteen to thirty milligram of detached nodules (normally from
two to three plants) were ground with a tissue lyser (85,220; Qia-
gen) at 29 Hz for 1 min 30 s. The powder was immediately resus-
pended in 500 ll of detection medium with 10 lM DAF-2
probe and centrifuged at 4°C for 10 min. The fluorescence of the
supernatant was measured at the spectrofluorimeter (excitation
495 nm; emission 515 nm).

Lotus japonicus transformation procedures

Binary vectors were conjugated into the Agrobacterium rhizogenes
15834 strain (Stougaard et al., 1987). A. rhizogenes-mediated
L. japonicus transformations were performed as described in Bas-
tianelli et al. (2009) and inoculation of composite plants was
asdescribed in Santi et al. (2003).

Protoplast transformation

Leaf protoplasts were prepared and transformed according to
Pedrazzini et al. (1997), using 3-wk-old N. tabacum plants. DNA
(40 lg of each construct) was introduced into 19 106 proto-
plasts by polyethylene glycol (PEG)-mediated transfection. After
16 h incubation in the dark at 25°C, yellow fluorescent protein
(YFP) fluorescence in protoplast cells was detected by confocal
microscopy.

Plasmid preparation

prLjNRT2.4-gusA: the PCR-amplified fragment containing
1038 bp upstream of the ATG was obtained on genomic DNA
with forward and reverse oligonucleotides containing SalI and
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BamHI sites, respectively (Supporting Information Table S1).
The amplicon was subcloned as SalI–BamHI fragment into the
pBI101.1 vector (Jefferson, 1987) to obtain the T-DNA con-
struct. Finally, the prLjNRT2.4-gusA cassette was subcloned as an
EcoRI–HindIII fragment into the pIV10 plasmid for co-integra-
tion into the pAR1193 (Stougaard et al., 1987).

LjNRT2.4-YFP: the PCR-amplified fragment obtained on
nodular cDNA with forward and reverse oligonucleotides con-
taining BamHI and XhoI sites, respectively (Table S1), was sub-
cloned as BamHI–XhoI fragment into the pENTRTM1A plasmid
(A10462; ThermoFisher). The resulting donor plasmid was
mixed with the pEarleyGate 104 destination vector to obtain the
YPF-LjNRT2.4 fusion (Earley et al., 2006).

Quantitative real-time (qRT)-PCR

Real-time PCR was performed with a DNA Engine Opticon 2
System, MJ Research (Waltham, MA, USA) using SYBR to mon-
itor dsDNA synthesis. The procedure is described in Ferraioli
et al. (2004). The ubiquitin (UBI) gene (AW719589) was used as
an internal standard. The oligonucleotides used for the qRT-
PCR are listed in Table S1.

LORE1 lines analyses

LORE1 lines 30061917 and 30083188 were obtained from the
LORE1 collection (Fukai et al., 2012; Urbanski et al., 2012;
Malolepszy et al., 2016). Plants in the segregating populations
were genotyped and expression of homozygous plants tested with
oligonucleotides listed in the Table S1. After PCR genotyping,
shoot cuts of the homozygous plants were cultured in axenic con-
ditions and root induction obtained through a 7 d exposure to
0.1 mg l�1 naphthaleneacetic acid (NAA, Duchefa cat. G0903;
Duchefa Biochemie, Haarlem, Netherlands).

Histochemical glucuronidase (GUS) and lacZ analyses

Histochemical GUS and lacZ staining were performed as
described by Rogato et al. (2008, 2016) and Omrane et al.
(2009), respectively.

Confocal imaging

Confocal microscope analyses were performed using a
LeicaDMi8 (Leica Biosystems, Wetzlar, Germany) laser scanning
confocal imaging system. For YFP detection, excitation was at
488 nm, and detection between 515 and 530 nm. For the chloro-
phyll detection, excitation was at 488 nm and detection over
570 nm.

Phylogenetic studies

The evolutionary history was inferred using the Neighbor-Join-
ing method (Saitou & Nei, 1987). The percentage of replicate
trees in which the associated taxa clustered together in the boot-
strap test (500 replicates) are shown next to the branches

(Felsenstein, 1985). The evolutionary distances were computed
using the JTT matrix-based method (Jones et al., 1992) and are
in the units of the number of amino acid substitutions per site.
The analysis involved 49 amino acid sequences. All positions
with < 65% site coverage were eliminated. That is, < 35% align-
ment gaps, missing data, and ambiguous bases were allowed at
any position. There were a total of 501 positions in the final
dataset. Evolutionary analyses were conducted in MEGA7 (Kumar
et al., 2016).

Statistical analyses

Statistical analyses were performed using the VASSARSTATS two-
way factorial ANOVA for independent samples program (http://
vassarstats.net/).

Results

LjNRT2.4 identifies a peculiar member of the plant NRT2
families

The L. japonicus NRT2 family has been described and prelimi-
narily characterized by Criscuolo et al. (2012). Four members
were identified including two paralogues located on chromosome
3, sharing 95% of nucleotide identity, named LjNRT2.1 and
LjNRT2.2. We have now assigned the names LjNRT2.3 and
LjNRT2.4 to the two members located on chromosomes 4 and 1,
respectively (Table S2). LjNRT2.4 (Lj1g3v3646440.1 in the
genomic assembly build 3.0; http://www.kazusa.or.jp/lotus/inde
x.html) encodes for a 460 amino acid protein with 12 transmem-
brane predicted domains (Fig. S1; Tusn�ady & Simon, 2001) and
a predicted molecular mass of 49.16 kDa. When the LjNRT2.4
sequence was used as query against the A. thaliana NRT2 family
the highest value of amino acid identity was shared with
AtNRT2.7 (63%; Table S2). AtNRT2.7 is the most diverged of
all the NRT2 sequences (Plett et al., 2010) and holds a unique
biochemical feature among the AtNRT2 transporters, being the
only member that does not interact physically with AtNAR2, a
partner protein required to enhance nitrate uptake in Xenopus
laevis oocytes (Kotur et al., 2012). More recently, the lack of
NAR2 requirement also has been reported for the OsNRT2.4
protein (Wei et al., 2018). Interestingly, the AtNRT2.7 highly
conserved sequences could be identified only in some of the
genomes analyzed, indicating a divergent evolution of this gene
(Fig. 1). The phylogenetic tree shown in Fig. 1, based on the
alignment of nine plant NRT2 protein families, highlighted the
close relationship of a small subgroup of AtNRT2.7 horthologues
identified in the genomes of A. thaliana, O. sativa, Zea mays,
L. japonicus, Arachis hypogaea and Cyrysanthemum morifolium,
and absent in Hordeum vulgare, Glycine max andM. truncatula.

LjNRT2.4 is expressed in root and nodule vascular tissues
and the protein localizes at the plasma membrane

A preliminary analysis of the regulatory profile of expression of
the gene LjNRT2.4 has been reported in Criscuolo et al. (2012)
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where a clear-cut induction of expression was described in young
and mature nodular tissues. The LjNRT2.4 transcript distribu-
tion in different organs of L. japonicus plants inoculated with
M. loti confirmed the nodule-induced pattern (4.5-fold greater
roots; Fig. 2). Furthermore, a striking peak of expression was
found in mature dry seeds that is consistent with the analyses
reported for the AtNRT2.7 orthologue (Chopin et al., 2007).

However, the overall profile of expression observed in different
organs (Fig. 2) is consistent with the results reported in the
L. japonicus expression atlas (https://lotus.au.dk/expat/; Verdier
et al., 2013).

In order to gain further information about the profile of
LjNRT2.4 expression, a promoter-gusA translational fusion
including 1038 bp upstream of the ATG and the first 10

Fig. 1 Evolutionary relationships of plant
Nitrate Transporter 2 (NRT2) families. Forty-
nine full-length amino acid sequences were
aligned with the CLUSTALW program. The
evolutionary history was inferred using the
Neighbor-Joining method (Saitou & Nei,
1987). The optimal tree with a sum of branch
length = 4.97982140 is shown. The tree is
drawn to scale, with branch lengths in the
same units as those of the evolutionary
distances used to infer the phylogenetic tree.
Sequences are as follows: At, Arabidopsis
thaliana; Ah, Arachis hypogaea; Cm,
Crysanthemum morifolium; Gm, Glycine
max; Hv, Hordeum vulgare; Lj, Lotus
japonicus;Mt,Medicago truncatula;Os,
Oriza sativa; Zm, Zea mays.
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LjNRT2.4 codons was exploited for obtaining nodulated hairy
roots of Lotus composite plants upon transformation with
A. rhizogenes. GUS activity was confined to vascular structures of
roots and nodules with a higher intensity of the staining detected
in the nodular tissue (Fig. 3a,b).

In order to determine the subcellular localization, we generated
a fusion between the YFP and the N-terminus of LjNRT2.4 that
was driven by the cauliflower mosaic virus 35S promoter. Confo-
cal microscopy analysis in tobacco protoplasts indicated a local-
ized fluorescence at the protoplast plasma membrane (Fig. 4).

Isolation of LORE1-insertion null mutants and phenotypic
characterization

In order to determine the in vivo function of LjNRT2.4, two
independent LORE1 insertion mutants were isolated from the
released L. japonicus LORE1 lines collection (Fukai et al., 2012;
Urbanski et al., 2012; Malolepszy et al., 2016). Lines 30061917
and 30083188, bearing retrotransposon insertions in the first and
second exon (Fig. 5a), were genotyped by PCR. Shoot cuts of
homozygous plants for the insertion event into the LjNRT2.4
gene were cultured in axenic conditions and then transferred to
the growth chamber for seeds production. Endpoint RT-PCR
analyses conducted with primers bracketing the insertion site of
homozygous plants from lines 30061917 and 30083188 (here-
after called Ljnrt2.4-1 and Ljnrt2.4-2, respectively) revealed no
detectable LjNRT2.4 full-size mRNA in nodules, and hence,
these were considered null mutants (Fig. 5b). In order to analyze
whether the induced pattern of expression in nodules reflected
the involvement of LjNRT2.4 in the control of nodule efficiency
we compared the phenotypes of wild-type (WT) and Ljnrt2.4
mutants under symbiotic and nonsymbiotic conditions. The
Ljnrt2.4-1 and Ljnrt2.4-2 mutants were grown in the presence of
low KNO3 concentration (100 lM) with/out M. loti inoculation
and measurements of nodule number, shoot length and FWs of
4-wk-old plants were taken and compared to those of WT plants
(Fig. 6). The mutant lines did not present significant differences
when compared to WT plants, in terms of nodule number
(Fig. 6a) as well as nodule size (data not shown). The invasion
capacity of the Ljnrt2.4 plants tested through inoculation with a
M. loti strain carrying a constitutively expressed hemA::lacZ
reporter gene revealed no differences with WT plants (Fig. S2).
However, a slight significant difference was scored in the shoot
biomass as both Ljnrt2.4-1 and Ljnrt2.4-2 plants showed a signif-
icant 20% reduction in terms of shoot length and FW compared
to WT plants (Fig. 6b,c). Consistently, this shoot biomass defi-
ciency was coupled to a significant 20% reduction of nitrogenase
activity detected in nodules detached at 4 wk post-inoculation
(Fig. 6d). Furthermore, a very clear stressful phenotype displayed
by the mutants and detected only in symbiotic conditions com-
prised a clear-cut accumulation of anthocyanin, conferring deep
purple colour in the stems. The correlation between anthocyanin
accumulation and the nodulation process in the mutant plants
was demonstrated strikingly by the experiment shown in Fig. 7.
Plants were first grown for 10 d in the presence of 2.5 mM
KNO3 as sole N source showing no evident phenotypes. Both
WT and Ljnrt2.4 plants grown in the same Petri dishes displayed
similar shoot height and no stress symptoms (Fig. 7a). Subse-
quently, plants were transferred to media with no N sources or
100 lM KNO3 and inoculated with M. loti. Twelve days post-
inoculation, red nodules were clearly visible at the same density

Fig. 2 LjNRT2.4 transcriptional regulation in different Lotus japonicus
organs (NRT, Nitrate Transporter). Mature flowers and seeds were
obtained from lotus plants propagated in the growth chamber. Expression
levels are normalized with respect to the internal control ubiquitin (UBI)
gene and plotted as relative to the expression of roots. Data bars represent
the mean � SDs of data obtained with RNA extracted from three different
sets of plants and three real-time PCR experiments.

(a)

(b)

Fig. 3 Representative b-glucuronidase (GUS) activity of Lotus japonicus
transgenic hairy roots transformed with the prLjNRT2.4-gusA construct
(NRT, Nitrate Transporter). (a) Staining in the root vascular bundle. (b)
Staining in the nodule vascular bundles. Bars, 50 lm.
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on the younger part of the root system of both WT and Ljnrt2.4
plants and the two mutants showed an extensive anthocyanin
accumulation in the stem tissues compared to WT plants
(Fig. 7b). The quantitative analysis performed through antho-
cyanin extraction from stem tissues confirmed a content 2.5–3-
fold higher in stems of the mutants compared to WT plants,
whereas no significant differences were scored in noninoculated
plants (Fig. 7c). In the phenotypic characterizations described
above, two individual homozygous mutant plants from both
Ljnrt2.4-1 and Ljnrt2.4-2 lines were analyzed and because their
growth phenotypes did not significantly differ, the data obtained
with the selected individual mutants have been pooled in this
study. The identical phenotypes displayed by the Ljnrt2.4-1 and
Ljnrt2.4-2 mutants confirm that the LORE1 insertions in the
LjNRT2.4 gene are the causal mutations of the deficient pheno-
type scored in symbiotic conditions. In addition, heterozygous

plants for the LORE1 insertion in the LjNRT2.4 gene isolated in
the two lines, did not display the high concentration of antho-
cyanin in the stem (data not shown).

The deficient symbiotic phenotypes of the Ljnrt2.4mutants
become much more severe in plants grown under hydro-
ponic conditions

A significant reduction of the nodule nitrogenase activity was
reported in nodules of soybean plants subjected to flooding con-
ditions (Sanchez et al., 2010). Flooding imposes stress on plants
by severely hampering gas exchange and reducing oxygen internal
pressure (hypoxia). Likewise, nitrate was demonstrated to play a
very stringent role in the maintenance of the nodule energy in
hypoxic conditions (Horchani et al., 2011; Hicri et al., 2015).
Therefore, in order to test whether the deficient symbiotic pheno-
type displayed by the Ljnrt2.4 plants was more severe in hypoxic
conditions we compared the phenotypes of nodulated WT and
mutant plants under hydroponic conditions. Wild-type and
Ljntr2.4 seeds were germinated on solid medium, and at 4 d
post-inoculation seedlings were transferred into hydroponic cul-
tures, in the presence of 100 lM KNO3 as sole N source. At 5 wk
post-inoculation, both Ljnrt2.4-1 and Ljnrt2.4-2 plants displayed
a striking stunted shoot phenotype with clear-cut N starvation
chlorosis symptoms (Fig. 8a). By comparison, parallel inoculated
Ljnrt2.4 plants grown on clay granules (normoxic conditions)
did not show a similar shoot biomass defect when compared to
WT plants although the slight reduction of FW reported in
axenic conditions was confirmed (Fig. S3).

Ljnrt2.4 nodules are impaired in N2-fixation activity, nitrate
content and nitrate-dependent NO biosynthetic pathway

The direct analyses of N2-fixation activities of nodules from
plants grown in hydroponic conditions indicated a stronger
reduction of N2-fixation capacity in both Ljnrt2.4 vs wild-type
plants (Fig. 8b) compared to the differences scored in axenic con-
ditions (Fig. 6d). In particular, a 50% reduction of ARA activity
was measured in the mutant nodules that could be responsible
for the severe N-starvation phenotype detected in hydroponic

(a) (b)

Fig. 4 Lotus japonicus NRT2.4 localization at
the plasma membrane. The YFP-LjNRT2.4
translational fusion was transiently expressed
in protoplast of tobacco mesophyll cells
under the control of the 35S promoter.
(a) Bright field image of tobacco protoplast.
(b) Merged image of yellow fluorescent
protein (YFP) and chlorophyll
autofluorescence in transformed protoplasts.

(a)

(b)

Fig. 5 Structure of the Lotus japonicus NRT2.4 gene and analysis of the
expression in the LORE1 segregants (NRT, Nitrate Transporter). (a) Exon/
intron organization of the LjNRT2.4 gene. Insertion sites and relative
orientations of the LORE1 retrotransposon element in the 30 061 917 and
30 083 188 lines are indicated. (b) Expression of the LjNRT2.4 gene in the
Ljnrt2.4-1 and Ljnrt2.4-2 plants. Total RNAs isolated from nodules has
been used for real-time PCR analysis.
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cultures. This result confirmed a positive role of LjNRT2.4 on
nodule functioning that became more stringent in hypoxic condi-
tions. In order to develop a mechanistic model for explaining the
observed phenotype in hydroponic conditions, nodules detached
from roots of plants grown in hydroponic conditions in the pres-
ence of low nitrate concentrations (100 lM KNO3) were ana-
lyzed for nitrate content. The values obtained for the nitrate
content in Ljnrt2.4-1 and -2 nodules were significantly reduced
compared to the WT by 38% and 75%, respectively (Fig. 9a).
Interestingly a similar, significant reduction of the nitrate content
was detected in the mutant nodules in plants grown on a clay
granules (normoxic condition) (Fig. 9a). These results suggest a
role of the LjNRT2.4 protein in the allocation of nitrate to the
nodules, indicating a more stringent role of a correct nitrate con-
tent for nodule efficiency under hypoxic than normoxic condi-
tions. The role of LjNRT2.4 in the nitrate content of the nodules
prompted us to investigate whether it could be involved in the
nitrate inhibitory pathway affecting N2-fixation activity. Nodu-
lated plants grown for 3 wk in the presence of 100 lM KNO3

were shifted for 48 h in 10 mM KNO3 and N2-fixation activity
was evaluated through ARA assay. As expected, the nitrogenase
activity was inhibited of almost 50% after the shift in WT nod-
ules, and a similar reduction was scored in the Ljnrt2.4 nodules
(data not shown).

In order to test whether the reduced nitrate content detected
in the mutant nodules was correlated to a lower capacity of NO
production, we decided to make quantitative measures on the

whole nodules to avoid artefact owing to NO production as
result of mechanical stress (Horchani et al., 2011). The NO pro-
duced and released from entire nodules still attached to a small
piece of root (extending c. 0.2 cm at both sides of the nodules)
was scored through incubation in a medium containing the DAF
probe. The production of NO was measured by incubating the
samples under normal (21% O2, normoxic) and low oxygen pres-
sure (1% O2, hypoxic). As expected the NO production in the
WT nodules was significantly increased under low oxygen pres-
sure (Horchani et al., 2011) and the values increased in a linear
way at least ≤ 4 h (Fig. 9b). Interestingly, when we compared the
NO production in WT and mutant nodules, the latter show sig-
nificantly reduced values (c. 30%). It must be taken into consid-
eration that the different absolute values of NO production
recorded in Fig. 9(c) probably result from a little intrinsic experi-
mental variability with a delayed scoring of NO production in
the experiment shown in Fig. 9(b). Furthermore, the differences
in NO production were strongly confirmed by the comparison of
the NO content in nodules of WT and Ljnrt2.4 plants grown in
hydroponic conditions, showing a significantly reduced propor-
tion of NO (c. 45%) in nodules of the Ljnrt2.4 plants (Fig. 9d).

Discussion

To date, the role of nitrate as regulator of symbiotic N2 fixation
(SNF) has been investigated only to understand the inhibitory
role exerted by high external concentrations of this nutrient on

Wi

(a) (b)

(c) (d)

Fig. 6 Phenotypic characterization of Lotus japonicus Ljnrt2.4-1 and Ljnrt2.4-2mutants (NRT, Nitrate Transporter). Wild-type (WT) and Ljnrt2.4 plants,
were grown in the presence of 100 lM KNO3, in symbiotic and nonsymbiotic conditions. (a) Nodule numbers per plant. Nodules were scored at 4 wk post-
inoculation (wpi). (b) Shoot length per plant. (c) Fresh shoot weight per plant. (d) Acetylene Reduction Activity (ARA) per nodule weight. Bars represent
means � SE of measures from three experiments (12 plants per experiment per condition). Asterisks indicate significant differences with WT levels: *,
P < 0.05; **, P < 0.03.
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all of the different steps of nodule formation, development and
functioning (Carroll & Gresshoff, 1983; Fujikake et al., 2003;
Barbulova et al., 2007; Omrane & Chiurazzi, 2009; Jeudy et al.,
2010; Cabeza et al., 2014). However, only little attention has
been paid to the potential positive role of low, permissive external
concentrations of nitrate, and how this can act to modulate
nodulation capacity and functioning. A positive role of low
nitrate external concentrations on nodule formation capacity has
been reported in Lotus japonicus and other legumes (Hussain
et al., 1999; Barbulova et al., 2007). In the same way, a nitrate-
dependent respiratory chain aimed to maintain the energy status
required for efficient N2-fixation has been reported (Horchani
et al., 2011; Hicri et al., 2015). We report here the functional
characterization of the LjNRT2.4 gene that revealed its positive
role in a nitrate-mediated nodule functioning pathway.

The phylogenetic tree shown in Fig. 1 confirmed the diver-
gence of the AtNRT2.7-like genes in the frame of the plant
NRT2 members. The absence of AtNRT2.7 orthologue already
has been reported for grass genomes, poplar and Medicago
truncatula (Plett et al., 2010; Pellizzaro et al., 2015). This scat-
tered distribution of the NRT2.7-like gene among the plant
NRT2 families, even among strictly related legume species such
as L. japonicus, M. truncatula and Glycine max, clearly indicated
an independent evolution for this gene. The functional

characterization of the NRT2.7-like genes has been carried out in
Arabidopsis thaliana and Oryza sativa, confirming very specialized
roles. AtNRT2.7 is peculiar among the Arabidopsis NRT2 genes
as it is expressed mainly in the seeds where it is involved in the
control of nitrate accumulation and seed germination.
AtNRT2.7 displays a unique vacuolar subcellular localization
(Chopin et al., 2007), compared to all of the other Arabidopsis
members showing a plasma membrane (PM) localization and
expressed mainly in root tissues. OsNRT2.4 is not expressed in
the embryo but it is the only rice NRT2 member expressed
mainly in the shoot. A PM localization has been reported for
OsNRT2.4, consistent with the other rice NRT2 proteins. How-
ever, both AtNRT2.7 and OsNRT2.4 have the unique capacity
to not require the NAR2 accessory protein for nitrate transport
(Kotur et al., 2012). Furthermore, both are involved in the
nitrate mobilization from source to sink tissues, the seeds in the
case of AtNRT2.7 (Chopin et al., 2007), and young leaves and
roots for OsNRT2.4 (Wei et al., 2018). The strong induction of
expression of LjNRT2.4 in nodular tissue compared to root
reported in Figs 2 and 3 also is peculiar among the Lotus NRT2
genes (Criscuolo et al., 2012). It will be interesting to investigate
whether, when present, NRT2-like genes in other legume species
display the same nodule-induced pattern. In the case of the
AhNRT2.7 identified in the legume A. hypogaea we could not

Wi

***

***

Wi

–1

Wi

(a)

(c)

(b)

Fig. 7 Anthocyanin accumulation in Lotus japonicus under symbiotic conditions. (a) Representative wild-type (WT), Ljnrt2.4-1 and Ljnrt2.4-2 plants
grown on 2.5mM KNO3 for 10 d (NRT, Nitrate Transporter). (b) Shoots (up) and roots (bottom) of the plants shown in (a), post-inoculation with
Mesorhizobium loti and incubation for additional 12 d on no N conditions. (c) Anthocyanin content. The different KNO3 concentrations and when
performed,M. loti inoculation, are indicated. Bars represent means � SE of measures from three experiments (12 plants per experiment per condition).
Asterisks indicate significant differences (P < 0.001) with Wt levels.
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retrieve reliable gene atlas data to confirm an induction in the
nodules. Interestingly, nodules also are optional sink organs as
these need to assimilate energy sources to provide energy for the
N2-fixation activity performed by the microsymbiont as well as
assimilation of the produced ammonium and starch biosynthesis
(Vance, 2008).

The phenotypes of the two independent knock-out mutants
shown in Figs 6–8 clearly highlighted the action played by
LjNRT2-4 for a correct functioning of N2-fixing nodules. The
lack of altered phenotypes shown by Ljnrt2.4-1 and -2 during the
growth in nonsymbiotic conditions (Fig. 6), as well as their nor-
mal capacity of nodule formation and development (Figs 6a, S3),
indicated a specialized role of LjNRT2.4 that takes place during
nodule functioning, consistent with its temporal and spatial pro-
file of expression (Figs 2, 3). In particular, the striking antho-
cyanin accumulation detected in the stems of the Ljnrt2.4 plants
that is not observed in the uninoculated plants confirmed the
involvement of LjNRT2.4 in the nodule-functioning process.
The stem pigmentation represents a clear-cut N-limitation stress
symptom associated to an impaired N2-fixation activity (Krussell
et al., 2005; Ott et al., 2005; Bourcy et al., 2013). The small
reduction of shoot height and weight scored in the mutants
(Fig. 6b,c) might be explained by the partial impairment of nitro-
genase activity reported in Fig. 6(d). These phenotypes resemble

the ones of the Fix+/Fix� mutants showing a less efficient N2-fix-
ation activity, which display N-deficiency phenotypes not as sev-
ere as those of fix� mutants (Pislariu et al., 2012). However, the
mild phenotype exhibited by the Ljnrt2.4 plants turned to a
much more severe one under hydroponic conditions, where a
clear-cut N-starvation shoot phenotype was scored, associated
with a stronger reduction of the nitrogenase activity when com-
pared to wild-type (WT) plants (Fig. 8). The absolute level of
nodule nitrogenase activity was reduced about three times in
hydroponic vs axenic conditions (Figs 6d, 8b). A similar reduc-
tion of nitrogenase activity was reported in soybean nodules of
plants subjected to flooding conditions (Sanchez et al., 2010).
Our phenotypic characterization also indicated an increase of
nitric oxide (NO) production when nodules were analyzed under
hypoxic vs normoxic conditions (Fig. 9b). Interestingly, a signifi-
cant reduction of NO production was detected in mutant nod-
ules analyzed under hypoxic conditions when compared to WT
nodules (Fig. 9c). Finally, the decreased capacity of NO produc-
tion in the Ljnrt2.4 mutants was directly confirmed by scoring
the NO content of detached nodules obtained from hydroponic
cultures (Fig. 9d). Nitric oxide accumulation under flooding con-
ditions has been reported in WT M. truncatula and soybean
mature nodules as well as isolated bacteroids, together with nitrite
(NO2

�) accumulation (Meakin et al., 2007; Sanchez et al.,
2010). A free radical, gaseous molecule, NO is involved in a wide
spectrum of regulatory functions in plant growth and develop-
ment, and response to stress conditions. The NO production
during different steps of the legume–rhizobium symbiotic inter-
action has been demonstrated in different reports (Meakin et al.,
2007; Nagata et al., 2008; Sanchez et al., 2010; del Giudice et al.,
2011) and NO accumulation was confined to the region of bac-
teroid-containing cells in mature nodules (Baudouin et al., 2006;
Shimoda et al., 2009; Meilhoc et al., 2010). Both partners in the
plant cell cytosol and bacteroid compartments of N2-fixing
invaded cells can produce NO. In the bacteroid compartment the
main route for NO production is considered the denitrification
pathway, whereas in the plant cell cytosol, genetic evidences indi-
cate the nitrate reductase-mediated pathway as the main source
of NO (Horchani et al., 2011). The use of different inhibitors of
the mitochondrial and bacteroid electron transfer chain (ETCs)
indicated that both are involved in NO production (Horchani
et al., 2011). The role of NO in the N2-fixing nodules is still a
matter of debate. During N2-fixation, as in other developmental
and stress response processes, a finely tuned control of NO home-
ostasis is a crucial step to determine local NO concentration and
effects. The NO-dependent inhibition of nitrogenase activity that
is likely occurring through a S-nitrosylation post-translational
modification has been reported in soybean, L. japonicus and
M. truncatula nodules (Trinchant & Rigaud, 1982; Puppo et al.,
2005; Shimoda et al., 2009; Kato et al., 2010; Cam et al., 2012).
However, the reported effects of NO donors and scavengers on
Acetylene Reduction Activity (ARA) activity of Lotus nodules
indicated that a low but significant NO content is necessary for
nitrogenase activity (Kato et al., 2010). Furthermore, in
M. truncatula a positive role of a nitrate-NO respiration process
has been reported, where NO2

� might act as an electron acceptor

(a)

(b)

******

Fig. 8 Lotus japonicus phenotypic characterization in hydroponic
conditions. (a) Representative images of wild-type, Ljnrt2.4-1 and
Ljnrt2.4-2 plants maintained under 100 lM KNO3 conditions at 5 wk after
inoculation withMesorhizobium loti (NRT, Nitrate Transporter). (b)
Acetylene Reduction Activity (ARA) per nodule weight. Data bars indicate
the mean � SE of three independent experiments (n = 8 plants per
experiment). Asterisks indicate significant differences (P < 0.001).
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instead of oxygen, playing a role in the maintenance of the energy
status required for N2-fixation (Horchani et al., 2011). The
nitrate-NO respiration cycle in the nodule-invaded cells is char-
acterized by four steps: NO3 reduction by NR; NO2

� transloca-
tion to the mitochondrial and peryplasmic ETCs; NO2

�

reduction to NO for ATP regeneration; and passive diffusion of
NO that is oxidized again by Leghemoglobin and flavohe-
moglobin (Fig. 10; Hicri et al., 2015). This nitrate-dependent
route for NO production is essential in hydroponic, hypoxic con-
ditions, when the oxygen concentration can become limiting for
supporting the full nitrogenase activity required to satisfy N
demands in the presence of low concentrations of nitrate. It is
reasonable to postulate that this NO-producing route in the nod-
ule might need or be supported by allocation of nitrate to the
nodules. The phenotypes observed with the Ljnrt2.4 plants are
certainly consistent with such a function. Although we did not
perform a biochemical characterization to directly demonstrate
the role of LjNRT2.4 as nitrate transporter, its involvement in
the nitrate loading of nodules is suggested by the significantly
reduced nitrate content scored in the nodules of the mutant
genotypes (Fig. 9a). The tissue localization in the nodule vascular

bundles (Fig. 3b) as well as its plasma membrane subcellular
localization (Fig. 4) also are consistent with such a role. It is also
important to take in consideration that, when investigated either
in heterologous or in planta experimental systems, a direct corre-
lation always has been found, without any exception, between
nitrate uptake activity and plant NRT2 proteins. The nitrate
transport capacity has been reported for the whole family of
A. thaliana and O. sativa NRT2 proteins (Wei et al., 2018; Wang
et al., 2018), as well as for the characterized NRT2 members of
Brassica napus, Lycopersicon esculentum, Chrysanthemum
morifolium, Cucumis sativa, Cassava and Brachypodium distachyon
(Leblanc et al., 2013; Fu et al., 2015; Gu et al., 2016; Li et al.,
2018; Wang et al., 2019; L. Zou et al., 2019). Furthermore,
specific links between altered NRT2 gene expression obtained in
mutant or overexpressing genetic backgrounds and nitrate-related
plant phenotypes havebeen reported in many plants, including
Triticum aestivum and Zea mays (Fu et al., 2015; He et al., 2015;
Taulemesse et al., 2015; Gu et al., 2016; Ibrahim et al., 2017;
Wei et al., 2018; Li et al., 2018; Wang et al., 2018; Naz et al.,
2019; L. Zou et al., 2019; Luo et al., 2020). The reduced NO
production and content detected in the Ljnrt2.4 nodules are
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Fig. 9 Lotus japonicus nitrate and nitric oxide (NO) scoring in nodules. (a) Nodule nitrate content of wild-type (WT) and Ljnrt2.4 nodules (NRT, Nitrate
Transporter). Plants were grown either in pots with clay granules (N = normoxic conditions) and hydroponic conditions (H) in the presence of 100 lM
KNO3. (b) NO time course production in detached WT nodules assayed under 21% (high) and 1% (low) oxygen. The times (h) of the NO scoring are
indicated. (c) NO nodule production assay under low oxygen conditions. The WT and Ljnrt2.4 plants were grown in the presence of 100 lMKNO3. The
times (h) of the NO scoring are indicated. (d) NO content in nodules of WT and Ljnrt2.4 plants grown under hydroponic conditions in the presence of
100 lMKNO3. Data bars represent means � SE from three independent experiments (seven plants per experiment with two nodule samples/experiment
scored for NO production). Asterisks in (a), (c) and (d) indicate significant differences with WT levels. Asterisks in (b) indicate significant differences
between low and high oxygen. *, P < 0.05; **, P < 0.03; ***, P < 0 .01.
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consistent with a deficient support of the nitrate substrate
(Fig. 9b–d). The two knock-out mutants showed a N-starvation
phenotype, associated with an impaired N2-fixation activity that
is severely increased under hydroponic conditions, when the
nitrate-NO respiratory cycle is enhanced. Interestingly, the
AtNRT2.7 nitrate transporter also has a postulated role in the
NO production pathway taking place in the seeds under anaero-
bic or dark conditions that could link the nitrate content con-
trolled by AtNRT2.7 and seed dormancy (Bethke et al., 2006;
Chopin et al., 2007).

Nitrate Transporter Peptide (NPF) and NRT2 proteins are
largely represented among the categories of transporters induced
in the mature nodules (Valkov & Chiurazzi, 2014; Clarke et al.,
2015). In particular, a large number of NPF proteins are repre-
sented in the protein fraction associated with the peri-bacteroidal
membrane in soybean nodules (Clarke et al., 2015). We have
already proposed the involvement of the LjNPF8.6 in the func-
tioning of the NO-based respiratory cycle schematized in Fig. 10,
where this member could play a role in the control of the nitrate
flux between cytosolic and bacteroids compartments of N2-fixing

cells (Valkov et al., 2017). Therefore, we hypothesize that NPF
and NRT2 genes have complementary functions for ensuring the
functioning of a nitrate-dependent pathway that becomes limit-
ing under hypoxic conditions.
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