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ABSTRACT
The theory of adiabatic electron transport in a correlated condensed-matter system is rooted in a seminal paper by Niu and Thouless [J. Phys.
A: Math. Gen. 17, 2453 (1984)]; I adopt here an analogous logic in order to retrieve the known expression for the adiabatic electronic flux in a
molecular system [L. A. Nafie, J. Chem. Phys. 79, 4950 (1983)]. Its derivation here is considerably simpler than those available in the current
quantum-chemistry literature; it also explicitly identifies the adiabaticity parameter, in terms of which the adiabatic flux and the electron
density are both exact to first order. It is shown that the continuity equation is conserved to the same order. For the sake of completeness, I
also briefly outline the relevance of the macroscopic electronic flux to the physics of solids and liquids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087883

I. INTRODUCTION

Several recent and less recent papers in molecular physics have
addressed the long-standing problem of evaluating the electronic
flux within the adiabatic approximation and beyond;1–9 in its sim-
plest formulation, the main issue is as follows. Whenever the instan-
taneous electronic Hamiltonian is time-reversal invariant, its ground
eigenfunction can be chosen as real, and therefore, it carries an iden-
tically vanishing flux, while instead the electron density n(r, t) from
the same instantaneous eigenstate is clearly time-dependent. Hence,
to this order, the continuity equation is obviously violated; it has
been first shown by Nafie1 in 1983 how to evaluate the flux in order
to restore the continuity equation.

If the time-dependent term in the electronic Hamiltonian
evolves periodically in time at frequency ω, then ∂n(r, t)/∂t, when
evaluated on the instantaneous ground eigenstate, is linear in ω.
The adiabatic limit is by definition the limit ω→ 0; it makes sense
whenever the ground state is nondegenerate. In the following, the
frequency ω is chosen as the main adiabaticity parameter: it is
therefore clear that in order to conserve the continuity equation,
one needs an expression for the electronic flux correct—like the
density—to the first order in ω.

In condensed matter physics, the electronic-flux problem
has been solved by Thouless10,11 (in an independent-electron

framework) and by Niu and Thouless12 (in a many-body frame-
work); to the best of the author’s knowledge, the relevance of
the Niu–Thouless (hereafter quoted as NT) approach to molecu-
lar physics has never been elucidated. Therefore, I present here
a molecular-physics formulation of the adiabatic electronic flux,
strongly inspired by the NT seminal paper. The NT-based logic
yields a very concise, pedagogically appealing, derivation and a clear
understanding of what the adiabatic limit is.

The word “adiabatic” as adopted here—as well as generally
in condensed matter physics11,12—requires a semantical specifi-
cation. When the Hamiltonian evolves at frequency ω, the NT
electronic flux is (as said above) exact to the first order in our adi-
abaticity parameter ω; it will be shown below that its entries are
the eigenvalues and eigenstates of the instantaneous Hamiltonian
at a given time. At variance with the adiabatic electron density,
the microscopic electronic flux has not a single-state expression
(here as well in the previous literature); because of this, the term
“complete adiabatic” is adopted in the previous chemical-physics
literature.1

Section II presents a proof of the one-body continuity equation
in a correlated many-electron system and establishes the notations
adopted throughout. In Sec. III, the lowest-order expression for the
one-body electronic flux is derived following the NT simple logic, as
adapted to a molecular system; the adiabatic continuity equation is
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proved in Sec. IV. In Sec. V, I briefly address the adiabatic electronic
flux in condensed matter systems, either insulators or metals and
either solids or liquids.

II. CONTINUITY EQUATION
I am going to address throughout the (spin-integrated) one-

body flux j(r, t) and one-body density n(r, t) of a correlated
N-electron system, whose continuity equation reads

∇r ⋅ j(r, t) = − ∂

∂t
n(r, t). (1)

In order to establish the notations used in the following, I start deriv-
ing Eq. (1) in a many-body setting. The Schrödinger equation for any
given time-dependent many-body state ∣Ψ⟩ is

(T̂ + V̂) ∣Ψ⟩ = ih̵
∂

∂t
∣Ψ⟩, T̂ = − h̵2

2m

N

∑
i=1
∇2

ri , (2)

where the time-dependent potential V̂ comprises one-body and
two body terms and is a multiplicative operator in the Schrödinger
representation. The one-body electron density and electron flux are

n(r, t) = ⟨Ψ∣
N

∑
i=1
δ(r − ri) ∣Ψ⟩, (3)

j(r, t) = ⟨Ψ∣ ĵ(r) ∣Ψ⟩, (4)

ĵ(r) = − ih̵
2m

N

∑
i=1
[ δ(r − ri),∇ri ]. (5)

The divergence of the current operator ĵ(r) is then

∇r ⋅ ĵ(r) = −
ih̵

2m

N

∑
i=1
[ δ(r − ri),∇2

ri ], (6)

where we have used δ′(y) f (y) = −δ(y) f ′(y) and [∂xδ(x − y)] f (y)
= δ(x − y) f ′(y).

We further note that [ δ(r − ri),∇2
rj ] = 0 for i ≠ j, and there-

fore, we may replace the sum in Eq. (6) with a double sum,

∇r ⋅ ĵ(r) = −
ih̵

2m

N

∑
i,j=1
[ δ(r − ri),∇2

rj ]

= i
h̵

N

∑
i=1
[ δ(r − ri), T̂ ]

= i
h̵

N

∑
i=1
[ δ(r − ri), Ĥ ], (7)

where the last line owes to the multiplicative nature of V̂ .
The divergence of the electron flux reads then, using the

Schrödinger equation,

∇r ⋅ j(r, t) = i
h̵
(⟨Ψ∣

N

∑
i=1
δ(r − ri)Ĥ ∣Ψ⟩ − cc)

= −⟨Ψ∣
N

∑
i=1
δ(r − ri)

∂

∂t
∣Ψ⟩ + cc, (8)

where “cc” stays for the complex conjugate; Eq. (8) is indeed the
continuity equation.

III. NIU–THOULESS ADIABATIC FLUX
We consider the time-independent Schrödinger equation,

Ĥλ∣Ψn⟩ = En∣Ψn⟩, Ĥλ = T̂ + V̂λ

T̂ = 1
2m

N

∑
i=1
∣pi∣

2 = − h̵2

2m

N

∑
i=1
∇2

ri , (9)

where the potential depends on a single parameter λ that summa-
rizes the nuclear configuration; it could be replaced by an explicit
set of nuclear coordinates at the only price of burdening the nota-
tions. The time-independent potential V̂λ comprises one-body and
two-body terms and is multiplicative; it also includes the classi-
cal nuclear–nuclear repulsion energy (a λ-dependent constant, not
an operator). We assume a singlet ground state, and we neglect
irrelevant spin variables.

We leave the λ-dependence of the eigenvalues and eigen-
states as implicit throughout; the time-independent N-body density
matrix (also known as ground-state projector) is then

ρ̂λ = ∣Ψ0⟩⟨Ψ0∣. (10)

In order for the adiabatic expansion to be possible, we require the
ground-state to be nondegenerate for all λ values.

When λ is varied in time, the Hamiltonian becomes time-
dependent, and we write the exact density matrix as

ρ̂(t) = ρ̂λ + δρ̂(t). (11)

Since Ĥλ commutes with ρ̂λ, the equation of motion is

[Ĥλ, δρ̂] = ih̵( ∂
∂t
ρ̂λ +

∂

∂t
δρ̂). (12)

The lowest-order adiabatic flux is obtained, following NT, by
neglecting the second term in parentheses,

Ĥλδρ̂ − δρ̂ Ĥλ = ih̵λ̇(t)( ∣∂λΨ0⟩⟨Ψ0∣ + ∣Ψ0⟩⟨∂λΨ0∣ ). (13)

Upon multiplying all terms in the equation by ⟨Ψn∣ on the left and
by ∣ψ0⟩ on the right, we get

(En − E0)δρn0 = ih̵λ̇(t)⟨Ψn∣∂λΨ0⟩, (14)

where we have set

δρnn′ = ⟨Ψn∣δρ̂∣Ψn′⟩. (15)

Inversion of Eq. (14) yields

δρn0 = −ih̵λ̇(t) ⟨Ψn∣∂λΨ0⟩
E0 − En

, n ≠ 0. (16)

The time-dependence of δρn0 is explicit in λ̇(t) and implicit in the
time-dependence of the instantaneous eigenvalues and eigenstates
at λ = λ(t).

Since Ĥλ is time-reversal invariant, the eigenfunctions are real
and δρn0 = −δρ0n; owing to norm conservation, δρ00 = 0, and the
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matrix elements with both n ≠ 0 and n′ ≠ 0 are of higher order. The
lowest-order expression for the complete δρ̂ is, therefore,

δρ̂ =∑
n
δρno( ∣Ψn⟩⟨Ψ0∣ − ∣Ψ0⟩⟨Ψn∣ ). (17)

As pointed out in the Introduction, the first term in Eq. (11)
does not contribute to the electronic flux, which, therefore, is

j(r, t) =∑
n
δρn0( ⟨Ψ0∣ ĵ(r) ∣Ψn⟩ − cc )

= 2∑
n
δρn0⟨Ψ0∣ ĵ(r) ∣Ψn⟩

= −2ih̵λ̇(t)∑
n≠0

⟨Ψ0∣ ĵ(r) ∣Ψn⟩⟨Ψn∣∂λΨ0⟩
E0 − En

, (18)

since ⟨Ψ0∣ ĵ(r) ∣Ψn⟩ is purely imaginary. The only entries in the NT
electronic flux [Eq. (18)] are the eigenvalues and eigenstates of the
instantaneous Hamiltonian Ĥλ at time t; the flux is proportional to
λ̇(t), which is infinitesimal in the adiabatic limit.

At this point, the “lowest order” expansion leading to the
electronic-flux formula above can be better specified. The term
neglected in Eq. (12) is clearly proportional to λ̈(t); therefore, when-
ever λ(t) evolves periodically in time at frequency ω, then—as
anticipated in the Introduction—the NT adiabatic flux is linear in ω
and neglects terms of order ω2 and higher. On practical grounds, the
adiabatic approximation holds whenever hω is much smaller than
the first excitation energy.

IV. ADIABATIC CONTINUITY EQUATION
The lowest-order NT density matrix is ρ̂λ + δρ̂, with δρ̂ given by

Eq. (17): Only its second term contributes to the flux, while instead
only its first term contributes to the density. The lowest-order time-
derivative of n(r, t) is then (owing to time-reversal invariance)

∂

∂t
n(r, t) = 2λ̇(t)⟨Ψ0∣

N

∑
i=1
δ(r − ri) ∣∂λΨ0⟩. (19)

Therefore, at variance with the electronic flux [Eq. (18)], ∂n(r, t)/∂t
is obtained—to the same adiabatic order—from a single-state
expression.

Equations (7) and (18) yield

∇r ⋅ j(r, t) = 2i
h̵∑n

δρn0⟨Ψ0∣
N

∑
i=1
[ δ(r − ri), Ĥλ ] ∣Ψn⟩

= 2i
h̵∑n

δρn0(En − E0)⟨Ψ0∣
N

∑
i=1
δ(r − ri) ∣Ψn⟩

= −2λ̇(t)∑
n
⟨Ψ0∣

N

∑
i=1
δ(r − ri) ∣Ψn⟩⟨Ψn∣∂λΨ0⟩, (20)

whence the continuity equation follows by exploiting completeness.

V. ELECTRONIC FLUX IN CONDENSED MATTER
We have implicitly considered so far a bounded N-electron

system, whose wave functions vanish far away from the sample:

such boundary conditions are dubbed “open” in condensed-matter-
theory jargon. Next, we address instead an unbounded many-
electron system within Born–von-Kàrmàn periodic boundary con-
ditions (PBCs): the many-body wave functions are periodic with
period L over each electron Cartesian coordinate riα independently.
One considers, therefore, a system of N interacting electrons in a
cubic box—often called “supercell”—of volume L3, together with
its periodic replicas. The Hamiltonian has the same form as of
Eq. (9), where the potential Vλ now obeys PBCs and includes the
classical nuclear–nuclear repulsion; the supercell is charge-neutral.
The limit N →∞, L→∞, N/L3 = ⟨n⟩ constant is understood. It
is not required that the system is crystalline, only that it is macro-
scopically homogeneous. When the potential Vλ is adiabatically
varied, the microscopic electronic flux is provided by Eq. (18)
as it stands if the PBC eigenstates are normalized to one over
the supercell.

The additional feature here is the macroscopic electronic flux
⟨j(t)⟩, defined as the sample average of j(r, t), which obviously
is divergenceless. Suppose that the flux is along the positive x-
direction: such flux may exist owing ideally to an electron source
at x = −∞ and a drain at x = +∞. The electrical current density that
flows through the sample when Vλ is adiabatically varied in time
equals −e⟨j(t)⟩. This is the current due to the electrons only; the
nuclear charges may also contribute to the electrical current.

If one defines the many-body velocity operator as

v̂ = − ih̵
m

N

∑
i=0
∇ri =

1
m

N

∑
i=0

pi, (21)

then the macroscopic average of Eq. (18) is

⟨j(t)⟩ = − ih̵λ̇(t)
L3 ∑

n≠0
(⟨Ψ0∣ v̂ ∣Ψn⟩⟨Ψn∣∂λΨ0⟩

E0 − En
− cc). (22)

A powerful transformation, inspired once more by NT—although
somewhat different from the original formalism—allows eliminating
the sum over the excited states, as shown in the following.

One generalizes the Hamiltonian in Eq. (9) by considering the
family of Hamiltonians,

Ĥκλ = T̂κ + V̂λ T̂κ =
1

2m

N

∑
i=1
∣pi + h̵κ∣2. (23)

The PBC eigenvalues and eigenstates now depend on both κ and λ.
The vector parameter κ, having the dimensions of an inverse length,
corresponds to perturbing the Hamiltonian with a vector potential
A = hcκ/e, constant in space and in time: it is, therefore, a pure
gauge transformation. As observed back in 1964 by Kohn,13 PBCs
violate gauge-invariance in the conventional sense (at any finite L):
for instance, E0 may depend on κ. The virtue of Eq. (23) is that
the many-body velocity operator [Eq. (21)] and the average flux
[Eq. (22)] can be recast as

v̂ = 1
h̵
∂κĤκλ, κ = 0, (24)

⟨j(t)⟩ = − iλ̇(t)
L3 ∑

n≠0
(⟨Ψ0∣ ∂κĤκλ ∣Ψn⟩⟨Ψn∣∂λΨ0⟩

E0 − En
− cc). (25)
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Then, we note that perturbation theory yields

∣∂κψ0⟩ =∑
n≠0
∣Ψn⟩
⟨Ψn∣∂κĤκλ∣ψ0⟩

E0 − En
, (26)

⟨j(t)⟩ = − iλ̇(t)
L3 ( ⟨∂κΨ0∣∂λΨ0⟩ − ⟨∂λΨ0∣∂κΨ0⟩ ). (27)

The extensive quantity in parentheses, multiplied by i, takes, at the
present time, the name of many-body Berry curvature in the (κ, λ)
variables;11 here, it is evaluated at κ = 0.

The expressions provided above for both the microscopic flux
j(r, t) and the macroscopic one ⟨j(t)⟩ apply to either metals or insu-
lators and to either solids or liquids. In the special case of a crystalline
insulator, the adiabatic current −e⟨j(t)⟩ coincides by definition with
the time derivative of the macroscopic electrical polarization11,14

(electronic term thereof; the classical nuclear term has to be added).
In the case of an insulating liquid, whenever the nuclear configu-
ration λ(t) is a periodic function—i.e., λ(T) = λ(0), where T is a
macroscopic time—the integrated transported charge in time T is
integer: this outstanding fact is the theoretical basis for Faraday’s
laws of electrolysis.15 Finally, in the case of a metal, the current
−e⟨j(t)⟩ linearly induced by a dc electric field defines the Drude
weight of the material.16

VI. CONCLUSIONS
After defining in the Introduction the adiabaticity parameter

ω, I have shown how the concise and elegant NT approach can be
extended to molecular physics, thus yielding the electronic flux to
linear order in adiabaticity in terms of the eigenstates and eigen-
values of the instantaneous Hamiltonian at a given time; it is then
shown that the continuity equation is conserved to the same order.
The major result here—Eq. (18)—is not new: it has been first
obtained in Ref. 1 from a different logic, in a different formalism,
and even in a different semantics from NT (i.e., “complete” adiabatic
approximation).

In the chemical-physics literature, the flux problem has
been dealt with so far in the more general context of the
Born–Oppenheimer (also called Born–Huang) decoupling of the
equations of motion for a system of electrons and nuclei.1,2,9 At
variance with the previous literature, here, I have solely addressed
the adiabatic approximation by itself and the flux problem therein,
keeping—for the sake of clarity—the issue as conceptually dis-
tinct from the validity (or otherwise) of the Born–Oppenheimer
approximation in a given molecular-dynamics phenomenon.

The final part of this paper switches to condensed matter
physics within Born–von-Kàrmàn periodic boundary conditions in
order to summarize some of the known results about adiabatic
electron transport therein. In particular, I discuss the macroscopic
adiabatic flux, which was indeed the original focus of NT back in
1984.
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