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Abstract Control interventions in sustainable pest management schemes are
set according to the phenology and the population abundance of the pests.
This information can be obtained using suitable mathematical models that
describe the population dynamics based on individual life history responses
to environmental conditions and resource availability. These responses are de-
scribed by development, fecundity and survival rate functions, which can be
estimated from laboratory experiments. If experimental data are not available,
data on field population dynamics can be used for their estimation. This is the
case of the extrinsic mortality term that appears in the mortality rate func-
tion due to biotic factors. We propose a Bayesian approach to estimate the
probability density functions of the parameters in the extrinsic mortality rate
function, starting from data on population abundance. The method investi-
gates the time variability in the mortality parameters by comparing simulated
and observed trajectories. The grape berry moth, a pest of great importance
in European vineyards, has been considered as a case study. Simulated data
have been considered to evaluate the convergence of the algorithm, while field
data have been used to obtain estimates of the mortality for the grape berry
moth.
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1 Introduction

Ecologically based pest management is an important element in the devel-
opment of sustainable agriculture, to improve system sustainability, farmer
health and food safety. Sustainable pest management is becoming a key com-
ponent in both intensive and marginal farming as confirmed, for instance, by
the recent European guidelines (Directive 2009/128/EC) that encourage a sus-
tainable use of pesticides in order to reduce environmental and health impact,
and increase product quality.

Since the 1970s, multidisciplinary researches involving biologists, ecolo-
gists, entomologists and plant pathologists, mathematicians and meteorolo-
gists have developed useful tools to meet some of the multiple objectives of
sustainable pest management. Innovative elements of these works have led to
the development of mathematical models to support sustainable pest man-
agement programs. Many pest populations are stage-structured, and several
modelling frameworks for stage-structured population dynamics have been
proposed since the last decades of the twentieth century (see, e.g., Metz and
Diekmann, 1986; McDonald et al., 1989; Huffaker and Gutierrez, 1999).

A useful approach to simulate population dynamics is based on Fokker-
Planck partial differential equations (Gardiner 1994). Buffoni and Pasquali
(2007) followed this approach to model the abundance of an insect in time
and physiological age accounting for stochasticity in the development, and
they studied existence and stability of equilibrium points for this model. Model
formulation includes temperature-driven biodemographic responses that char-
acterize the life history traits of the individuals. These responses are described
by development, fecundity and survival rate functions.

In Gilioli et al. (2016), a modelling framework for stage-structured pest
population dynamics based on Fokker-Planck partial differential equations has
been presented and applied to the grape berry moth (Lobesia botrana, Den.
& Schiff.), a key pest in European vineyards. In this modelling framework the
biodemographic functions are estimated from laboratory experiments. If ex-
perimental data are not available, sampling data on field population dynamics
can be used for their estimation. This is the case of the extrinsic mortality
term that appears in the mortality rate function due to biotic factors. For
sake of simplicity, the extrinsic mortality terms were assumed to be constant
in time and space, and estimated using a least square estimation method.

In the present paper, we check whether the assumption of a constant extrin-
sic mortality is realistic or too restrictive, and we propose a Bayesian approach
to estimate the stage-specific mortality terms for the same dynamical model
presented in Gilioli et al. (2016). Starting from data collected in several years,
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Title Suppressed Due to Excessive Length 3

we consider two cases for the mortality parameters estimation. First, we sup-
pose that the parameters are constant in time, and we use the data to update
year by year the knowledge on the parameters. Second, we assume that the
parameters are characteristic of each year and we use the data of each specific
year for their estimation.

Time-series population dynamics observations are required to apply the
estimation method. They are supposed to be affected by a measurement error,
and then considered as random variables centered on the value given by the
dynamical model. Also the state variables of the model are stochastic, due
to the presence of stochastic parameters in the equations. The overall densi-
ties of the observations given the parameters are then used to compute the
likelihood function of the unknown parameters that, combined with prior dis-
tributions, give the posterior distributions according to the Bayes’ Theorem.
The population dynamics model considered does not allow knowing posterior
distributions in a closed form; thus, they are sampled using a Markov Chain
Monte Carlo (MCMC) algorithm.

The Bayesian framework is chosen because of the high flexibility. Bayesian
estimation allows to obtain the probability distribution for each parameter,
thus providing a complete information about the shape of the density together
with all of its quantiles. Another important feature of the Bayesian approaches
is that they are efficient also in case of few available data, eventuality often
occurring in ecological problems where it is burdensome to collect a large
amount of data.

More in general, Bayesian approaches represent a powerful tool to derive
knowledge and make predictions in ecology (see Dorazio, 2016), and they have
been already applied to estimate parameters in population dynamics described
by stochastic ordinary differential equations. For example, Gillespie and Go-
lightly (2010) estimated parameters in a stochastic population growth model
using a MCMC method; Heydari et al. (2014) proposed a Bayesian parameter
estimation for stochastic logistic growth models; Gilioli et al. (2008 and 2012)
and Mart́ın-Fernández et al. (2014) proposed Bayesian inference methods to
estimate parameters in a stochastic predator-prey system. Another Bayesian
modelling approach in an age-structured model can be found in Tsehaye et al.
(2014), where a multispecies model assesses the trade-offs between predatory
demands and prey productivities for a pelagic fish community.

Differently from these cases, in the present paper, the population dynam-
ics is described by a system of partial differential equations (see Gilioli et al.,
2016). The appropriateness of Bayesian estimation methods for partial differ-
ential equations has been documented in the literature (Prakasa Rao, 2000;
Xun et al., 2013). For example, Lanzarone et al. (2014) and Mart́ın-Fernández
and Lanzarone (2015) recently estimated the thermal conductivity of a poly-
meric specimen. However, to the best of our knowledge, Bayesian approaches
for partial differential equations have been only marginally used in ecology.
Hooten and Wikle (2008) presented a hierarchical Bayesian non-linear spatio-
temporal model for the spread of invasive species. Spence et al. (2016) used a
MCMC method to estimate a large number of parameters in a dynamic mul-
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4 E. Lanzarone et al.

tispecies size spectrum model for aquatic communities, described by a system
of partial differential equations.

Finally, a large number of papers can be found in the frequentist setting
for partial differential equations; for example, a recent paper by Roques et al.
(2016) provides a maximum likelihood approach to estimate the diffusion rates
in a population dynamics model described by a system of partial differential
equations.

In this paper, the Bayesian method has been applied to both simulated
and field data for the dynamics of the grape berry moth. The application
to simulated data is considered to evaluate the performance of the proposed
method. The application to field data allows to verify whether the assump-
tion of constant extrinsic mortality terms is realistic, and to make biological
considerations on estimated mortality terms of L. botrana.

The paper is structured as follows. The adopted population dynamics
model and the Bayesian estimation model for the mortality coefficients are
presented in Sections 2 and 3, respectively. Then, the application to L. botrana,
considering both a simulated dataset and the real field data, is described in
Section 4. The obtained results are presented in Section 5, and some discus-
sions and the conclusion of the work are reported in Section 6.

2 The population dynamics model

The population dynamics is represented by a system of partial differential
equations that describe the abundance of a population in time t and physio-
logical age x. The population is split in generations; for each generation, the
model describes a stage-structured population composed by s − 1 immature
stages and one reproductive stage (stage s). The physiological age x repre-
sents the percentage of completion of development in a stage. It ranges in the
interval [0, 1], where x = 0 when the individual enters in the stage, and x = 1
when the individual completes the development in that stage. As mentioned,
we refer to the formulation proposed in Gilioli et al. (2016).

Let us denote by φi(t, x) the abundance of individuals in stage i (i =
1, . . . , s) at time t, and by φi(t, x)dx the number of individuals in stage i
at time t with physiological age in (x, x + dx). The population dynamics is
described by the system:

∂φi

∂t
+

∂

∂x

[

vi(t)φi − σi ∂φ
i

∂x

]

+mi(t)φi = 0 t > t0, x ∈ (0, 1) (1)

[

vi(t)φi(t, x)− σi ∂φ
i

∂x

]

x=0

= F i(t) (2)

[

−σi ∂φ
i

∂x

]

x=1

= 0 (3)

φi(t0, x) = φ̂i(x) (4)
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where t0 is the initial time, i.e., the time of the first survey, φ̂i(x) is the initial
abundance in stage i as function of physiological age, and σi are the diffusion
coefficients (i = 1, . . . , s), assumed to be time independent.

Moreover, vi(t) and mi(t) are the development and the mortality rate func-
tions, respectively. F 1(t) is the egg production flux, given by:

F 1(t) = b(t)

∫ 1

0

f(x)φs(t, x)dx (5)

where b(t) summarizes the effects due to both diet and temperature, and f(x)
is the fertility profile. The other fluxes from stage i− 1 to stage i are given by

F i(t) = v(i−1)(t)φ(i−1)(t, x), i > 1.

Finally, the number of individuals in stage i at time t is obtained by inte-
grating φi(t, x) over x:

N i(t) =

∫ 1

0

φi(t, x)dx. (6)

Further details can be found in Buffoni and Pasquali (2007) and Gilioli et al.
(2016).

The functions f(x) and b(t) for the egg production flux in equation (5) are
given by (Gutierrez et al., 2012):

f(x) = max

{

δ(ηx− ξ)

θ(ηx−ξ)
, 0

}

(7)

b(t) = b0 (P (t)) a0

(

T̂ (t)
)

(8)

where ξ/η is the physiological age at which oviposition appears (Baumgärtner
and Baronio, 1988), and δη and θη are the initial fecundity rate and the fe-
cundity decrease with the adult age, respectively (Bieri et al., 1983). Function
b(t) depends on temperature and on the phenological stage of the plant P (t)
(where P (t) assumes a finite number of values). The function b0 (P (t)) is a
step function that depends on the considered population, and will be reported
later in Section 4.1 for the case of L. botrana. Moreover,

a0(T̂ ) = 1−

[

T̂ (t)− T̂L − T̂0

T̂0

]

(9)

according to Gutierrez et al. (2012), where T̂ (t) is the average temperature over
a time period [t−τ, t], which characterizes the temperature regime influencing
the status of an adult female, and where τ is a suitable time interval; T̂L is
the minimum temperature of reproduction; and T̂0 is the half-width of the
temperature interval of reproduction.

We assume, as in Gilioli et al. (2016), that the development and mortality
rate functions depend on time t through the temperature T (t).
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6 E. Lanzarone et al.

The development rate function vi(T ) is given for all i by a Lactin function
(Lactin et al., 1995):

vi(T ) = δi max
{

0, eα
iT − e

αiTm−
Tm−T

βi − γi
}

(10)

where parameters αi, βi, γi, δi and Tm depend on the population under study.
The mortality rate function mi(T ) is defined for all i as:

mi(T ) =































−vi(T ) ln
(

1−M i(T )
)

+ J i
g

T i
ML ≤ T ≤ T i

MU
[

−vi(T i
ML) ln

(

1−M i(T )
)

+ J i
g

] [

(T i
ML − T )2 + 1

]

T < T i
ML

[

−vi(T i
MU ) ln

(

1−M i(T )
)

+ J i
g

] [

(T − T i
MU )

2 + 1
]

T > T i
MU

(11)

where M i(T ) is the average stage proportional mortality as function of tem-
perature (Briolini et al., 1997):

M i(T ) =

{

ai
(

T−T i
M0

T i
M0

)2

+ ε T i
ML ≤ T ≤ T i

MU

0.85 otherwise
(12)

with ε representing the minimum fraction of dying individuals at temperature
T i
M0 (that we assume equal to 0.1), and

T i
M0 =

T i
ML + T i

MU

2

ai = (0.85− ε)

(

T i
MU

T i
M0

− 1

)−2

.

The interval
[

T i
ML, T

i
MU

]

(i = 1, . . . , s) is enclosed in the temperature
interval where the development function is non-zero. The value 0.85 outside
the interval

[

T i
ML, T

i
MU

]

and where the development is non-zero is arbitrarily
chosen to guarantee a little fraction of individuals surviving for low and high
temperatures.

The terms J i
g in (11), which depend on the stage i (i = 1, . . . , s) and on

the generation g (g = 1, . . . , G), represent the extrinsic mortality terms due to
biotic factors (Gilioli et al., 2016).

3 Bayesian estimation method

Estimation of the parameters in the biodemographic functions are based on
experimental data, when available. Unfortunately, no literature data are avail-
able for the extrinsic mortality terms J i

g. Hence, in this paper, we propose a
Bayesian estimation method for these terms based on population dynamics
field data. A previous parameter estimation, based on a least square method,
was presented in Gilioli et al. (2016). Here, differently from Gilioli et al. (2016),
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we do not make the restrictive assumptions that the terms J i
g are constant for

different years, but we allow to have different mortalities for each year. As
mentioned in the introduction, parameters J i

g are assumed either constant,
updating year by year their knowledge, or variable in time, assuming indepen-
dent J i

g for each year. The Bayesian approach gives an estimate of the J i
g in

terms of their probability density functions, which allow to directly evaluate
the uncertainty associated to the estimates.

Each parameter J i
g is assumed to be a random variable, and the estimate

is given in terms of its marginal posterior density, which is derived from the
joint posterior distribution of the parameter vector J =

(

J i
g

)

, i = 1, . . . , s;
g = 1, . . . , G. Such posterior distribution summarizes the information coming
from the prior knowledge on the parameters and the process observations (the
population dynamics in our case).

The next three subsections describe the elements of the Bayesian estima-
tion, i.e., the likelihood function, the prior density, and the posterior density.
The last subsections deal with the parameter estimation in the presence of
multi-year observations and with the method adopted to simulate the dynam-
ics, respectively.

3.1 Likelihood function

The likelihood function is obtained from the discretized formulation of the
population dynamics model in (1)-(6).

For this purpose, the system of partial differential equations is discretized
both in physiological age x and time t for each stage i (Buffoni and Pasquali,
2007; Di Cola et al., 1999). The number of individuals in stage i at time th
is denoted by N i(th), h = 1, 2, ..., H, where H is the number of points of the
time-discretization.

Each unknown extrinsic mortality term J i
g in (11) is assumed to be a

random variable. In this way, each discretized mortality rate function
{

mi (T (th)) , h = 1, . . . , H
}

is a random process. As a consequence, given the
initial conditions at time t0, the discretized abundances
{

φi (th, x) , h = 1, . . . , H
}

and the discretized numbers of individuals
{

N i(th), h = 1, . . . , H
}

are also random processes.
We can express the density of each N i(th) as conditioned to the terms J i

g

and the N i(th−1) values. In particular, following the structure of the system
(1)-(6) discretized in time and physiological age, we can write

N i(th) ∼ L
(

N i(th)|N
1(th−1), . . . , N

s(th−1),J
)

∀i, h (13)

where L denotes the conditioned probability law, which does not follow any
known form due to the structure of the system.

Let us suppose, for each i, that observations N i
obs of N i are taken at some

time instants th∗ , where {th∗} is the subset of the discretized instants {th} in
which an observation is available (the discretization step∆t is chosen according
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8 E. Lanzarone et al.

to the differential equations, and the frequency of the observations may be less
dense than ∆t, or observations may not be equally spaced).

We consider that the observations N i
obs(th∗) are subject to a measurement

error; then, we assume them as stochastic variables following a Gamma distri-
bution with modal value N i(th∗):

N i
obs(th∗) ∼ G

(

1 + βlikN
i(th∗), βlik

)

∀i, h∗ (14)

where G denotes the Gamma distribution with shape parameter 1 + βlikN
i(t)

and rate parameter βlik. Parameters βlik have not a biological meaning, while
they simply allows tuning the variance of the distributions keeping the modal
value fixed at N i(th∗).

For the sake of simplicity, we consider in the notation the same subset
{th∗} for all stages i; however, there is not limitation and the subsets may
differ from stage to stage.

Combining (13) and (14), we obtain for each i the conditional law of the
observations at each time instant th∗ in which an observation is available.
The product of the conditional laws over th∗ determines for each i the likeli-
hood function of the vector of observations given the parameters J i

g, and their
product over i determines the overall likelihood function.

f
(

N̂obs|J
)

=

=
∏

i,h∗

G
(

1 + βlikN
i(th∗), βlik

)

×

×L∗
(

N i(th∗)|N
1(th∗−1), . . . , N

s(th∗−1),J
)

(15)

where N̂obs =
(

N̂1
obs, . . . , N̂

s
obs

)

denotes the overall set of observations, and

N̂ i
obs the set of all observations for stage i.
The law L∗

(

N i(th∗)|N
1(th∗−1), . . . , N

s(th∗−1),J
)

represents the marginal
density of N i(th∗), obtained combining all densities L in (13) between the
current observation at th∗ and the previous one at th∗−1.

Other approaches are possible, e.g., approaches that include the genera-
tion of latent observations (see, among others, Durham and Gallant, 2002;
Elerian et al., 2001; Gilioli et al., 2008 and 2012; Golightly and Wilkinson,
2005 and 2008; Lanzarone et al., 2014; Mart́ın-Fernández et al., 2014). We
avoid the generation of latent data because, in the proposed form, the distri-
butions of N i(th∗) already take into account all values of N i(th) in the interval
[th∗−1, th∗).

3.2 Prior density

We denote as π (J) the prior distribution for the parameter vector J. Each
parameter J i

g is assumed to be a priori independent of the others, so that the
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joint prior density is the product of the marginal prior densities:

π (J) =
∏

i,g

π
(

J i
g

)

Two types of marginal prior distributions are adopted for each parameter:

1. Uniform distribution defined by the minimum value J ig
min and the maxi-

mum value J ig
max;

2. Gamma distribution defined by the shape αJi
g
and rate βJi

g
parameters,

respectively.

Both of them refer to non-negative parameters; hence, J ig
min ≥ 0 is imposed

for each parameter, while the Gamma density does not allow negative values
and no restrictions are required.

The choice about the type of the marginal prior distribution and the asso-
ciated parameters will be discussed later in the application to the grape berry
moth population. For now, we anticipate that the first alternative refers to
the case in which the only available information is an admissible range for the
parameters, whereas the latter to the case where additional a priori knowledge
can be exploited.

3.3 Posterior density

The joint posterior density is proportional to the product between the likeli-
hood function and the joint prior distribution, according to the Bayes’ theorem:

π
(

J|N̂obs

)

∝ f
(

N̂obs|J
)

π (J) (16)

Then, from the joint posterior density π
(

J|N̂obs

)

, each marginal posterior

density π
(

J i
g|N̂obs

)

is obtained.

The posterior estimation cannot be derived in a closed analytical form;
hence, a Markov Chain Monte Carlo (MCMC) method is adopted. We use
STAN (STAN, 2015) through its R interface, which implements the Hamil-
tonian Monte Carlo algorithm for obtaining a sequence of random samples
from each marginal posterior density. We adopt STAN rather than other more
spread tools, e.g. JAGS (Plummer, 2003), mainly for two reasons:

– STAN allows to use C++ code with the possibility of including for cycles,
whereas other tools do not allow cycles and a variable must be declared
for each index, with consequent higher memory utilization;

– the Hamiltonian Monte Carlo, also known as hybrid Monte Carlo algo-
rithm, differs from the Metropolis-Hastings algorithm (a widely used MCMC
method) because it reduces the correlation between successive samples;
this guarantees a quicker convergence with consequent lower computational
times (Duane et al., 1987).

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



10 E. Lanzarone et al.

3.4 Multi-year approach

Data on grape berry moth population abundance are available during the
growing season, i.e., from Spring to Autum. In the presence of data acquired
in several years, our approach can be iteratively applied year by year, once the
new data of a year are acquired. In this case, our estimation method can be
applied in two different ways, i.e., following a constant approach or a variable

approach. The first is used when the mortality parameters can be assumed to
be constant over the years, while the latter when the mortality parameters
may evolve from year to year. Every year, the initial condition for system (1)-
(4) is given by the number of adults collected per week in that year, until the
first larvae of the first generation are observed.

– Constant approach

If the mortality parameters are constant, we can increase their knowledge
year by year by adding the new observations. The marginal posterior den-
sities of J obtained in a year are used as the prior independent densities of
J i
g for the following year. If the mortality parameters are actually constant,

their marginal posterior densities should concentrate year by year around
the true parameter values with stricter variances. The algorithm for the
constant approach can be summarized as follows:

1. First year
At the first year, the only available information is an admissible range
for all mortality parameters. Then, a Uniform prior distribution on
this interval has been chosen for each parameter, and parameters are
assumed to be independent. The joint posterior distribution of J is then
obtained applying the estimation method described in Sections 3.1-3.3.
Such joint density is finally marginalized into the marginal densities of
each mortality parameter J i

g.

2. Each following year
We start from the marginal posterior densities of the previous year.
Each one is fitted either with a Uniform or a Gamma density depending
on its shape: a Gamma density truncated in the admissible range is used
if the density is strict around a peak value, while a Uniform density on
the admissible range is chosen in case a peak is not present. These
marginal and fitted densities are then used as independent priors for
the current year. Once again, the joint posterior distribution of J is
obtained applying the Bayesian estimation method. Finally, such joint
density is marginalized into the marginal densities of each mortality
parameter J i

g.

– Variable approach

The parameter estimation is independently performed year by year, start-
ing from the same Uniform prior distributions at each year. We only apply
step 1 of the algorithm presented for the constant approach. In this way,
we obtain different posterior distributions for each considered year.
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3.5 Generation of simulated dynamics

The population dynamics are simulated considering all samples of parameter
vector J generated by the MCMC algorithm. For each sample of the vector,
we draw the trajectory of all populations. Then, the median trend and the
2.5%-97.5% confidence bands among the sampled trajectories are extracted
point by point from the trajectories, as done, e.g., in Lamonica et al. (2016a;
2016b).

As for the constant approach, we use the posterior density of the last year to
generate the dynamics of all years. As for the variable approach, the dynamics
of each year are generated with the posterior density of the same year.

4 Application to the grape berry moth population

The proposed Bayesian estimation approach has been applied to the popula-
tion dynamics of the grape berry moth L. botrana, i.e., the most important
pest of grape (Vitis vinifera) in the Mediterranean basin (CABI, 2014). The
population is composed by 4 biological stages: the first 3 stages (i = 1, 2, 3)
are immature (i.e., eggs, larvae and pupae), while the fourth stage (i = 4)
represents the reproductive adults.

Data on population abundance (number of individuals per sampling unit)
were collected, for the late cultivar Garganega, in a vineyard in Colognola ai
Colli (Italy) for the years 2008, 2009, and 2011, as presented in Gilioli et al.
(2016). At each year, the number of eggs, larvae, pupae and adults have been
weekly recorded, from April up to grape harvest in September, on a sample
of 100 grapes. The number of available observations is between 25 and 31
for each year. Moreover, the temperatures have been hourly recorded by a
meteorological station placed nearby the vineyard. Collected data show four
generations of L. botrana (G = 4), i.e., the maximum number of generations
in Southern Europe (Marchesini and Dalla Montà, 2004; Pavan et al., 2010).

To validate the approach, we first apply the constant approach to a simu-
lated dataset generated with constant parameters (see Section 4.2). The goal
is to check whether the marginal posterior distributions concentrate year by
year around the true values of the parameters (those used to generate the
simulated data). Then, we apply both the approaches to the real field data,
for which we do not know whether the parameters are constant or vary from
year to year.

The discretization step ∆t is 2 hours and each th∗ is the day and time slot
in which the observation N i

obs is taken. The parameters βlik are taken equal
to 1 for all the stages, i.e., we assume Gamma densities (14) with equal mean
and variance.

Estimations are run on a Server equipped with X86-64 AMD Opteron pro-
cessor 6328 and 26GB of installed RAM, considering 1000 iterations after a
warm up of 100 iterations. This order of magnitude for number of iterations
is admissible for the Hamiltonian Monte Carlo implemented in STAN (STAN,
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12 E. Lanzarone et al.

Stage αi βi γi δi T i
ML

T i
MU

i = 1 0.01 0.8051 1.0904 1 8.8 34.79
i = 2 0.003 0.662 1.0281 1 9.1 34.27
i = 3 0.0076 1.7099 1.0929 1.1 11.73 32.67
i = 4 0.0076 1.7099 1.0929 1.1 11.73 32.67

Table 1 Parameters of the development (10), and mortality (11) rate functions of L. botrana
(Gilioli et al., 2016), for the different stages: eggs (i = 1), larvae (i = 2), pupae (i = 3),
adults (i = 4).

2015), because of the reduced correlation between successive samples (Duane
et al., 1987). In addition, standard convergence diagnostics have been checked
using the CODA package (Plummer et al., 2006), and trace plots, autocorre-
lations and bivariate scatter plots have been checked for all parameters. All
of these analyses indicated in all cases the convergence of the chain with the
used number of iterations.

4.1 Parameters of biodemographic functions

The parameters of the biodemographic functions adopted in this work are the
same estimated in Gilioli et al. (2016) by means of a least square method.
Stage-dependent parameters are reported in Table 1.

Moreover, Tm in (10) is equal to 36o C, while the values of the parameters
appearing in (7) are δ = 1.4175, η = 380, ξ = 16, and θ = 1.025, respec-
tively. The temperatures in (9) are T̂L = 17oC and T̂0 = 7.5oC. The diffusion
coefficients σi are taken equal to 0.0001 for all i. The time interval τ is 10
days.

Finally, the discrete function b0 (P (t)) takes the following values depending
on the plant stages (Gutierrez et al., 2012)

b0(P (t)) =







0.31 P (t) = inflorescence stage
0.48 P (t) = green berries
1 P (t) = maturing fruits

We anticipate here that, based on the results obtained in Gilioli et al.
(2016), we assume that parameters J i

g are constrained in the interval [0, 0.25].
The left bound is due to the fact that the parameters must be non-negative,
according to their definition, while the right bound exceeds the values of nat-
ural mortality reported in literature (Marchesini, 2007). Hence, values J ig

min

and J ig
max of the Uniform prior densities are assumed equal to 0 and 0.25 for

each i and g, respectively.

4.2 Generation of the simulated dataset

Simulated data are generated for the same three years starting from the same
initial conditions of the field data, i.e., the number of adults collected per week
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Ji
g

i = 1 i = 2 i = 3 i = 4
(eggs) (larvae) (pupae) (adults)

g = 1 – – – 0
g = 2 0 0.05 0 0
g = 3 0.2 0 0.05 0.2

Table 2 Values of parameters Ji
g used to generate the simulated data.

until the first larvae of the first generation are observed. The same tempera-
ture hourly recorded have been considered, and the mortality parameters J i

g

reported in Table 2 have been adopted, which are an approximation of those
estimated in Gilioli et al. (2016). Finally, as for the other parameters of the
biodemographic functions, those described in Section 4.1 have been uesed.

We run the discretized version of the demographic model in (1)-(6) to
obtain weekly data for eggs, larvae, pupae and adults. We generate the values
at each discretized time instant up to the third adults’ generation, and we
take as simulated data the values at the beginning of the day in which a field
observation has been collected. Depending on the year, we obtain from 18 to
20 data for each simulated dynamics.

5 Results

5.1 Simulated data

As mentioned, in the case of simulated data, we applied the constant approach
for the three years 2008, 2009, and 2011 in sequence.

Figure 1 reports the histograms of the posterior distributions after the

third year 2011 (i.e., the marginal densities of π
(

J|N̂obs2011

)

obtained using

the marginal densities of π
(

J|N̂obs2009

)

as prior distributions), together with

the fitted Gamma distributions. Results show that all histograms are well fitted
by a truncated Gamma density, both in terms of modal value and variability.

Figure 2 shows the box-plots of the marginal posterior distributions for the

three years (i.e., of π
(

J|N̂obs2008

)

obtained with the uniform prior distribu-

tions, of π
(

J|N̂obs2009

)

obtained with the marginal densities of π
(

J|N̂obs2008

)

as prior distributions, and of π
(

J|N̂obs2011

)

obtained with the marginal den-

sities of π
(

J|N̂obs2009

)

as prior distributions), compared with the true values

used for generating the dataset (Table 2). It can be observed that the true

values are always included in the 2.5%-97.5% confidence interval of the pos-
terior densities, but they are often far from the median of the distribution.
However, this is not a drawback because the simulated dynamics reproduce
the dataset very well. In particular, all simulated observations are included in
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Fig. 1 Histograms of the Ji
g marginal posterior distributions after the third year 2011, for

the case of simulated data: generations g = 2, 3 for stages i = 1, 2, 3 (i.e., eggs, larvae and
pupae, respectively), and generations g = 1, 2, 3 for i = 4 (i.e., adults). Black lines represent
the fit with a truncated Gamma density on [0,0.25].

the 2.5%-97.5% confidence interval of the dynamics and, above all, most of
the observations are very close to the median (Figure 3).

The box-plots show a shrinkage of the 25%-75% confidence intervals from
2008 to 2011. The variance of the curves decreases in time and the greater
shrinkage of the distributions is observed from the first to the second year.

Finally, we remark that strict 2.5%-97.5% confidence bands are obtained
for all dynamics (Figure 3), confirming the converge of the approach.

5.2 Field data

For the field data we firstly applied the constant approach over the three years
2008, 2009, and 2011, computing the posterior distributions as in the simulated
data case. Differently from the simulated data case, here we do not observe a
shrinkage in time for all the mortality parameters (Figure 4), especially for the
second generation (g = 2) and for pupae (i = 3). Moreover, we do not observe
any trend over the years, and most of the 2.5%-97.5% confidence intervals
overlap among years.
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Fig. 2 Box-plots of the Ji
g marginal posterior distributions for all years 2008, 2009, and

2011, for the case of simulated data. Dashed lines represent the true values of the parameters
(Table 2).

Then, we applied the variable approach, where no constraints link the pa-
rameters among the years; the box-plots of the marginal posterior distributions

of π
(

J|N̂obs2008

)

, π
(

J|N̂obs2009

)

and π
(

J|N̂obs2011

)

, all obtained with the

uniform prior distributions, are reported in Figure 5. From the comparison
with Figure 4, it can be seen that a large variability among years exists in
both cases for the pupae, while the estimates of extrinsic mortality rates are
quite constant for the eggs of the last two generations and the larvae of the
third generation. For all stages and generations, the variability is greater in
the variable (Figure 5) than in the constant approach (Figure 4), especially for
adults, because of the Uniform priors used in all the years. Also in this case,
we do not observe any trend over the years, and the 2.5%-97.5% confidence
intervals overlap among years.

Looking at the box-plots of the posterior distributions, even if a certain
overlapping is observed, it is not possible to establish whether parameters
are constant or variable in time. Wilcoxon hypothesis test, performed for each
extrinsic mortality term to investigate the differences from year to year, reveals
significant differences for both the case of constant and variable approach.
However, these significant differences are not associated with any trend and

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



16 E. Lanzarone et al.

100 150 200

n
. 

o
f 

e
g

g
s

0

50

100

150

200

100 150 200

n
. 

o
f 

la
rv

a
e

0

50

100

150
2008

100 150 200

n
. 

o
f 

p
u

p
a

e

0

10

20

30

100 150 200

n
. 

o
f 

e
g

g
s

0

50

100

150

200

100 150 200

n
. 

o
f 

la
rv

a
e

0

50

100

150
2009

100 150 200

n
. 

o
f 

p
u

p
a

e

0

10

20

30

time (days)

100 150 200

n
. 

o
f 

e
g

g
s

0

20

40

60

80

time (days)

100 150 200

n
. 

o
f 

la
rv

a
e

0

20

40

60

80
2011

time (days)

100 150 200
n

. 
o

f 
p

u
p

a
e

0

5

10

15

Fig. 3 Simulated dynamics of L. botrana for all years 2008 (first row), 2009 (second row),
and 2011 (third row), for the case of simulated data: median (continuous line) and 2.5%-
97.5% confidence bands (dashed lines). Asterisks represent the simulated data.

cannot be explained by any environmental covariate; therefore this variability
can be considered of poor biological relevance (EFSA, 2011). To the end of
decision support in sustainable pest control, it is important that the simulated
trajectories satisfactory interpret the phenology of the pest (i.e., the temporal
dynamics of the major events describing the change in the biological stages). A
very similar phenology can be observed by comparing the simulated dynamics
(median and 2.5%-97.5% confidence band) of the constant and the variable

approaches, which is also in agreement with the field data. It follows that both
approaches are effective for the purpose of decision support.

Thus, we keep the assumption of constant parameters, as it gives a lower
variability in the posterior densities of the extrinsic mortalities, and it has also
positive implications from the applicative point of view, because it avoids the
need of new estimates for every year. Once the parameter estimation is per-
formed for a certain number of years, we can guess that the obtained posterior
distributions are also valid for the subsequent years.

The simulated dynamics (median and 2.5%-97.5% confidence band) for
the chosen constant approach are reported in Figure 6 for all years 2008, 2009,
and 2011. Differently from the case of simulated data, a certain amount of
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Fig. 4 Box-plots of the Ji
g marginal posterior distributions for all years 2008, 2009, and

2011, for the case of field data, under the constant approach.

observations fall outside of the 2.5%-97.5% confidence band. However, this does
not indicate bad estimation performance of the proposed approach, because
the field observations are affected by high sampling errors. Thus, the estimated
parameters try to compensate the error between the observations and the
simulated trajectories of all the stages obtained from the demographic model.
As a matter of fact, the results with the simulated data (which are not affected
by measurement errors) are highly satisfactory.

Furthermore, as mentioned, in the perspective of a threshold-based de-
cision making for control intervention the model correctly reveals when the
abundance crosses the control threshold. For example, using an action thresh-
old for the second larval generation of 15 larvae per 100 berry bunch, the
model provides exact indications in all three years (CABI, 2014).

Comparing the results here obtained with those in Gilioli et al. (2016),
we observe that also the simulated trajectories obtained with the least square
estimation present overestimation and underestimation of population abun-
dance. Moreover, the phenology of the grape berry moth is well reproduced
in both cases, as well as the crossing of the control threshold for larvae. In
this paper, differently from Gilioli et al. (2016), we test whether the mortality
parameters are constant or vary among years, finding no evidence that they
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Fig. 5 Box-plots of the Ji
g marginal posterior distributions for all years 2008, 2009, and

2011, for the case of field data, under the variable approach.

differ from year to year. Moreover, thanks to the Bayesian setting, we have
here obtained the entire probability density functions of the estimates, and
the confidence bands for the trajectories have been directly generated from
the MCMC parameter estimation.
Data collected for a new year can be used without redoing the estimation
for the past observations. In fact, under the constant approach, every year we
consider only the observations of that year, while information coming from
previous observations are summarized in the prior distribution. With the least
square method, estimation has to be performed every year considering all the
observations.

6 Discussion and conclusions

In this paper we consider a stage-structured demographic model describing
the dynamics of one species, and we propose a Bayesian approach to estimate
a mortality term for each stage due to biotic factors, namely the extrinsic
mortality term. The estimation method is sufficiently general to be used for
all species whose dynamics can be described by the model presented in Section
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Fig. 6 Simulated dynamics of L. botrana for all years 2008 (first row), 2009 (second row),
and 2011 (third row), for the case of field data, using the constant approach: median (con-
tinuous line) and 2.5%-97.5% confidence bands (dashed lines). Asterisks represent the field
data collected in Colognola ai Colli.

2, and it can be applied also when abundance data are available only for some
stages.

Some advantages derive from the adoption of the Bayesian framework.
If some knowledge about the extrinsic mortality parameters is available, it
can be summarized into a prior distribution that, suitably updated with the
observations on the dynamics, gives a posterior distribution for each unknown
parameter. The posterior distribution also allows to evaluate the uncertainty
associated to each parameter. This uncertainty, in the proposed constant multi-
year approach, can be also reduced by using observations from different years.
In such approach, we update the knowledge of the mortality parameters year
by year, by deriving the prior density at a given year from the posterior of the
previous one and exploiting only the current year observations in the likelihood
function.

To illustrate the use of the proposed method, an application to a pest of
vineyards, the grape berry moth, has been considered. We started from Uni-
form prior distributions, because the only available information on the param-
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eters to estimate was the admissible range. In a first analysis with simulated
data, the convergence of the estimation method is observed while assuming
the parameters to be constant (constant approach). In a second analysis with
field data, we inferred the behaviour of the parameters and we found that the
constant and the variable approaches give similar results in terms of phenology
of the grape berry moth. Thus, we opted for the assumption of constant pa-
rameters, which simplifies the estimation process and allows us to fully exploit
the above mentioned advantages of the Bayesian approach. In this way, the pa-
rameter distributions obtained for the last year can be updated using the new
collected observations and, after a certain number of years, we obtain parame-
ter posterior distributions that can be considered valid for all subsequent years
and are characterized by narrowed confidence intervals. This should improve
management decision process after some years.

Moreover, from the biological point of view, the assumption of constant
parameters seems to support the hypothesis of a well-established community
of natural enemies which provide a significant contribution to natural pest
control with relatively low inter-annual variability.

Finally we remark that, with the estimation method here proposed, data
collected in a year can be used only at the end of the year. Other real-time
approaches are also possible, based, e.g., on particle filters, alternatively known
as sequential Monte Carlo methods. They allow to use an observation as soon
as it becomes available, and to follow the temporal variation of the estimated
parameters (Mart́ın-Fernández et al., 2014; Mart́ın-Fernández and Lanzarone,
2015).
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