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ABSTRACT

It is essential estimating the spatial distribution of soil organic carbon (SOC) and soil total
nitrogen (STN) stocks and their spatial-temporal variations to understand the role of soil in
ecosystem services and in the global cycles of carbon and nitrogen. This work was aimed to
quantify and map the stocks of SOC and STN in topsoils in an area of the Biogenetic Natural
Reserve ‘Marchesale’ (Calabria region, southern Italy). Forest soil samples (0-20 cm depth)
were collected at 231 locations and analysed in laboratory for SOC and STN. Moreover, in all
samples, bulk density (BD) and soil coarse fragments (SCFs) were determined. Geostatistics
was used to map all soil properties (SOC, STN, BD and SCFs) and the stocks of SOC and STN.
The mean stock values were 86.3 Mgha~' for SOC and 5.1 Mg ha™' for STN. The total
amounts stored in the study area (33.2 ha) were 2865.2 Mg for SOC and 170.1 Mg for STN.
Although only the topsoil was considered, the accompanying maps (1:4000 scale) will
be useful for the sustainable management of the Biogenetic Natural Reserve ‘Marchesale’
and for undertaking appropriate conservation plans to mitigate the emissions of greenhouse
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gases.

1. Introduction

Soil is a key component of terrestrial ecosystems gener-
ating a multitude of functions that support the delivery
of ecosystems functions (Blum, 2005; CEC, 2006; Han-
nam & Boer, 2004; Palm, Sanchez, Ahamed, & Awiti,
2007).

In spite of the importance of soil, ecosystem ser-
vices have been described with little emphasis on
soil (Costanza et al., 1997; De Groot, Wilson, & Bou-
mans, 2002; MEA, 2005). It is very important to link
both soil properties (i.e. carbon, biota, nutrient
cycling and moisture retention) and soil distribution
for ecosystem services (Barrios, 2007; Ghaley, Porter,
& Sandhu, 2014; Khanna, Oenal, Dhungana, & Wan-
der, 2010; Krishnaswamy et al., 2013; Marks et al,
2009; Van Eekeren et al., 2010; Williams & Hedlund,
2013).

Maps of soil properties and processes at suitable res-
olutions are essential for modelling ecosystem services
at different scales (Palm et al., 2007). In addition, infor-
mation on chemical and physical soil properties and
their spatial distribution is useful to characterize devel-
opment and/or degradation conditions of soils (Con-
forti et al., 2013; Lal, 2004). In particular, soil organic
carbon (SOC) and soil total nitrogen (STN) are impor-
tant properties both for assessing pedogenetic pro-
cesses and soil quality (Pan, Birdsey, Hom, &

McCullough, 2009), and defining soil functions which
determine the delivery of ecosystem services (Ghaley
et al., 2014; Khanna et al., 2010). SOC and STN also
play a key role as sources and sinks in global carbon
and nitrogen cycles (Lal, 2004). The biogeochemical
cycles of carbon and nitrogen in terrestrial ecosystems
have received increasing attention worldwide over the
last two decades because their emission into the atmos-
phere contributes greatly to global warming (Fu, Shao,
Wei, & Robertm, 2010). Soils are the major terrestrial
sink of organic carbon and about 1500 PgC are stored
in the first metre of the soil (Batjes, 1996). Approxi-
mately 66% of the estimated global organic carbon is
stored in forest soils (Dixon et al., 1994; Jobbagy &
Jackson, 2000). The spatial variation of SOC stocks in
different forest ecosystems (e.g. boreal, temperate and
tropical) is controlled by several environmental factors
such as latitude, air temperature, precipitation regime,
topographic relief, vegetation species, primary pro-
ductivity, quantity and quality of litter, soil types, soil
moisture regime and soil microbial activity (Batjes,
1996; Cambule, Rossiter, Stoorvogel, & Smaling,
2014; Conforti, Luca, Scarciglia, Matteucci, & Butta-
fuoco, 2016; Fantappie, L’ Abate, & Costantini, 2011;
Fu et al, 2010; Ganuza & Almendros, 2003; Jobbagy
& Jackson, 2000; Kunkel, Flores, Smith, McNamara,
& Benner, 2011; Lal, 2005; Liu et al, 2006; Marty,
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Houle, & Gagnon, 2015; Stevenson, 1999; Takata,
Funakawa, Akshalov, Ishida, & Kosaki, 2007; Telles
et al., 2003; Thompson & Kolka, 2005; Wang, Zhang,
Zhang, & Li, 2009; Yimer, Ledin, & Abdelkadir,
2006). Changes in land use and forest management
practices can also have significant effects on SOC
pools (Fu et al., 2010; Jobbagy & Jackson, 2000; Lal,
2005). It has been recognized that small fluctuations
of the SOC pool could have large impacts on the
atmospheric CO, concentration (Lal, 2004; Powlson,
Whitmore, & Goulding, 2011). Therefore, mapping
stocks of SOC and STN, and identifying the environ-
mental factors controlling their spatial variability is
important for identifying, quantifying and under-
standing natural carbon and nitrogen sinks to miti-
gate the effects of climate change (Jobbagy &
Jackson, 2000; Lal, 2005; Yang, Luo, & Finzi, 2011;
Yimer et al., 2006). Many studies have also analysed
the spatial variability of SOC and STN distribution
and stocks at different spatial scales (e.g. Grimm,
Behrens, Marker, & Elsenbeer, 2008; Kumar, Lal, &
Liu, 2012; Liu et al., 2006; Rodriguez Martin et al.,
2016; Thompson & Kolka, 2005 Wang, Fu, Lu,
Song, & Luan, 2010; Wiesmeier et al., 2014).

The objective of this study is to quantify and map
the stocks of organic carbon and total nitrogen in forest
topsoils in an area of the Biogenetic Natural Reserve
‘Marchesale’ (Calabria region, southern Italy).

2. Material and methods
2.1. Study area

The study area is a Natura 2000 site in the Biogenetic
Nature Reserve ‘Marchesale’, in the Calabria region
(southern Italy), between 38° 30" 7” N and 38° 29’
31" N and 16° 14’ 10” E to 16° 14’ 42" E (Figure 1
(a)). The study area is about 33.2 ha in area and is cov-
ered by a high forest of beech (Fagus sylvatica L.),
sometimes mixed with silver fir (Abies alba Mill.)
trees (Conforti et al., 2016). Elevation ranges from
1137 to 1212 m above sea level and slopes vary from
0° to about 45° (mean 10°) and the predominant
slope aspects are north and west.

Climate is Mediterranean upland (Csb-type, sensu
Koppen, 1936) with a mean annual precipitation of
about 1800 mm, concentrated mainly from November
to February. The annual mean temperature is 11.3°C
with a mean maximum value of 28.3°C in summer
and a mean minimum value of —3.7°C in winter (Con-
forti et al., 2016).

Geologically the study area lies in the Serre Massif,
where Palaeozoic granitoid rocks outcrop. These
rocks are strongly jointed, weathered and frequently
covered by thick regolith some of which are colluvial
deposits (Calcaterra, Parise, & Dattola, 1996; Conforti,
Froio, Matteucci, & Buttafuoco, 2015).

The landscapes of the study area are characterized
by summit paleosurfaces, which represent the residual
flat or gently sloping highlands, often separated by
steep slopes with deep V-shaped valleys (Calcaterra &
Parise, 2010; Conforti et al., 2016; Luca, Robustelli,
Conforti, & Fabbricatore, 2011).

The soils developed over this area were classified
according to the USDA (2014) as Inceptosols
(Humic Dystrudept) and Entisols (Lithic Udipsam-
ments) and are heavily dependent on the nature of
the parent rock and topographic features (Conforti
et al., 2016). Soil depth ranges from shallow to mod-
erately deep (0.2-1 m) with profiles characterized by
A-Bw-Cr horizons and/or A-Cr horizons (ARSSA,
2003). The A horizon shows a very dark brown colour
due to the high accumulation of organic matter
(Umbric epipedon, USDA, 2014); moreover, these soils
have acidic pH varying between 4.0 and 5.3 (Conforti
et al,, 2016).

2.2. Data collection and analysis

Topsoil (0-20 cm depth) samples were collected at 231
locations, between September and October 2012
(Figure 1(b)); at the same time, undisturbed soil
samples to measure bulk density (BD) were collected
using a metallic core cylinder with a diameter of
7.5 cm and a length of 20 cm (883.13 cm?). The limit
of the top 20 cm of the soil was chosen because it
often represents the limit of the A horizons measured
from the base of the organic horizons (Conforti et al.,
2016), which were removed. All the coordinates
of the sampling locations were determined using a
global positioning system receiver with a precision
of about 1 m. The sampling strategy was to collect
representative data of the various landforms of the
study area.

Each soil core was oven dried at 105°C until con-
stant weight. Soil BD was calculated as the ratio of
the dry weight and the metallic core volume.

The disturbed soil samples were air-dried, gently
crushed and passed through a 2-mm mesh sieve to col-
lect the fine earth fraction; gravels (diameter >2 mm)
were weighed to obtain the volumetric percentage of
soil coarse fragments (SCFs).

The fine earth, after a pre-treatment with sodium
hexametaphosphate as a dispersant, was analysed for
particle size distribution (sand, silt and clay fractions)
using the hydrometer method (Patruno, Cavazza, &
Castrignano, 1997). The particle size distribution was
then classified in accordance with the soil texture tri-
angle of the United States Department of Agriculture
(USDA). SOC and STN concentrations were deter-
mined by dry combustion at 900° of subsamples of
soil (5 mg), previously sieved at 0.25 mm, using the
Elemental Analyzer NA 1500 (Carlo Erba Instruments,
Milan, Italy).
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Figure 1. (a) Location of study area and (b) lithologic map and topsoil sampling locations.

Stocks of SOC and STN were determined using the
following equations:

SOC xD x BD x (1 — SCFs/100)

SOC stock =
10
(1)
T D x BD 1 — SCFs/1
STN stock — STN xD x x ( SCFs/ OO)’
10
)

where SOC (g kg™") is soil organic carbon and STN is
soil total nitrogen concentration (gkg™'); D is layer
thickness (20 cm) of the topsoil, BD (g cm™) is soil
bulk density and SCFs is soil coarse fragments content
(% of volume) using an average rock density of
2.65 g cm™ (USDA, 2014).

All input variables (SOC, STN, BD and SCFs) were
spatially predicted using a geostatistical approach
before the determination of both stocks to reduce
the propagation of errors in input data through
Equations (1) and (2). Successively, the Equations
(1) and (2) were implemented in a geographic infor-
mation system (GIS) to calculate SOC and STN
stocks.

2.3. Geostatistical approach

Every input variable (SOC, STN, BD and SCFs) was
modelled as an intrinsic stationary process. For every

soil property, each datum z(x,) at different location
X, (x is the location coordinates vector and « the
sampling points=1, ..., N) was interpreted as a par-
ticular realization of a random variable Z(x,).

The quantitative measure of spatial correlation of
the regionalized variable z(x,) is the experimental var-
iogram y(h) which is a function of the distance vector
(h) of data pair values [z(x,), z(x,+h)]. A theoretical
function, called the variogram model, is fitted to the
experimental variogram to allow estimation of the var-
iogram analytically for any distance h. Experimental
variograms can be modelled using only functions that
are conditionally negatively defined, in order to ensure
the non-negativity of the variance of the prediction
error. The objective is to build a permissible model
that captures the main spatial features of the attribute
under study. The variogram model generally requires
two parameters: range and sill. The range is the dis-
tance over which pairs of the analysed soil property
values are spatially correlated, while the sill is the var-
iogram value corresponding to the range. The optimal
fitting is chosen on the basis of cross-validation, which
checks the compatibility between the data and the
structural model considering each data point in turn,
removing it temporarily from the data set and using
its neighbouring information to predict the value of
the variable at its location. The estimate is compared
with the measured value by calculating the experimen-
tal error, that is, the difference between estimate and
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measurement, which can also be standardized by esti-
mating the standard deviation. The goodness of fit
was evaluated by the mean error (ME) and the mean
squared deviation ratio (MSDR). The ME proves the
unbiasedness of the estimate if its value is close to 0,
while the MSDR is the ratio between the squared errors
and the kriging variance (Webster & Oliver, 2007). If
the model for the variogram is accurate, the mean
squared error should equal the kriging variance and
the MSDR value should be 1.

The fitted variograms were used to estimate each
soil property values at unsampled locations using
ordinary kriging (Webster & Oliver, 2007) at the
nodes of a 1 m x 1 m interpolation grid.

In the geostatistical approach, even though the data
are not required to follow a normal distribution, vario-
gram modelling is sensitive to strong departures from
normality, because a few exceptionally large values
may contribute to many very large squared differences.
In this case, the multi-Gaussian approach allows pre-
diction at unsampled locations regardless of the
shape of the sample histogram (Verly, 1983). It is
based on a multi-Gaussian model and requires a
prior Gaussian transformation of the initial soil prop-
erty values into a Gaussian-shaped variable with zero
mean and unit variance. Such a procedure, which is
known as Gaussian anamorphosis (Chilés & Delfiner,
2012; Wackernagel, 2003), is a mathematical function
that transforms a variable with a Gaussian distribution
into a new variable with any distribution. The Gaussian
anamorphosis can be achieved using an expansion into
Hermite polynomials (Wackernagel, 2003) restricted to
a finite number of terms. The kriging results must be
back-transformed to the raw distribution afterwards.
All statistical and geostatistical analyses were per-
formed using ISATIS 2016.1 (www.geovariances.com).
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Figure 2. Distribution of sand, silt and clay of the topsoil
samples in the USDA textural triangle.

The input variables (SOC, STN, BD and SCFs) were
used to compute (Equations (1) and (2)) and map the
spatial distribution of SOC and STN stocks. The two
maps were compiled at 1:4000 scale (Main Map)
using GIS software. The simplified topographic map
with a 5m contour interval, derived from a digital
elevation model (DEM), was used. The values of SOC
and STN stocks were reclassified into five classes by
means of the natural-breaks method (Jenks, 1989).
This technique identifies break points by picking the
class that breaks the best group in similar values, max-
imizing the differences between classes.

3. Results and discussion

Descriptive statistics for the physico-chemical soil
properties of the 231 topsoils sampled in the study
area are showed in Table 1. Only SCFs depart from
normality (a positive skewness of 1.23; Table 1) and
has been transformed using the Gaussian anamorpho-
sis. The percentage of SCFs ranged from 1.5% to 53.5%,
with a mean value of 16.2% (Table 1). The soil texture
was dominated by sand and silt, on average more than
85%, while the clay content was very low, with a mean
value of 11.8%. From the USDA soil texture triangle
(Figure 2), the following four soil texture classes were
observed in the study area: silt loam, loam, sand
loamy and loamy sand, indicating a presence of coarse
and medium-textured soils in the study area. The mean
BD value was 0.9 g cm >, with values ranging from 0.5
toand 14 g cm ™ (Table 1).

SOC concentration showed considerable variation
with a range of 1265gkg™' and a mean of
62.2 gkg ', indicating that most topsoil samples have
a high SOC concentration, related to the continuous
supply of carbon provided by the decomposition oflitter
(Confortietal.,2016). The STN concentration covered a
range from 0.8 to 7.7 gkg™' with mean and median
values of 3.7 and 3.6 g kg™', respectively (Table 1).

The results of the Pearson’s correlation analyses
of the seven soil properties analysed are given in
Table 2. As expected, significant positive correlation
was found between STN and SOC (r=0.87, p <.01).
Also, SOC and STN were significantly correlated with
particle size distribution (sand, silt and clay content)
and BD (Table 2). In agreement with many studies
(e.g. Konen, Burras, & Sandor, 2003; Lopes et al,
2015; Telles et al, 2003), the negative correlation
between SOC, STN and sand content was expected,
because, generally, soils with a high content of sand
are well aerated and tend to have low soil moisture con-
tent, which is due to a rapid decomposition and a low
stabilization of the organic carbon (Baritz, Seufert,
Montanarella, & Van Ranst, 2010; Telles et al., 2003).
The significant and negative correlation between SOC
and BD confirmed by many studies (e.g. Conforti
et al., 2016; Evrendilek, Celik, & Kilic, 2004; Hati,
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Table 1. Summary statistics of the soil properties.
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Soil properties Min Max Mean Median Lower quartile Upper quartile Std. dev. Skewness (-) Kurtosis ()
SCFs (%) 15 535 16.2 14.2 9.7 20 9.5 1.23 1.90
Sand (%) 17.2 81.1 439 433 35.1 52.1 15 0.43 0.06
Silt (%) 15.9 69.8 443 447 37.2 52.2 10.6 —-0.37 —-0.25
Clay (%) 238 249 1.8 1.6 9.0 14.0 39 0.37 0.32
BD (g cm™3) 0.5 14 0.9 0.9 0.7 1 0.2 0.20 0.61
SOC (g kg_1) 14.5 141.0 62.2 62.9 50.8 73.8 18.6 0.28 1.38
STN (g kg™ 0.8 77 37 36 29 45 1.2 0.35 0.15

Note: Std. dev: standard deviation.

Swarup, Dwivedi, & Bandyopadhyay, 2007; Wang
et al, 2011), indicates that SOC concentrations
increased with decreasing BD; therefore, the cause of
lower BD when soils are very rich in organic carbon
can be related to their low specific density (Ma,
Zhang, Tang, & Liu, 2016).

To analyse the spatial continuity of the soil proper-
ties in all the directions of the space and especially to
identify the possible anisotropies, for each property a
map of the 2D variograms (not shown) was computed.
No relevant difference as a function of direction (aniso-
tropy) was showed and the experimental variograms
looked upper bounded. Then, bounded isotropic
nested variogram models were fitted for each input
soil property (Table 3, Figure 3).

For SOC and G SCFs, the fitted models included a
nugget effect and two spherical models (Webster & Oli-
ver, 2007): one at short range and the other atlong range
(Table 3). This means that a spatial dependence of SOC
and G SCFs data occurred at two distinct spatial scales.
The nugget effect (Webster & Oliver, 2007) implies a
positive intercept of the variogram. It arises from errors
of measurement and spatial variation within the short-
est sampling interval (Webster & Oliver, 2007).

The fitted model for STN data also included a nug-
get effect and an exponential model (Webster & Oliver,
2007), while the fitted model for BD included a nugget
effect and a spherical model. The exponential model
approaches its sill asymptotically and then it does not
have a finite range. Generally, for practical purposes
it is convenient to assign it an effective range and this
is usually taken as the distance at which the variogram
equals 95% of the sill variance.

The goodness of fit for the variogram models was
verified by cross-validation and the statistics used,
that is, the mean of the estimation error and variance
of the mean squared deviation ratio, showed

satisfactory results (quite close to 0 and 1, respectively)
(Table 3). The above variogram models were used with
ordinary kriging and ordinary multi-Gaussian kriging
to produce the maps of the four variables input
(Main Map).

3.1. Spatial distribution of SOC and STN stocks

The Main Map shows the spatial patterns of SOC and
STN stocks. The map of SOC stock displayed high
spatial variability ranging from 33 to 132 Mgha ',
with a mean of 86.3 Mg ha™' and a standard deviation
of 9.7 Mg ha™". The mean SOC stock is consistent with
the values obtained for forest soils in other studies car-
ried out both in Italy (Faggian, Bini, & Zilioli, 2012;
Garlato et al.,, 2009; Solaro & Brenna, 2005) and in
others European countries (e.g. Baritz et al., 2010;
Rodriguez Martin et al., 2016; Sariyildiz, Savaci, &
Kravkaz, 2016; Wiesmeier et al., 2014).

About 63% of the study area was estimated to have
an SOC stock of between 82 and 98 Mgha™', about
10% was higher than 98 Mg ha™', and the remaining
27% was lower than 82 Mg ha™". The amount of SOC
storage estimated within the whole study area was
2865.2 Mg to a depth of 20 cm.

With regard to the spatial distribution of STN stock,
the mean was 5.1 Mg ha™' and standard deviation of
0.5 Mg ha™", with STN stock values ranging from 3.9
to 7.9 Mg ha™". In more than 76% of the study area
the STN stored in the topsoil has a value between 4.6
and 5.8 Mg ha™". The map shows that the zones with
lowest STN stocks (ranging between 3.9 and
4.6 Mgha™") accounted for about 15% of the study
area, whereas the highest values (ranging from 5.6 to
7.9 Mgha™') constituted 9% of the study area. For
the whole study area, the value of the total STN stored
in the upper 20 cm was 170.1 Mg.

Table 2. Pearson’s correlation among soil properties analysed in the study area.

Variable SCFs Sand Silt Clay BD SoC STN
SCFs 1.00 - - - - - -
Sand 0.44** 1.00 - - - - -
Silt —0.37** —0.94** 1.00 -

Clay —0.29%* —0.38** 0.08 1.00 - - -
BD 0.33** 0.43** —0.29** —0.56** 1.00 -
SocC 0.02 —0.41** 0.38** 0.19* —0.54** 1.00 -
STN —0.02 —0.38** 0.34** 0.21* —0.55** 0.87** 1.00

*Significant at p <.05.
**Significant at p <.01.
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Table 3. Parameters of variogram models for the input
variables, and results of cross-validation.

Variable Model Sill Range (m) ME MSDR

SOC (gkg™")  Nugget 182.38 - 02771 1.05
Spherical 116.01 52.04
Spherical 63.42 418.18

STN (g kg™")  Nugget 0.8681 - 0.0358  1.02
Exponential 05912  186.72°

BD (gcm™3)  Nugget 0.0180 - —0.0008  1.03
Spherical 0.0097  418.86

G SCFs (-) Nugget 0.2692 - —0.0047 1.05
Spherical 0.4288 76.79
Spherical 0.1033 257.24

Note: ME = mean estimate error and MSDR = mean squared deviation ratio.
*Effective range.

The values of STN stock in the study area are com-
parable with those reported by Sariyildiz et al. (2016)
for forest topsoils of north-western Turkey
(5.93 Mg ha™') and by Vesterdal, Schmidt, Callesen,
Nilsson, and Gundersen (2008) for surface soils in a
beech forest of Denmark (4.50 Mg ha™).

The maps showed that the spatial distribution pat-
terns of both SOC and STN stocks were comparable.
Moreover, the two maps showed that the spatial pat-
tern of SOC stock was significantly correlated (r=
0.70, p<.001) with STN stock map, thus suggesting
that the latter generally had the same behaviour as
SOC storage, due to the fact that most nitrogen
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forms are part of the soil organic matter, which is the
primary sink of STN (Ganuza & Almendros, 2003).

Since a forest is a dynamic system continuously
changing, the results of this study can support foresters
to make decisions about forest management plans. In
fact, information and maps of soil properties for forest
lands are required in order to make good management
decisions to promote carbon sequestration and conser-
vation of biodiversity in forest soils.

4. Conclusions

In this study, a geostatistical approach and GIS analysis
allowed mapping of the spatial variability of SOC and
STN stocks in a representative site within the Biogen-
etic Natural Reserve ‘Marchesale’, located in Calabria
region (southern Italy) (Main Map).

The input variables used to compute the stocks of
SOC and STN (SOC, STN, BD and SCFs) were first
interpolated using a geostatistical approach and then
used to produce the maps of stocks of SOC and STN
(Main Map).

The maps showed that within the top 20 cm of soil,
SOC and STN stocks have a high spatial variability
(Main Map). The results indicated that mean values
of SOC and STN stocks estimated were 86.3 and
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Figure 3. Experimental variograms (filled circle) and fitted models (solid line) for SOC, nitrogen, BD and coarse fragments. Exper-

imental variance (horizontal dashed line) is also reported.
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5.1 Mg ha™', respectively. The total amount of SOC
stored was 2865.2 Mg whereas the total STN stock
was 170.1 Mg.

This study has provided the first detailed knowledge
about the spatial pattern of SOC and STN stored, at
local scale, in the forest topsoils of the Calabria region.
Moreover, SOC and STN storage are important not
only because of their role in the global carbon and
nitrogen cycles, but also because they affect forest pro-
ductivity and ecological functioning. Finally, the maps
can also be used as support to develop sustainable man-
agement strategies in forest ecosystems, which in
Calabria cover about 40% of the territory.

Software

Statistical and geostatistical analysis were carried out
using Isatis 2016.1. ESRI ArcGIS 9.3 software was
used for management the data, for the production of
soil properties maps, and to assemble the layout of
Main Map.

Map design

We present a maps of SOC and total nitrogen stocks for
an area of the Biogenetic Natural Reserve ‘Marchesale’
(Calabria region, south Italy). The spatial pattern of
organic carbon and total nitrogen stocks (Mgha™')
was calculated as the product of the following soil
properties: SOC and STN concentration, BD and soil
course fragments, which were interpolated by means
geostatistical approach; in particular, ordinary kriging
method was used. All geostatistical analyses were per-
formed with the software Isatis, release 2016.1
(http://www.geovariances.com). Each map of the soil
properties were compiled at 1:8000 scale, using a GIS
software. Successively, the following equations were
implemented in a GIS for calculate SOC and STN
stocks:

SOC xD x BD x (1 — SCFs/100)

SOC stock = (1)
10
T D x BD 1—SCFs/1
STN stock = STN xD x TO( SCEs/ 00), (2)

where SOC and STN are the soil organic carbon and
total nitrogen concentration (gkg '), respectively, D
is layer thickness (20 cm) of the topsoil, BD is the
soil bulk density (g cm™) and SCFs is the coarse frag-
ments content expressed as percentage in volume.
The spatial distribution of SOC and STN stocks was
calculated applying the Equations (1) and (2), respect-
ively, and the cartographic representation of the two
maps was performed on a scale 1:4000, using a GIS
software. The simplified topographic map with a 5-m
contour interval, derived from DEM, was used. The
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values of SOC and STN stocks were reclassified into
five classes by means of the natural-breaks method.

The topographic base, with a 5-m contour interval,
results from a DEM obtained by digitization of contour
lines and points of the 1:5000 scale topographic maps.

All the maps, displayed in the Main Map, were
transformed in vector format.

The topographic base, soil properties maps, SOC
stock map, STN stock map and related layout were
drafted using the ESRI ArcGIS 9.3.
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