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A1: Complex notation expanded 

According to the main text, the phase distributions introduced by the sorters are ߮ଵ ൌ ௦ఒ  Ը݁ ቄu ln ቀ௨௅ቁ െ  ቅ  ,         (A1)ݑ

߮ଶ ൌ ௅௦ఒ  Ը݁ ቄexp ቀ ௨௦௙ቁቅ  .         (A2) 

Expansion of the complex notation for sorter 1 in the form 

߮ଵ ൌ ௦ఒ  Ը݁ ൜ሺx ൅ iyሻ ൤݈݊ ൬ඥ௫మା௬మ௅ ൰ ൅ ݅atan ሺݕ, ሻ൨ݔ െሺݔ ൅    ሻൠݕ݅

leads to the expression 

߮ଵ ൌ ௦ఒ  ൜ݔ ݈݊ ൬ඥ௫మା௬మ௅ ൰ െ ݕ atanሺݕ, ሻݔ െ  .  ൠ ݔ

For sorter 2, ߮ଶ ൌ ௅௦ఒ  ቄexp ቀ ௫௦௙ቁ ݏ݋ܿ ቀ ௬௦௙ቁቅ  .         (A3) 

These are the equations that are conventionally used to describe an OAM sorter. Their gradients can be 

defined in the form of Wirtinger derivatives 
డఝభడ௨ഥ  := (

డడ௫ ൅ ݅ డడ௬ሻ as  



          (A4) 

 

  .      

 

A2: Holograms and generated beams 

We reported scanning electron microscopy (SEM) images of some of the “generator” holograms. The 
first example corresponds to an inline vortex, which is characterized by the thickness function 

  ,         (A5) 

where “mod” refers to a remainder following division of the two arguments. The OAM spectrum of such 
a mask has been calculated in Ref. [27]. 

 

Fig A1: Tilted SEM images of holograms with angular frequencies corresponding to  ℓ = 10 and ℓ = 6. 

 

Fig A2: Beams corresponding to the holograms in Fig. A1. 10-fold and 6-fold modulations in intensity 
result from the presence of a strong ℓ=0  component, which is visible in experimental OAM spectra.



The second mask is based on a thickness modulation of the form 

T ൌ ൜ ଴         ݂݅ 0ݐ ൏ modሺ݊ߠ, ሻߨ2 ൏ ଴ݐߨ ൅ ߨ ݂݅  ଵݐ ൏ modሺ݊ߠ, ሻߨ2 ൏  (A6)       ߨ2

 

Fig A3:Tilted SEM images of holograms for the generation of petal beams for ℓ = ±5 (left) and ℓ = ±2 
(right). 

 

A3: Validation of OAM decomposition 

In this section, OAM decomposition is validated by using direct images of the electron beam in real 
space with the probe close to its waist. 

Normally, determination of the OAM decomposition of a beam from a real space image is impossible 
because the phase of the beam is lost during the measurement. However, in the case of a petal beam, 
which is given by a superposition of beams of vortices with opposite OAM  ℓ ൌ േ݊,  one can simplify the 
calculation since the beam wavefunction only has a real component. By expressing a vortex in the form ߰ ൌ ܴ|ℓ|ሺߩሻexp ሺ݅ ℓߠሻ, where ܴ|ℓ|ሺߩሻ is a radial function, the corresponding petal beam takes the form ߰ ൌ ܴ|ℓ|ሺߩሻsin ሺℓߠሻ. 

The inline hologram that we used to generate petal beams is described by Eq. A6. For this specific 
hologram, the angular and radial degrees of freedom are decoupled and the azimuthal part of the 
wavefunction can be  factorized in the form 

Θሺߠሻ ൌ ෍ ܿℓ expሺ݅ ℓߠሻℓ   . 
The coefficients of OAM expansion for a perfect phase hologram are 

ܿℓ ൌ ۔ە
ଶ௡௜ℓగିۓ expሺ݅2/ߜሻ sin ቀఋଶቁ       ݂݅   ℓ ൌ ݉݊ expሺ݅2/ߜሻ cos ቀఋଶቁ            ݂݅   ℓ ൌ ,  ݁ݏ݅ݓݎ݄݁ݐ݋                             0 0        (A7) 



where ߜ is the phase corresponding to a depth t1 of milling and m is an odd integer. 

To a first approximation, the series can be limited to only the first terms, for which ℓ ൌ േ݊ and ℓ ൌ 0. 
The wavefunction is then given by the expression ߰ ൌ 2 |ܿ௡|sinሺ݊ߠሻ ൅ i|ܿ଴|  .         (A8) 

This expression differs from that of an exact petal beam because of the presence of the ܿ଴ term, which 
arises if the hologram depth is not perfectly calibrated to have ߜ ൌ  In practice, it can be difficult to .ߨ
make this calibration precisely. 

The absolute value was used here to highlight the fact that for  a perfect phase hologram the  0th order 
and the first nonzero diffractions have exactly  a π/2 phase difference. 

The resulting image can be expressed in the form ܫሺߠሻ ൌ |߰|ଶ ൌ 4|ܿ௡|ଶsinଶሺ݊ߠሻ ൅ |ܿ଴|ଶ ൌ 2|ܿ௡|ଶ െ 2|ܿ௡|ଶ cosሺ2݊ߠሻ ൅ |ܿ଴|ଶ  ,   (A9) 

where we again omit the radial dependence. In the approximation that the azimuthal and radial degrees 
of freedom of the image are factored, the image can be decomposed in terms of azimuthal Fourier 
components in the form ܫሺߠሻ ൌ ∑ ℓܫ expሺ݅ ℓߠሻℓ   .         (A10) 

These coefficients  can  be measured experimentally and compared with predictions of the sorter-based 
OAM decomposition. 

Azimuthal Fourier decomposition of the image therefore only has components ܫℓ with ℓ=±2n and 0. By 
using Eqs A9 and A10, we find that  ܫ଴ ൌ 2|ܿ௡|ଶ ൅ |ܿ଴|ଶ          (A11a) ܫଶ௡ ൌ |ܿ௡|ଶ             (A11b) 

A more realistic description of the hologram should include absorption and therefore an amplitude 
modulation superimposed onto the phase with the same frequency. Although the formulae are given in 

Ref. 27, it is sufficient to write δ → δ+ia, where a<< δ . In the same way, Eq. A8 can be rewritten with 
real coefficients ܿଵ௥,ܿଵ௜, ܿ଴௥, ܿ଴௜  in the form ߰ ൌ 2ሺܿଵ௥ ൅ ݅ܿଵ௜ሻ sinሺ݊ߠሻ ൅ iሺܿ଴௥ ൅ ݅ܿ଴௜ሻ , 
where ܿଵ௜ ا ܿଵ௥ and  ܿଵ௜ ا ܿଵ௥. After a few simple steps, we find that the main contribution of the 
additional terms is ܫ௡ ൌ െ4ܿ଴௜ܿଵ௥ ൅ 4ܿ଴௥ܿଵ௜  .         (A12) 



We therefore expect an additional Fourier component that is related to the superimposed and unwated 
amplitude modulation effect of the hologram. The contribution from such components is  very small. 
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Fig A4 : (a) Experimental defocused image of a petal beam corresponding to the left image in Fig. A3 for ℓ ൌ േ5 . (b) OAM coefficients of this image obtained by its digital analysis. 

 

An experimental defocused image of a petal beam generated by the hologram shown on the left of 
Fig, A3 is shown in Fig. A4. alongside a digitally-calculated azimuthal Fourier decomposition of the same 
image. The procedure for extracting the ܫℓ coefficients follows previous work (Ref. A1) and is based on a 
digital version of the OAM sorter, where the intensity is mapped to polar coordinates and Fourier 
transformed. The results indicate that the dominant azimuthal Fourier coefficients ܫℓ correspond to 
values of ℓ ൌ േ10  and 0, which is consistent with the assumption that meaningful values of ܿℓ correspond to ℓ ൌ േ5. There is also a slight absorption effect, which introduces an image term ܫℓ at ℓ ൌ േ5.  

By using Eq. A11, we find  |ܿ଴|ଶ ൌ ଴ܫ െ ଶ௡ and that a contribution ܿ଴ is present with an intensity ratio |௖బ|మ|௖భ|మܫ2 ൎ 50% that is approximately consistent with the spectrum shown in Fig. 3 of the main text. 

 

A4: Analytical model for phase mismatch 

The experimental OAM spectrum from a uniform beam is not a single sinc peak, but contains additional 
oscillations and broadening, We show here that these deformations arise primarily from a size mismatch, 
which can be estimated from Eq. 2 and expressed in a real coordinate formalism using Eq. A3 or 
otherwise by 

                                                            
1 V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi, and R. W. Boyd, Holographic Generation of 

Highly Twisted Electron Beams, Phys. Rev. Lett. 114, 034801 (2015). 

 



߮ ൌ ௅௦ఒ cos ሺݔܭԢሻexp ሺെݕܭԢሻ ,         (A13) 

where ܭ ൌ ଵ௦௙. 

The beam can be approximated as a line (as shown in Fig. A5 and Ref. [27]) at a given value of ݕԢ ൌ ܴ ln ቀோ௅ቁ, which corresponds to the outer rim of the beam in the S1 plane at radius݂ݏ ൌ ඥݔଶ ൅   .ଶݕ

 

 

Fig A5  Schematic illustration of a uniform beam approaching sorter 1 and sorter 2 . 

 

The unmatched phase that results from the mismatch ݉ ൌ Δܭ/ܭ between element S2 and the size of 
the diffracted beam is 
 ∆߮ ൌ ௦Rఒ ቈcos ቀ௫ᇱ௦௙ቁ െ cos ቆ௫ᇱ௦௙ ሺ1 ൅ mሻቇ቉ ൎ ௦Rఒ m ቀ௫ᇲ௦௙ቁଶ െ ௦Rఒ ଵ଺ m ቀ௫ᇱ௦௙ቁସ

 ,    (A14) 

 
where Taylor series in m and x’ have been truncated at 4th order. The quadratic term can be difficult to 
notice in experiments, since the microscope operator adjusts parameters such as defocus, which can 
compensate for it. The leading uncompensated term produces a maximum phase shift of  ∆߮௠௔௫ ൎ16 ߣ/݉ ܴݏ. For ߣ/ܴݏ ൌ 1 and a value for m of 4%, the phase profile has the shape shown in Fig. A6. 

R 

Ԣݕ ൌ ln݂ݏ ൬ܴܮ൰ 
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Fig A6 Residual phase when sorter 2 does not perfectly compensate the phase of diffraction of sorter 1. 

 

A “flat” phase region is obtained over approximately half of the angular range. Changing the value of m 
does not change the shape of the curve, but only the phase scaling factor. One can conclude that: 1) The 
central “flat” region is responsible for the main OAM peak, whereas the phase tails are responsible for 
the OAM spectrum background; 2) In most cases, the flat region extends over only approximately half of 
the x’ range, which accounts for the fact that  Δℓ ൎ 2 is observed in most cases; 3) It is possible to 
improve the OAM resolution by reducing s, i.e., the voltage applied to element S1, or R, the  size of the 
beam at the entrance of the sorter. 

 

A5. Lens + sorter simulation   

We implemented a numerical method to simulate the OAM spectroscopy experiment based on a full 
wave calculation and free space propagation, in order to quantitatively describe the effects of several 
aberrations and misalignments on the final resolution. The beam is free-space propagated between the 
elements using the Fresnel-Kirchhoff integral 

௭ܷሺݑ, ሻݒ ൌ ݁௜௞௭݅ݖߣ ඵ ܷ଴ሺݔ, ሻݕ ݁ି௜௞௫௨ା௬௩௭  .  ݕ݀ݔ݀
The lens is defined by a quadratic phase element 

ܶ ൌ ݌ݔ݁ ቆ݅ሺݔଶ ൅ ߣଶሻ2݂ݕ ቇ  . 
The sorters are defined by the phase distributions reported in the text. Calculations were performed 
numerically on an 8k x 8k pixel matrix using a Fourier transform algorithm for convolutions. The code 
was written in Matlab and C. 



Even for the largest allowed sampling, the phase gradient was limited by the number of pixels. In order 
to correctly compute the lens effect, the phase should not vary too rapidly. The phase difference 
between adjacent pixels should typically be less then ߨ, such that ݀ ߶݀ ݊ ൏  .  ߨ
Based on this criterion, the minimum usable focal distance is 

௠݂௜௡ ൌ ݊ߣଶܮ2 ൎ 198 ݉݉  . 
We are therefore limited to relatively large focal distances, making it impossible to numerically simulate 
the objective lens (i.e., a thick and strong lens). 

Fortunately, the curvature of the diverging beam from the sample and the focusing effect are nearly 
compensated at the entrance of the sorter in the objective back focal aperture. We can therefore 
simulate an equivalent configuration, in which the sorter 1 element is illuminated by a weakly 
convergent beam. 

A second lens is finally placed after sorter 2. The simulated optical configuration is shown in Fig. A7 



 

Fig A7 Schematic illustration of the sorting apparatus, including two main lenses. 

 

We used this approach to analyze the effect of different parameters on OAM spectrum resolution. The 
more detrimental parameters, which should therefore be addressed with care, include misalignment 
between the two sorter elements, their relative rotation, the size mismatch and the defocus of the 
lenses. With the exception of size mismatch and relative rotation, these factors can be adjusted easily in 
real time during operation. 


