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ABSTRACT
In Service-Oriented Computing, contracts o�er a way to charac-

terise the behavioural conformance of a composition of services,

and guarantee that the results do not lead to spurious compositions.

Through variability modelling, a product line of services is enabled

to adapt to customer requirements and to changes in the context

where they operate. We extend a previously introduced formal

model of service contracts towards variability and product line

modelling, in particular we include: (i) feature-based constraints

and (ii) four classes of service requests to characterise di�erent

types of service agreement.

We then exploit Supervisory Control Theory to synthesise the

most permissive controller of a composition of services that satis�es:

(i) all feature constraints of the service product line, and (ii) the

maximal number of service requests for which an agreement can be

reached. Moreover, the controller of a service product line, whose

number of products is potentially exponential in the number of

features, can be synthesised from only a subset of its products. A

prototypical tool supports the developed theory.
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1 INTRODUCTION
Service-oriented computing (SOC) [21] is a paradigm for distributed

computing based on the publication, discovery and orchestration of

services, which are autonomous, platform-independent and reusable

computational units. Services are usually programmed with little or

no knowledge about clients and other services before being loosely

coupled into networks of collaborating end-user applications.

Web applications reuse services in di�erent con�gurations over

time, e.g. due to the need to adapt to changes in the environment

or to the resources of the devices on which they run. Therefore

the idea to organise them into dynamic service product lines was

�rst explored a decade ago in the SOAPL workshop series at three

consecutive SPLC conferences (cf., e.g., [22, 27, 28]), leading to

applications for Web stores, smart grids and services as used in

scienti�c work�ows and grid computing [1, 2, 11]. Recently, interest

has been revived and the Web application JHipster, which has a

micro-service architecture, has been lifted to a product line as well

as e-Government public licensing services [17, 23].

On a di�erent line, service contracts [4] have been introduced

to formally describe the behaviour of services in terms of their

obligations (i.e. o�ers of the service) and their requirements (i.e.

requests by the service). Contracts characterise an agreement among

services as an orchestration (i.e. a composition) of them based on the

satisfaction of all requirements through obligations. Orchestrations

can dynamically adapt to the discovery of new services, to service

updates and to services that are no longer available.

In [6], contract automata were introduced as a formal model

for service contracts. They represent either single services (called

principals) or compositions of services based on orchestrated or

choreographed coordination [7]. The goal of each principal is to

reach an accepting (�nal) state by matching its requests with corre-

sponding o�ers of other principals. Through service contracts it is

then possible to characterise the behaviour of an ensemble of ser-

vices. The notion of agreement then characterises safe executions

of services (i.e. all requests matched by corresponding o�ers).

In [8], contract automata were equipped with variability mech-

anisms to distinguish necessary (2) from permitted (3) requests,

mimicking uncontrollable and controllable actions, respectively,

from Supervisory Control Theory [15]. O�ers were only permitted

as dictated by agreement. Contract agreement guaranteed the ful�l-

ment of all necessary requests and negotiated the maximum number

of permitted requests that could be ful�lled without spoiling the

service composition. Contracts adapt to the overall agreement by

renouncing to unsatis�able, yet permitted requirements.

In this paper, we introduce featured modal contract automata
(FMCA) for modelling contract-based dynamic service product lines.

These FMCA extend the aforementioned modal service contract

automata (MSCA) from [8] with the possibility to de�ne:

(1) Feature constraints on service actions (requests and o�ers);

(2) Urgent, greedy and lazy necessary service requests.

These two additional variability dimensions required us to carefully

revisit and extend all fundamental notions used in [8]. Features

are identi�ed as service actions, and each FMCA represents a be-

havioural product line of services equipped with feature constraints.

A feature constraint can be any of the constraints used in feature

models, including cross-tree constraints, de�ned as its correspond-

ing propositional formula (cf. [9, 26]). Each product is identi�ed as

a truth assignment satisfying the feature constraints.

Urgent, greedy and lazy requests are, in decreasing order of

relevance, necessary service requests with further restrictions on

their satis�ability. Similarly to [8], permitted requests are optional

and can thus be discarded for reaching an agreement.

The main contributions of this paper are as follows:
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(1) We introduce a new formalism for contract-based dynamic

service product lines;

(2) We de�ne an algorithm for synthesising an orchestration

of services in agreement, either for a single product or for

the entire service product line. The result is the so-called

maximally permissive controller (mpc) satisfying all feature

constraints, all variants of necessary service requests and

the maximal number of permitted requests.

(3) Based on a (partial) order of products of a product line, we

show how to compute, starting from a subset of products:

(a) the validity of all products of the service product line;

(b) the mpc of the entire service product line;

(c) the mpc of a product from that of its super-products.

Since the number of valid products of a product line is in general

exponential in the number of features, it is important to note that

the subset of products used in (3) is potentially smaller than the

set of all products. The above mentioned (partial) order relates

each product to its sub- and super-products, i.e. those products

in which more or less, respectively, variability has been resolved.

Products in which not all variability has been resolved are also

known as subfamilies. Finally, the theory presented in this pa-

per has been implemented in an open-source prototypical tool

(cf. Fig. 2), available at https://github.com/davidebasile/FMCAT/,

and its applicability is further demonstrated by a running example.

Outline. We introduce an example hotel reservation service prod-

uct line in Sect. 2. We formally de�ne feature constraints and (sub-/

super-)products over service actions in Sect. 3, followed by FMCA

and their compositions and re�nements in Sect. 4. The controller

synthesis algorithms for FMCA are presented in Sect. 5. In Sect. 6,

we discuss related work and conclude the paper. An appendix

contains all proofs and additional �gures.

2 MOTIVATING EXAMPLE
To illustrate our approach and help intuition, we consider a simple

franchise of hotel reservation systems. The system consists of Hotel

and Client contracts. Some of them are depicted in Figures 1c–1e.

Feature model. A feature model de�nes all products of a prod-

uct line and it has a corresponding propositional formula φ over

(primitive) features, called feature constraint (cf. Sect. 3). We iden-

tify features as actions (requests and o�ers) performed by services.

Moreover, each product is identi�ed by its set of required (literals

interpreted as true in φ) and forbidden features (literals interpreted

as false in φ). All required features must be present in the service,

while none of the forbidden features may be present.

For a lighter presentation, we consider only the Hotel product

line’s feature model depicted in Fig. 1a (Clients do not specify fea-

ture models), but our approach scales to larger numbers of features.

The feature model allows two alternative payment methods: cash
or card. Moreover, any product o�ering cash payment, requires
the invoice feature to be present. Indeed, the Hotel franchise (i.e.

the product line) wants to prevent any of its hotels (i.e. a product)

to perform o�-book payments. Thus the feature constraint corre-

sponding to the feature model of Fig. 1a is:

. φ = ((card ∧ ¬cash) ∨ (cash ∧ ¬card )) ∧ (¬cash ∨ invoice )

The three valid products are depicted in Fig. 1b, together with a

valid super-product p1 in which the presence of the invoice feature

has not yet been resolved (unresolved features will be activated by

the orchestration, if possible). These are the products satisfying φ
(e.g. card = true and cash = false satis�esφ, denoted byφ |=p1 true).
Products can be ordered according to their required and forbidden

actions. In Fig. 1b, p2 and p3 are sub-products of p1, written p2 � p1
and p3 � p1. Indeed, the required and forbidden actions of p1 are

contained in those of p2 and p3. This ordering will be exploited for

e�ciently verifying all products.

Behavioural contracts. A service contract characterises service

behaviour in terms of o�er and request actions, drawn respectively

as overlined and non-overlined labels, while permitted transitions

are depicted as dotted (cf. Fig. 1). We extend contracts from [8] by

also indicating “when” (i.e. in which states) necessary requests have

to be matched. Therefore, we partition the set of necessary ser-

vice requests into urgent (2u ), greedy (2д ) and lazy (2` ) requests.

Urgent requests are the most restrictive and must be matched when-

ever they can be executed. Greedy requests must be matched as

soon as possible, i.e. their execution can be delayed until the �rst

match is available. Lazy requests are the less restrictive and only

require to be matched somewhere.

In the hotel reservation service scenario, we assume two classes

of Clients: business and economy. In Fig. 1c, the contract of a

BusinessClient is depicted. It starts by requiring to book a room

(room2u ). The Client request in this case is urgent, due to its

business priority. Once the room is selected, the client can either

perform an o�-book cash-only payment (cash), not requiring any

receipt or invoice, or a credit card payment (card). Assuming a

client travelling for business, an invoice or receipt is needed for

being reimbursed by the clients’ organisation. The organisation

must accept invoices, while receipts may be rejected. In case of

cash payments, the client is (maliciously) using false invoices to ask

larger reimbursement sums (e.g. a hotel product could be owned by

an accomplice). In case of (honest) payment by credit card, the client

will require an invoice (invoice2д ) or a receipt (receipt3) from the

hotel. The invoice request is marked as (necessary) greedy. The

contract of an EconomyClient is equal to that of a BusinessClient,
except for the room request being marked as lazy (room2` ), i.e. with

a lower priority. We will also consider a “lazier” version of both

clients, where the invoice request is marked as lazy (invoice2` ),

with ClientG and ClientL indicating the greedy and lazy version,

respectively, of the invoice request.

In Fig. 1d, the Hotel contract is depicted. Recall its feature con-

straint φ. This service starts by o�ering a room (room). The hotel

accepts payments by either credit card (card3) or cash (cash3).

The mutual exclusion (xor) between these features (known to be

not expressible solely by the automaton [10]) is speci�ed in φ. It

ensures that exactly one type of payment is available in each Hotel
product. In case of cash payments, the service returns to its initial

(and �nal) state qH0. Otherwise, the service proceeds by emitting

either a receipt (receipt) or an invoice (invoice). In the latter case,

a special free breakfast o�er (freebrk) is delivered as a gift either

before or after the invoice has been emitted. After these possible

interactions, the hotel service returns to its initial state qH0.

We also consider two di�erent contracts for the Hotel service

product line, called HotelGreedyBad and HotelLazyBad. All these

product lines share the same feature model, but have a slightly

https://github.com/davidebasile/FMCAT/
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hotel

• ◦

payment invoiceOO

card cash

(a) The feature model and

p1 : R= {card }, F = {cash}

p2 : R= {card,invoice }, F = {cash} p3 : R= {card }, F = {cash,invoice } p4 : R= {cash,invoice }, F = {card }

(b) the partial order of products (with R=Required and F = Forbidden) of the Hotel service product line

qC0

qC1 qC2

qC3

room2u

card

cash

invoice2д receipt3

(c) BusinessClientG

qH0 qH3 qH2

qH4

qH1room

cash3

card3

receipt

invoice

freebrk

freebrkinvoice

(d) Hotel

~q0,0

~q1,1 ~q2,2 ~q3,0

~q3,3

~q2,4

(room2u , room)

(card3, card)

(receipt3, receipt)

(•, freebrk)

(invoice2д , invoice)

(invoice2д , invoice)

(•, freebrk)

(e) KBusinessClientG ⊗Hotelp
1

Figure 1: The product line of Hotel reservation service

di�erent behaviour than Hotel. The HotelGreedyBad activates a

captcha in case the client selects the o�er invoice instead of the free

breakfast o�er, to avoid possible denial-of-service attacks. More

precisely, the Hotel transition (qH3, freebrk,qH0) in Fig. 1d is re-

placed with the permitted request (qH3, captcha3,qH0). Finally,

HotelLazyBad is equal to HotelGreedyBad, except for state qH4

and its incident transitions that are removed: this service does not

o�er any free breakfast and always performs a captcha check.

Contract compositions. The compositionBusinessClientG⊗Hotel
in agreement (i.e. orchestration) of product p1 is depicted in Fig. 1e.

In this case, the feature constraint (and hence the valid products)

of the orchestration is exactly φ (recall that the client has no fea-

ture constraint). This orchestration is identical to the one of p2
because the required invoice feature (required in p2 and not in

p1) is available in both orchestrations. Conversely, the orchestra-

tion BusinessClientG ⊗ Hotel of products p3 and p4 is empty: no

agreement exists. For product p3, it forbids the necessary (greedy)

invoice request, executable in both states ~q2,2 and ~q2,4.
1

While p1,

p2 and p3 are products featuring payments made by credit card,

product p4 corresponds to the Hotel product requiring payments

by cash (and hence forbidding payments by credit card). In this

case, the franchise Hotel product line is protected from possible

o�-book payments by also requiring (via φ) the o�er invoice. The

orchestration is indeed empty: the malicious behaviour is blocked.

Note here that requirements of products are stricter conditions

than necessary requests. Indeed, the requirements of a product are

de�ned on top of its behavioural contract, while necessary requests

are de�ned inside the contract. Unreachable necessary requests

do not spoil the contract agreement. Conversely, an unreachable

action required by a product violates the contract agreement (e.g.

invoice in p4 is unreachable because card is forbidden).

Finally, the orchestration of the entire service product line is

simply the orchestration of one of the products p1 or p2.

We next explain how the di�erent classes of necessary requests

a�ect the orchestration of service contracts. The considered orches-

trations are always referring to the entire product line.

1
In Fig. 1e, the subscripts of ~q identify the client’s local state and the hotel’s local state,

in the order in which they are composed. Likewise for other compositions.

We �rst consider a composition of the Hotel service with both

business and economy clients and show how urgent requests can

be used to enforce priorities in service requests. If EconomyClient
is served before BusinessClient, i.e. (EconomyClient ⊗ Hotel) ⊗
BusinessClient, then t1 = (~q0,0,0, (room2` , room, •), ~q1,1,0), i.e. a

match between lazy request and o�er, is activated in the composi-

tion instead of transition t2 = (~q0,0,0, (•, room, room2u ), ~q0,1,1), i.e.

an urgent match. As a result, the corresponding orchestration will

be empty. Intuitively, the business class should be served before the

economy one (i.e. t2 instead of t1). Indeed, an orchestration in agree-

ment is admitted by EconomyClient ⊗ (Hotel ⊗ BusinessClient),
with business client served before the economy one (cf. Fig. 2).

We now consider the orchestration of the service composition

BusinessClientG⊗HotelGreedyBad, which is empty. This is caused

by the request (~q3,3, (•, captcha3), ~q3,0) not matched (recall that

each request must be matched by a corresponding o�er). In this

case, the orchestration cannot prevent the execution of the greedy

transition (~q2,2, (invoice2д , invoice), ~q3,3). Indeed, the greedy in-

voice request of BusinessClientG requires to be matched as soon

as possible: it cannot be “delayed” to the subsequent state ~q2,4 (cf.

Fig. 1e). The resulting orchestration is thus empty.

This is not the case for the orchestration of the composition

BusinessClientL ⊗ HotelGreedyBad. Now the necessary lazy tran-

sition (~q2,2, (invoice2` , invoice), ~q3,3), and consequently the per-

mitted request transition (~q3,3, (•, captcha3), ~q3,0), are removed in

the orchestration. This is possible since the necessary lazy request

invoice of BusinessClientL is delayed to be matched in state ~q2,4.

Finally, consider the orchestration of the service composition

BusinessClientL ⊗ HotelLazyBad. In this composition, all transi-

tions incident in states ~q2,4 of Fig. 1e are absent (recall that Hotel-
LazyBad does not o�er free breakfast). The lazy match transition

(~q2,2, (invoice2` , invoice), ~q3,3) thus cannot be removed in the or-

chestration, as it is the only available match and the lazy invoice

request is necessary. Also in this case the orchestration is empty.

In the next section, we present a novel formal model for contract-

based product lines capable of expressing all aspects discussed in

this section, as well as a novel synthesis algorithm for computing

the orchestration of a single product or the entire product line.
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3 FEATURE CONSTRAINTS AND PRODUCTS
A feature model is a rooted and/or tree in which nodes are features

and additional relations between nodes model further constraints

(typically mandatory, optional or alternative, but also requires and

xor) [14, 30]. It is well known that a feature model is equivalent to

a propositional formula over features. Thus, checking the validity

of a product with respect to the feature model reduces to a Boolean

satis�ability problem, e�ciently computable with BDD or SAT

solvers [9, 19, 26]. Following [9, 30], we distinguish compound

features (intermediate, decomposable nodes) and primitive features

(in�uencing �nal products). The latter are represented by the leaves

of a feature model and the propositional formula representing a

feature model uses only them as literals (cf. Sect. 2).

In our framework, we distinguish basic actions belonging to the

sets of requests R = {a,b, c, . . .} and o�ers O = {a,b, c, . . .} where

R ∩ O = ∅. Primitive features are identi�ed as basic actions. A

feature constraint is a propositional logic formuale φ over R ∪ O.

A service product line is then characterised by a conjunction of

feature constraints with literals in R∪O, such that each assignment

p satisfying φ (written φ |=p true) is a valid product.

De�nition 3.1 (Valid products). Let φ be a conjunction of feature

constraints with literals inR∪O and let P : R∪O⇒ {true, false} be

an interpretation function. Then JφK = {p | φ |=p true and p ∈ P }
is the set of all valid products of φ. Moreover, given p ∈ JφK, the

sets of required and forbidden actions in p are Required (p) = { a |
p (a) = true } and Forbidden(p) = { a | p (a) = false }, respectively.

All valid products JφK of a family can be ordered by component-

wise set inclusion as (a subset of) elements of a lattice such that the

bottom element ⊥ requires and forbids all actions, whereas the top

element > has neither required nor forbidden actions. Note that

not all elements of such a lattice correspond to valid products.

De�nition 3.2 (Sub-products). Let (R, F ) ⊆ (R′, F ′) ∈ ((R ∪ O) ×
(R ∪ O), ⊆) be a lattice i� R ⊆ R′ and F ⊆ F ′. The partial order of

products of a family JφK is (JφK, �), wherep � p′ (p is a sub-product

of p′ or, alternatively, p′ is a super-product of p) i�

(Required (p′), Forbidden(p′)) ⊆ (Required (p), Forbidden(p))

Example 3.3. The feature model depicted in Figure 1a is repre-

sented by the propositional formula φ in Sect. 2. The partial order

of products is depicted in Figure 1b, where � grows top-down. We

have JφK = {p1,p2,p3,p4} and � = {(p2,p1), (p3,p1)}.

In the sequel, we will exploit the partial order of (valid) products to

synthesise the most permissive controller of a service product line.

4 FEATUREDMODALCONTRACTAUTOMATA
We now formally de�ne feature modal contract automata (FMCA),

which extend modal service contract automata (MSCA) [8].

We borrow some useful notation from [6, 7]. The alphabet of

basic actions is de�ned as Σ = R ∪ O ∪ {•} where • < R ∪ O is a

distinguished element representing the idle move. We de�ne the

involution co(•) : Σ 7→ Σ s.t. co(R) = O, co(O) = R and co(•) = •.
Let ~v = (e1, ..., en ) be a vector of rank n ≥ 1, denoted by rv , and

let ~v(i ) denote the ith element with 1 ≤ i ≤ rv . By ~v1~v2 · · · ~vm
we denote the concatenation of m vectors ~vi . From now onwards,

we stipulate that in an action vector ~a there is either a single o�er

or a single request, or a single pair of request-o�er that matches,

i.e. there exists exactly i, j such that ~a(i ) is an o�er and ~a(j ) is the

complementary request or vice versa; all the other elements of

the vector contain the symbol •, meaning that the corresponding

principals remain idle. In the following, let •m denote a vector of

rankm, all elements of which are •. Formally:

De�nition 4.1 (Actions). Given a vector ~a ∈ Σn , if

• ~a = •n1α•n2 ,n1,n2 ≥ 0, then ~a is a request (action) on α if

α ∈ R, whereas ~a is an o�er (action) on α if α ∈ O
• ~a = •n1α •n2 co(α )•n3 ,n1,n2,n3 ≥ 0, then ~a is a match
(action) on α , where α ∈ R ∪ O

Actions ~a and
~b are complementary, denoted by ~a 1 ~b, if and

only if the following holds: (i) ∃α ∈R∪O s.t. ~a is either a request or

an o�er on α ; (ii) ~a is an o�er on α implies that
~b is a request on

co(α ); (iii) ~a is a request on α implies that
~b is an o�er on co(α ).

The actions and states of contract automata are vectors of basic

actions and states of principals, respectively. The alphabet of an

FMCA consists of vectors, each element of which intuitively records

the execution of basic actions of principals in the contract.

An FMCA declares a contract-based service product line through

(i) permitted and necessary transitions (inherited from MSCA); and

(ii) a conjunction of feature constraints φ identifying all valid prod-

ucts. We recall that, similarly to MSCA, all o�ers are permitted.

Permitted o�ers and requests are optional and can be discarded.

The set of necessary requests of an FMCA is further partitioned

into urgent, greedy and lazy. These sets contain necessary requests

that must be matched to reach an agreement among contracts. Com-

pared to MSCA, we thus o�er modellers another layer of variability

based on the possibility to specify “when” requests must be matched

in a composition (cf. Sect. 2). In Sect. 4.2, we will show how these

requests give rise to an increasing degree of controllability.

De�nition 4.2 (Featured modal contract automata). Assume as

given a �nite set of states Q = {q1,q2, . . .}. Then a featured modal
contract automaton A, FMCA for short, of rank n ≥ 1 is a tuple

〈Q, ~q0,A
3,A2u ,A2д ,A2` ,Ao ,T ,φ, F 〉, where

• Q = Q1 × · · · ×Qn ⊆ Q
n

• ~q0 ∈ Q is the initial state

• A3,A2u ,A2д ,A2` ⊆ R are (pairwise disjoint) sets of per-

mitted, urgent, greedy and lazy requests, resp., and we

denote by Ar = A3 ∪A2u ∪A2д ∪A2`
the set of requests

• Ao ⊆ O is the �nite set of o�ers

• T ⊆ Q × A × Q , where A = (Ar ∪ Ao ∪ {•})n , is the set

of transitions partitioned into permitted transitions T3

and necessary transitions T2
with T = T3 ∪T2

such that,

given t = (~q, ~a, ~q′) ∈ T , the following holds:

– ~a is either a request or an o�er or a match

– ∀i ∈ 1 . . .n, ~a(i ) = • implies ~q(i ) = ~q′
(i )

– t ∈ T3
i� ~a is either a request on a ∈ A3

, an o�er on

a ∈ Ao or a match on a ∈ A3 ∪Ao

– t ∈ T2
i� ~a is either a request a ∈ A2u ∪A2д ∪A2`

or a match on a ∈ A2u ∪A2д ∪A2` ∪Ao

• φ is a conjunction of feature constraints

• F ⊆ Q is the set of �nal states

A principal FMCA (or just principal) has rank 1 andAr ∩ co(Ao )=∅.
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Figure 2: FMCAT with KEconomyClientG⊗(Hotel⊗BusinessClientG)

For brevity, unless stated di�erently, we assume a �xed FMCA

A = 〈QA , ~q0A ,A
3
A
,A2u
A
,A

2д
A
,A2`

A
,Ao
A
,TA ,φA , FA〉 of rank n.

Subscript A may be omitted when no confusion can arise. More-

over, if not stated otherwise, each operation f (Ar ) (e.g. union) is

intended to be performed homomorphically on f (A3), f (A2u ),
f (A2д ), f (A2` ). Finally, abusing notation we may write T3∪2

as

shorthand for T3 ∪T2
and likewise for other transition sets, and

we may denote a transition t as a request, o�er or a match if its

label is such. Note that only requests and matches can be marked

necessary: a service contract can always withdraw o�ers, as they

are not necessary for reaching an agreement (cf. Sect. 5), i.e. they

are optional. The example in Sect. 2 explains the intuition behind

this design choice. If free breakfast were a necessary o�er in Hotel,
then we would have the unrealistic scenario in which the hotel

contract rejects all clients’ contracts. Indeed, no agreement would

be reached because no client requires free breakfast to match the

o�er, although they all are willing to pay for a room. An FMCA

recognises a trace language over actions and their modalities.

De�nition 4.3. Let A be an FMCA and # ∈ {3,2u ,2д ,2` }. A

step (w, ~q)
~a#
−−−→(w ′, ~q′) occurs i� w = ~a#w ′, w ′ ∈ (A ∪ {#})∗ and

(~q, ~a, ~q′) ∈ T#
. We write ~q

~a#
−−−→ when w,w ′ and ~q′ are immaterial

and (w, ~q) → (w ′, ~q′) when ~a# is immaterial. Let→∗ be the re�ex-

ive, transitive closure of transition relation→. The language of A

is L (A) = {w | (w, ~q0)
w
−→
∗ (ε, ~q), ~q ∈ F }.

By an abuse of notation, the modalities can be attached to either

basic actions or to their action vector (e.g. (a2` ,a) ≡ (a,a)2` ).

4.1 Composing FMCA
The FMCA operators of composition are crucial for specifying dy-

namic service product lines, in particular for generating (at binding

time) an ensemble of services. By adding new services to an exist-

ing composition, it is possible to dynamically update the service

product line and to synthesise, if possible, a composition satisfying

all requirements de�ned by the service contracts (cf. Sect. 5).

A set of FMCA is composable if and only if the conjunction of

their feature constraints leads to no contradiction.

De�nition 4.4 (Composable). A set Set = {Ai | i ∈ 1 . . .n} of

FMCA is composable i� (
∧
Ai ∈Set φAi ) 6 |= false.

Example 4.5. All the FMCA in Sect. 2 are trivially composable:

indeed all clients have feature constraint φClient = true and it holds

that true ∧ φ 6 |= false.

We now introduce our �rst (non-associative) operation of com-

position. The operands of the composition ⊗ are either principals or

composite services. Intuitively, the product composition interleaves

the actions of all operands, with the only restriction that if two

operands are ready to execute two complementary actions (~ai 1 ~aj )
then only their match will be allowed and their interleaving pre-

vented. Below we use # as a placeholder for both necessary (2) and

permitted (3) transitions. More in detail, the transitions of the com-

posite service are generated as follows. Case (1) in De�nition 4.6

generates match transitions starting from two operands’ transitions

having complementary actions (~ai 1 ~aj ). If, e.g., (~qj , ~aj , ~q
′
j ) ∈ T

2
,

then the resulting match transition will be marked as necessary

(i.e. (~q,~c, ~q′) ∈T2
). If both operands’ complementary actions are

permitted, then their resulting match transition t will be marked as

permitted. All other principals not involved in t will remain idle.

Case (2) in De�nition 4.6 generates all interleaved transitions

only if no complementary actions can be executed from the com-

posed source state (i.e. ~q). In this case, an operand executes its

transition t = (~qi , ~ai , ~q
′
i ) and all other operands remain idle. The

composed transition will be marked as necessary (permitted) only if

t is necessary (permitted, respectively). Note that condition ~ai 1 ~aj
excludes pre-existing match transitions of the operands from gen-

erating new matches. Recall that we implicitly assume the set of

labels of an FMCA of rankm to be A ⊆ (Ar ∪Ao ∪ {•})m .

De�nition 4.6 (Composition). Let Ai be composable FMCA of

rank ri , i ∈ 1, . . . ,n, and let # ∈ {3,2}. The product composition⊗
i ∈1...n Ai is the FMCA A of rankm =

∑
i ∈1...n ri , where

• Q = Q1 × · · · ×Qn , with ~q0 = ~q01 · · · ~q0n
• Ar =

⋃
i ∈1· · ·n A

r
i , Ao =

⋃
i ∈1· · ·n A

o
i ,

• T# ⊆Q ×A×Q s.t. (~q,~c, ~q′) ∈T#
i�, when ~q=~q1 · · · ~qn ∈Q ,

(1) either there are 1 ≤ i < j ≤ n s.t. (~qi , ~ai , ~q
′
i ) ∈ T

#
i ,

(~qj , ~aj , ~q
′
j ) ∈ T

#∪3
j , ~ai 1 ~aj and




~c = •u~ai •
v ~aj•

z ,with u = r1 + · · · + ri−1,
v = ri+1 + · · · + r j−1, z = r j+1 + · · · + rn , |~c | =m
and ~q′ = ~q1 · · · ~qi−1 ~q

′
i ~qi+1 · · · ~qj−1 ~q

′
j ~qj+1 · · · ~qn

(2) or there is 1 ≤ i ≤ n s.t. (~qi , ~ai , ~q
′
i ) ∈ T

#
i and




~c = •u~ai•
v ,with u = r1 + · · · + ri−1,

v = ri+1 + · · · + rn , |~c | =m,
~q′ = ~q1 · · · ~qi−1 ~q

′
i ~qi+1 · · · ~qn and ∀j , i, 1 ≤ j ≤ n

s.t. (~qj , ~aj , ~q
′
j ) ∈ T

#∪3
j , ~ai 1 ~aj does not hold

• φ =
∧
i ∈1...n φi

• F = { ~q1 · · · ~qn | ~q1 · · · ~qn ∈ Q, ~qi ∈ Fi , i ∈ 1 . . .n }

Example 4.7. In Figs. 1c–1d, two principals discussed in Sect. 2

are depicted. A sub-portion of their composition BusinessClientG ⊗
Hotel is shown in Fig. 1e. The outgoing transition ~q0,0

(room2u , room)
−−−−−−−−−−−→

is an example of an urgent match between the urgent request

room2u of the �rst principal and the permitted o�er room of the sec-

ond. Moreover, in this composition the transitions ~q0,0
(room2д, •)
−−−−−−−−−→

or ~q0,0
(•, room)
−−−−−−→ are not allowed because of (room2д , •) 1 (•, room).

The projection operator

∏i (A) retrieves the principal with in-

dex i involved inA and identi�es its original transitions and feature
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constraint. The associative composition operator 4 is de�ned on

top of the operators ⊗ and

∏
. First, the corresponding principals of

the operands are extracted by

∏
and then they are recomposed all

together in a single step by ⊗. This causes all pre-existing matches

to be rearranged. These two operators are minor adaptations of

those from [8] (cf. Appendix 7 for their de�nitions). In particular,

4 models a dynamic composition policy: new services joining com-

posite services can intercept already matched actions. Hence, by

changing operators of composition or the order of composition

di�erent service product lines can be obtained, as explained below.

For the sequel, we assume every FMCA A of rank rA > 1 to be

composed by FMCA with the composition operators described here.

Example 4.8. Recall from Sect. 2 the compositions (Economy-
Client ⊗ Hotel) 4 BusinessClient and EconomyClient ⊗ (Hotel ⊗
BusinessClient). In both, the transition ~q0,0,0

(•, room, room2u )
−−−−−−−−−−−−−→ is al-

lowed, while it is not in the composition (EconomyClient ⊗Hotel) ⊗
BusinessClient, which has an empty orchestration (cf. Sect. 2).

4.2 Re�ning FMCA
In this section, we de�ne a re�nement relation among FMCA, based

on the notion of controllability from Supervisory Control The-

ory [15]. The re�nement will be used in Sect. 5 to relate the valid

products of an FMCA (cf. Sect. 4.3) and to synthesise the service

product family. We start by de�ning dangling states, i.e. those

unreachable or from which no �nal state can be reached.

De�nition 4.9 (Dangling state). Let A be an FMCA. Then ~q ∈ Q
is dangling (~q ∈ Danдlinд(A)) i� @w s.t. ~q0

w
−→
∗~q or ~q

w
−→
∗ ~qf ∈ F .

We now characterise when a transition of an FMCA is control-
lable or uncontrollable. The correspondence between permitted/

necessary and controllable/uncontrollable was mainly exploited

in [8], where all necessary requests were greedy. Here we add an

extra layer of information about “when” a necessary request can

be matched, which is mainly due to how we build the composition

of FMCA (interleavings in De�nition 4.6). All permitted actions

(o�ers and requests) are fully controllable. As brie�y discussed

previously, urgent, greedy and lazy requests have an increasing

degree of controllability. An urgent request is fully uncontrollable:

it must be matched in every possible state in which it can be exe-

cuted. A greedy request can be disabled by the controller as long

as the �rst match is available. Finally, a lazy request only requires

to be matched: its matches are controllable by the orchestrator,

provided at least one match is available. Below, we characterise the

controllability of greedy and lazy requests (De�nition 4.10) and the

controllability of lazy matches (De�nition 4.12). We remark that, for

permitted and urgent requests, we do not need to characterise their

controllability, because in the �rst case they are always controllable

(permitted) and in the second case always uncontrollable (urgent).

A (greedy or lazy) request transition t is a controllable greedy/lazy
request in FMCAA if there exists a (greedy or lazy) match transition

t ′ in A and in both t and t ′ the same principal, in the same local

state, does the same request, and additionally the target state of t ′

is not dangling. Formally:

De�nition 4.10 (Controllable Greedy/Lazy Request). Let A be an

FMCA and let t = (~q1, ~a1, ~q
′
1
) be a request on a ∈ A2д

(resp. a ∈
A2`

). Then t is a controllable greedy/lazy request (cglr) transition

in A i� ∃(~q2, ~a2, ~q
′
2
) ∈ T2

s.t. ~a2 is a match, ~q′
2
< Danдlinд(A),

~q1 (i ) = ~q2 (i ) and ~a1 (i ) = ~a2 (i ) ∈ A
2д

(resp. a ∈ A2`
); otherwise t

is an uncontrollable greedy/lazy request (uglr) transition in A.

Example 4.11. ConsiderA=EconomyClient ⊗ (Hotel ⊗ Business-
Client) from Sect. 2, and ~q0,0,0

(•, room, room2u )
−−−−−−−−−−−−−→~q0,1,1

(•, card3, card)
−−−−−−−−−−−→

~q0,2,2
(•, receipt, receipt3)
−−−−−−−−−−−−−−→~q0,0,3

(room2`, room, •)−−−−−−−−−−−−−→. Because of this trace, the

lazy request transition ~q0,0,0
(room2`, •, •)−−−−−−−−−−→ is a cglr transition in A.

This cglr request transition can safely be removed in the orchestra-

tion: the corresponding request appears in another transition as a

match (in this example ~q0,0,3
(room2`, room, •)−−−−−−−−−−−−−→).

Consider a match transition t and a request transition tr . In-

tuitively, tr is said to be extracted from t i� the only di�erence

between t and tr is that the principal executing the o�er in t is idle

in tr , i.e. t = (~q, ~a, ~q′) with ~a(j ) = a ∈Ao , and tr = (~qr , ~ar , ~q
′
r ) s.t.

~q′r (j ) = ~q(j ) and ~ar (j ) = • and equals t anywhere else. A lazy match

transition t is an uncontrollable lazy match in A if the lazy request

transition tr extracted from t is an uglr transition in A. Formally:

De�nition 4.12 (Uncontrollable lazy match). Let A be an FMCA,

t = (~q, ~a, ~q′) < TA with ~q ∈ QA \ Danдlinд(A) be a lazy match

transition and tr be the request transition extracted from t . Then t
is an uncontrollable lazy match (ulm) transition inA i� tr is an uglr

transition in A; otherwise t is a controllable lazy match (clm) in A.

Example 4.13. Consider the compositionA =BusinessClientL ⊗
HotelGreedyBad of Sect. 2 and its orchestrationKA . The necessary

lazy transition t = (~q2,2,(invoice2` , invoice), ~q3,3) is removed inKA .

Moreover, ~q2,2 is a state of KA that is not dangling. The request

tr = (~q2,2, (invoice2` , •), ~q3,2) extracted from t is a cglr in KA ,

because the request invoice2` is matched in the transition t ′ =
(~q2,4, (invoice2` , invoice), ~q3,0). Conversely, consider the ill-formed

orchestration K
ill

, obtained from the FMCA in Fig. 1e by only con-

sidering states ~q0,0, ~q1,1, ~q2,2, ~q3,0 and their incident transitions.

Now t ′ is not a transition ofK
ill

; and no other matches for invoice2`

are reachable. Hence, in this case, t is an ulm in K
ill

.

The notion of uncontrollable transition is de�ned next. Intuitively,

an uncontrollable transition cannot be blocked by the orchestrator

without a�ecting the agreement among contracts.

De�nition 4.14 (Uncontrollable transition). Let A be an FMCA

and t = (~q, ~a, ~q′) a transition on a. Then t is uncontrollable (unc.)
in A i� either a ∈ A2u

or ~a is a match on a ∈ A2д
or t is uglr in

A or t is an ulm in A; otherwise t is controllable (con.).

We are now ready to introduce the re�nement relation between

FMCA. Intuitively, an FMCA Ar re�nes an FMCA A when all the

uncontrollable transitions of A are maintained in Ar, as well as

controllable transitions of A that are uncontrollable in Ar. Only a

subset of the controllable transitions of A are available in Ar.

De�nition 4.15 (Re�nement). An FMCA Ar is a re�nement of

an FMCA A, denoted by Ar � A, i� ∃ a re�nement relation

R ⊆ Q ×Qr s.t. Arr ⊆ Ar , Aor ⊆ Ao , (~q0, ~q0r ) ∈ R and ∀ (~q, ~qr ) ∈ R ,

abbreviating t = (~q, ~a, ~q′) and tr = (~qr , ~a, ~q
′
r ), the following holds:

• t ∈ TA unc. in A i� ∃~q′r ∈ Qr s.t. tr ∈ TAr ∧ (~q′, ~q′r ) ∈ R
• tr ∈ TAr con. in Ar implies ∃~q′ ∈ Q s.t. t ∈ TA ∧ (~q′, ~q′r ) ∈ R
• t ∈TA con. inA, unc. inAr i� ∃~q′r ∈Qr s.t. tr ∈TAr ∧ (~q

′, ~q′r ) ∈R
• ~q < Danдlinд(A) ∧ ~qr < Danдlinд(Ar )
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Example 4.16. Consider the compositionsA=BusinessClientL⊗
Hotel and A1 = BusinessClientL ⊗ HotelBadGreedy of Sect. 2.

Both orchestrations KA and KA1
are non-empty. Indeed, KA is

as shown in Fig. 1e, except for all greedy actions that are turned to

lazy; while KA1
is equal to KA , except for the state ~q3,3 (and the

incident transitions) that have been removed. Then KA1
� KA

holds because t = (~q2,2, (invoice2` , invoice), ~q3,3) is controllable

in KA . Finally, consider A2 = BusinessClientL ⊗ HotelBadLazy
with empty orchestration and K

ill
from Example 4.13. We have

K
ill
� A2, because t ∈ TA2

, t < K
ill

and t is controllable in A2

and uncontrollable in K
ill

.

4.3 Valid Products of FMCA
Intuitively, a valid product p of an FMCA A is such that all its re-

quired actions are available while its forbidden actions are not. More

precisely, p is a (valid) interpretation of the feature constraints ofA

(i.e. p ∈ JφAK) such that for all true literals a (i.e. a ∈ Required (p))
a reachable transition t on a is executable in A, whereas for all

false literals b (i.e. b ∈ Forbidden(p)) no reachable transition t on b
can be executed in A. Formally:

De�nition 4.17 (Valid product). Let A be an FMCA, then p ∈
JφAK is valid in A i� (i) ∀a ∈ Required (p) ∃(~q, ~a, ~q′) ∈ TA s.t. ~a is

an action on a and ~q′ < Danдlinд(A), and (ii) ∀b ∈ Forbidden(p)

@(~q, ~b, ~q′) ∈ TA s.t.
~b is an action on b and ~q′ < Danдlinд(A).

Given a service product line A, one of the bene�ts of adopting

a partial order of products is the possibility to determine all valid

products in A by only exploring a subset of them, as proved in the

following theorem. In particular, if a sub-product p is valid then all

its super-products p′ are also valid products or, equivalently, if a

product p′ is not valid then neither is any of its sub-products p.

Theorem 4.18 (�ick products validation). LetA be a FMCA
and p,p′ ∈ JφAK be two products s.t. p � p′. Then the following holds:

p is valid in A implies p′ is valid in A (1)

Example 4.19. Products p1 and p2 of Sect. 2 are valid in all or-

chestrations, while p3 and p4 are not. Since p2 � p1, validity of p2
implies validity of p1. Moreover, every potential sub-product of p3
or p4 (obtainable by extending the feature model in Fig. 1a) will be

not valid in all the given orchestrations.

All valid products inA can be determined by visiting the lattice

of De�nition 3.1 in a top-down breadth-�rst search and by pruning

those sub-trees rooted in a product not valid in A. In the next

section, the notion of composition of services in agreement and a

technique for synthesising it are detailed.

5 CONTROLLER SYNTHESIS FOR FMCA
We �rst de�ne the property of (modal) agreement on FMCA lan-

guages, and a technique for synthesising an orchestration of ser-

vices in agreement. Intuitively, a trace is in agreement if it is a

concatenation of matches, o�er actions and their modalities. We

recall two de�nitions from [8].

De�nition 5.1 (Modal agreement). A trace accepted by an FMCA

is in agreement if it belongs to the set

A = {w ∈ (Σn#)∗ | ∀i s.t. w (i ) =~a#, ~a is a match or an o�er, n>1}

An FMCA is safe when all traces of its language are in agreement,

and it admits agreement when at least one of its traces is. Formally:

De�nition 5.2 (Modal safety). An FMCA A is safe if L (A) ⊆ A;

otherwise it is unsafe. If L (A) ∩ A , ∅ then A admits agreement.

Example 5.3. Consider the FMCA in Fig. 1e. Its language con-

tains w = {(room, room)2u (card, card)3(receipt, receipt)3}. This

FMCA admits agreement because w ∈ A.

We now de�ne an algorithm for synthesising an orchestration

of FMCA, viz. the maximal sub-portion of an FMCA A that is safe.

The orchestration will be the most permissive controller (mpc for

short) in the style of Supervisory Control for Discrete Event Sys-

tems [15, 29]. A discrete event system is a �nite state automaton,

where marked (i.e. �nal) states represent the successful termina-

tion of a task, while forbidden states should never be traversed in

“good” computations. The purpose of Supervisory Control Theory

is to synthesise a controller that enforces good computations. To

do so, it distinguishes between controllable events (those that the

controller can disable) and uncontrollable events (those that are

always enabled), besides partitioning events into observable and

unobservable (obviously uncontrollable). If all events are observable,

then an mpc exists which never blocks a good computation [15].

The purpose of contracts is to declare all executions of a prin-

cipal in terms of requests and o�ers. Therefore, we assume that

all actions of a (composed) contract are observable. The compo-

sition of contracts computed through De�nition 4.6 corresponds

to the uncontrolled system (i.e. plant) in [15, 29]. Note that the

composition of the mpc and the plant (i.e. controlled system) is not

generated through the operators in De�nition 4.6 (⊗, 4). As usual,

the controlled system can be obtained by a standard synchronous

composition of the mpc with the plant, which blocks all transitions

that are in the plant but not in the mpc. Here we do not specify the

controlled system. Indeed, the interactions between the orchestra-

tor and the principals, that are used for realising the orchestration

computed through the mpc, are implicit in our framework [7].

Clearly, the behaviour that we want to enforce upon a given

FMCA are exactly the traces in agreement; thus we assume both

(i) request transitions and (ii) forbidden transitions to lead to a for-

bidden state. To ful�l the modalities imposed by FMCA, we force

a composition to be in agreement only if there exists a match for

each necessary (urgent, greedy or lazy) request. Moreover, we want

to synthesise an orchestration of services that satis�es the feature

constraints de�ned in Sect. 3. To this aim, the synthesis algorithm

computes the mpc of a product of the family identi�ed by the fea-

tured constraints. Even though the number of products of a family

is in general exponential in the number of features [14], we will

show how it is possible to synthesise the mpc for the entire product

family from only a subset of valid products (cf. Theorem 5.18).

Before de�ning and computing the mpc, we de�ne a state to be in

uncontrollable disagreement if the controller cannot avoid a “bad”

transition (i.e. request or forbidden action) from being executed.

De�nition 5.4 (Uncontrollable disagreement). Let A,K be two

FMCA and let p ∈ JφAK. A transition t = ~q
~a
−→ ∈ TA is forced

in A by K i� (i) t is unc. in K ; or (ii) no others t ′ ∈ TK have

source ~q < FK . A state ~q < Danдlinд(A) is in uncontrollable
disagreement (unc.dis.) in p ofA byK i� ~q

w
−→
∗~q1 by only executing
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forced transitions and either (1) w < A or containing a basic action

a ∈ Forbidden(p) or (2) @w ′ ∈ A not containing basic actions

a ∈ Forbidden(p) s.t. ~q1
w ′
−−→
∗~qf ∈ FA .

Example 5.5. State ~q2,2 ofA = BusinessClientL ⊗ HotelBadLazy
in Sect. 2 is in unc. dis. in (p1/p2) ofA byKil l because the transition

(~q2,2, (invoice2` , invoice), ~q3,3) is ulm in Kil l (cf. Example 4.13),

and from state ~q3,3 the �nal state ~q3,0 can only be reached by

executing the request action (•, captcha3).

A controller K of (valid) product p of A allows (1) all traces

in agreement where (2) no states in unc.dis. in p of A by K are

traversed, and blocks those traces not satisfying (1) or (2). More-

over, all actions required by p must be executable by K . Hence a

controllerK of an FMCAA is again an FMCA. The mpc of product

p ofA is the largest FMCA that is a controller of p, and it is unique

up to language equivalence.

De�nition 5.6 (Mpc of product). LetA,K be FMCA andp ∈ JφAK.

Then K is a (modal) controller of product p of A i� (1) K is safe,

(2) Dangling(K )=∅, (3) L (K )=∅ or ∀a ∈Required (p) ∃w ∈L (K )
s.t. w contains basic action a, and (4) @w ∈L (K ) s.t. w contains

actions a ∈ Forbidden(p) or ~q0K
w
−→
∗~qK , ~q0

w
−→
∗~q and ~q is in unc.

dis. in p of A by K . A controller K of product p of A is the

most permissive (modal) controller (mpc) i� ∀ controllers K ′ of p,

L (K ′)⊆L (K ) holds.

Example 5.7. All orchestrations discussed in Sect. 2 are the mpc
of their corresponding service composition for products p1 and p2.

The following lemma relates (i) the existence of an mpc of prod-

uct p ofA to (ii) the notion of validity of p inA (cf. De�nition 4.17).

In general, (i) is stronger than (ii), but the two notions are equiv-

alent if and only if the set of actions required by p is non-empty.

Finally, Lemma 5.8(4) complements Theorem 4.18 by exploiting the

information related to the existence of an mpc. While we know

from Theorem 4.18 that all sub-products of a product p are not

valid in A if p is not valid in A, the following lemma ensures the

existence of a sub-product of p valid in A (with non-empty mpc)
provided that p admits a non-empty mpc.

Lemma 5.8. LetKAp be the mpc of product p ofA. Then we have:

L (KAp ) , ∅ implies p valid in KAp (2)

p valid in KAp and Required (p) , ∅ implies L (KAp ) , ∅ (3)

L (KAp ),∅ ∧ ∃p1 :p1 �p implies ∃p2 :p2 �p ∧L (KAp
2

),∅ (4)

Example 5.9. In Sect. 2, for all compositions discussed, their mpc
of products p1 and p2 are non-empty (cf. Lemma 5.8(2)). More-

over, both products have a non-empty required set of actions (cf.

Lemma 5.8(3)) and are indeed valid products of their corresponding

mpc (cf. Example 4.19). Finally, p2 � p1 holds (cf. Lemma 5.8(4)).

Note that in general the converse of Lemma 5.8(2) does not hold,

because product validity ignores agreement, which is required by

the mpc (e.g. it su�ces to considerA not admitting agreement and

with products not requiring anything).

We now outline the iterative algorithm for computing the mpc
of product p of an FMCA A, after which we formally present

the algorithm in De�nition 5.10. With respect to the standard

synthesis in [29], we exploit non-local information related to other

transitions for deciding whether a given transition is controllable or

uncontrollable (cf. De�nition 4.10 and De�nition 4.12). At each step

i , the algorithm updates incrementally a set of states Ri and revises

an FMCA Ki ; it terminates when no more updates are possible.

Intuitively, the property of agreement requires that all requests are

matched. Hence, we want to remove all possible (non-matched)

requests. We also want to remove all actions that are forbidden by

the product. The mpc must prevent these “bad” transitions (requests

and actions forbidden by the product) from being executed. This is

straightforward for bad controllable transitions, while we can only

try to make the bad uncontrollable transitions unreachable. To this

aim, the sets Ri contain the “bad” states: those that cannot prevent

a necessary request or a forbidden action to be eventually executed

(i.e. states in uncontrollable disagreement). Note that by pruning

transitions, a cglr transition may become uncontrollable (i.e. the

match transition required by De�nition 4.10 is removed).

At the starting point, the bad controllable transitions are re-

moved in K0. For the bad uncontrollable transitions, their source

states are added to the set of bad states R0. Moreover, the dangling

states of K0 are added to R0. At each iteration i , the algorithm

prunes in a backwards fashion from Ki the controllable transitions

with bad target and the uncontrollable transitions with bad source.

Moreover, Ri is updated by adding to Ri−1 (i) the newly gener-

ated dangling states; (ii) the sources of uncontrollable transitions

with bad target; and (iii) sources of transitions previously pruned

that could have become uncontrollable (and bad) by the successive

pruning operations. The transitions in (iii) are either cglr transi-

tions (cf. De�nition 4.10) or clm transitions (cf. De�nition 4.12) that

have become uglr and ulm, respectively (all matches required by

the corresponding de�nitions have been completely pruned from

Ki ). The algorithm terminates when no new updates are available.

Upon termination, if the initial state is bad (in Rn ) or some action

required by product p is unavailable in Kn , then the mpc is empty.

Otherwise, the synthesised automaton Kn is the mpc of p.

Since the set Ri is �nite and can only increase in each step, the

termination of the algorithm is guaranteed.

De�nition 5.10 (Synthesis). Let A be an FMCA, p ∈ JφAK and

f : FMCA ×2Q → FMCA ×2Q be a monotone function on the cpo

P = (2Q , ⊆). Moreover, letK0 = 〈Q, ~q0,A
3,A2u ,A2д ,A2` ,Ao ,T \

{ t con. in A | t request ∨ a ∈ Forbidden(p) },φA , F 〉, let R0 =
Danдlinд(K0) ∪{ ~q | (~q −→) = t ∈ T2

A
on a unc. in K0, (t request ∨

a ∈ Forbidden(p)) }. Let f (Ki−1,Ri−1) = (Ki ,Ri ) s.t.:

• Ki = 〈Q, ~q0,A
3,A2u ,A2д ,A2` ,Ao ,TKi−1 \

( { (~q −→ ~q′) = t ∈ TKi−1 | t con. in Ki−1 ∧ ~q′ ∈ Ri−1 } ∪
{ (~q −→) = t ∈ TKi−1 | t unc. in Ki−1 ∧ ~q ∈ Ri−1 } ),φA , F 〉

• Ri = Ri−1 ∪ { ~q | (~q −→ ~q′) ∈ T2
Ki

unc. in Ki , ~q < Ri−1 ∧

~q′ ∈ Ri−1 } ∪ { ~q | (~q −→) ∈ T2
A

uglr or ulm in Ki } ∪
Danдlinд(Ki )

and let (Kn ,Rn ) = sup ({ f n (K0,R0) | n ∈ N }) be the least �xed

point of f . Then the mpc KAp of product p of A is computed as:

KAp=




〈〉 if ~q0 ∈ Rn or ∃a ∈ Required (p) s.t. ∀t ∈ TKn :

t is not a transition on a
〈Q \Rn , ~q0,A

3,A2u,A2д,A2`,Ao,TKn , F \Rn〉 otherwise

The following theorem proves that the automaton computed

through De�nition 5.10 is indeed the mpc of product p of A.
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Theorem 5.11 (mpc of a product). Let A be an FMCA and let
p ∈ JφAK be a valid product. The FMCA KAp computed through
De�nition 5.10 is the mpc of product p of A.

The next theorem is based on the notion of modal re�nement

in De�nition 4.15 and it states that the mpc of product p of A

produces the largest re�nement of the principals inA such that an

agreement among the parties is possible. Intuitively, if a permitted

action does not spoil the overall agreement then it will be available

in the composition of services.

Theorem 5.12 (Largest refinement). Let A =
⊗

i ∈I Ai be a
composition of principalsAi , let p be a valid product ofA, letKAp ,

〈〉 be its mpc computed through De�nition 5.10 and let Πi (KAp ) =

Ari be its projections on ith principals. Then the following holds:

∀i ∈ I : Ari � Ai (5)

∀K ′, 〈〉 controller of p of A and ∀i : Πi (K
′) = Ar ′i

� Ari (6)

Example 5.13. Let K be the FMCA of Fig. 1e. Then (
∏

1 (K ) =
Clientp ) � BusinessClientG. In particular, Clientp is as in Fig. 1c

but without o�er cash, as it is forbidden by p1. None of the other

permitted transitions is removed by the mpc, e.g. ~q2,2
(receipt3, receipt)
−−−−−−−−−−−−→

and ~q2,2
(•, freebrk)
−−−−−−−−→, because they do not spoil the overall agreement.

The following lemma relates the partial order of products with

the one induced by re�nement: the mpc KAp of product p of A is

a re�nement of the mpc KAp′ of a super-product p′ of A.

Lemma 5.14 (Controller refinement). LetA be an FMCA and
let p,p′ ∈ JφAK. Then the following holds:

p � p′ and L (KAp ) , ∅ implies KAp � KAp′ (7)

Example 5.15. In Sect. 2, for all compositions, the mpc for prod-

ucts p1 and p2 were indeed equal, and the re�nement relation holds

trivially. Products p3 and p4 have an empty mpc.

An important consequence is that all the mpc of valid products

in A are ordered according to the re�nement relation. This order

can be exploited for computing the mpc of all the products of a

service product line without generating the mpc for each product.

The next result states that the mpc of an FMCAA can be de�ned

by the union of a subset of controllers of canonical valid products of

A: those at “higher” level in the lattice of De�nition 3.1, quotiented

by their forbidden actions. The selected products are those su�cient

and necessary for characterising the mpc of each valid product in

A as re�nement of the mpc of the product family. FMCA union

and intersection are standard automata operations.

De�nition 5.16 (Canonical products). Let A be an FMCA. Then

TVP (A) = {p | L (KAp ),∅, @p
′

s.t. L (KA′p ) , ∅ and p �p′ }

is the set of top valid products of A. Moreover, let

p ≡ p′ i� p,p′ ∈ JφAK s.t. Forbidden(p) = Forbidden(p′)

be an equivalence relation on products of A s.t. TVP (A)/≡ is the

quotient set of TVP (A) by ≡. The set of canonical products of A is

CP (A) = {pc | pc is the canonical element of [p] ∈ TVP (A)/≡ }

Example 5.17. For all service compositionsA described in Sect. 2,

TVP (A) = {p1}. Moreover, p1 ≡ p2 belong to the same equivalence

class, while p3 and p4 do not. Finally, p1 is the canonical element of

its (singleton) equivalence class.

Theorem 5.18 (mpc of a product family). Let A be an FMCA.
Then the mpc of a product family A is KA =

⋃
p∈CP (A) KAp and:

∀p ∈ JφAK : L (KAp ) , ∅ implies KAp � KA (8)

∀p′ ∈ CP (A) ∃p′′ ∈ JφAK : L (KAp′′ ) , ∅ and

KAp′′ �
⋃
p∈CP (A), p,p′ KAp (9)

Note that the information about required actions can be dis-

carded because we are only considering non-empty controllers.

Example 5.19. Each non-empty mpc K of a product family A

described in Sect. 2 is exactly the mpc of its canonical product p1. If,

by extending the feature model, we were to have two other products

p5 and p6 with non-empty mpc, such that p5 ≡ p6, p6 � p5, p6 � p1
and p5 . p1, then p5 would be an additional canonical product with

mpc K ′ � K . The mpc of the product family would be the union

of the mpc of p1 and p5 (i.e. K ′ ∪ K ).

We now prove that it is possible to build the mpc of product p of

A starting from an FMCA smaller thanA, viz. from the intersection

of the mpc of the immediate super-products of p. This suggests a

way to e�ciently compute the synthesis.

Theorem 5.20 (�ick mpc synthesis). Let A be an FMCA,
let ` ∈ N, let Depth(A, `) = {p | p ∈ JφAK and |Required (p) | +
|Forbidden(p) | = ` } and let p ∈ Depth(A,n). Then it holds that:

if KA,p , 〈〉 then KA,p �
⋂
p′∈Depth(A,n−1),∅, p�p′ KA,p′ (10)

Example 5.21. Continuing Example 5.19, one could compute the

mpc of p6 starting from the intersection of the mpc of p1 and p5.

6 RELATEDWORK AND CONCLUSION
In this paper, we presented FMCA as a novel formal model for

expressing contract-based dynamic service product lines.

The de�nition of FMCA builds on two of the better known

automata-based models proposed for modelling and analysing vari-

ability in product lines, which are typically based on superimposing

multiple product automata in a single, enriched family automa-

ton. From Modal Transition Systems (MTS) [3], FMCA inherit the

distinction into permitted (may) and necessary (must) transitions,

whereas the explicit incorporation of feature constraints stems from

Featured Transition Systems (FTS) [16]. MTS were �rst recognised

as a suitable behavioural model for describing product lines in [20],

which provided an algorithm to check the conformance of product

behaviour against that of the product family. Subsequent extensions

involving notions from interface automata and I/O automata were

de�ned in [24] and [25], respectively. Another line of research led

to MTS with an associated set of variability constraints expressed

over actions and a dedicated variability model checker that allows

one to verify a property for a family and conclude that the result

also holds for all its products [10, 12].
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Compared to FMCA, none of these models can explicitly handle

dynamic product lines, a characteristic FMCA inherits from [6, 7].

Furthermore, we tackled the problem of synthesising the mpc of

a family of service contracts ful�lling all feature constraints, all

necessary service requests and the maximal number of permitted

service requests. Building on an earlier model [8], permitted and

necessary transitions are interpreted as controllable and uncon-

trollable transitions in Supervisory Control Theory [15]. In this

paper, necessary transitions are further distinguished according

to their degree of controllability. The synthesis algorithm is thus

enriched to consider necessary transitions whose controllability

can be altered based on non-local information. Supervisory Control

Theory was previously applied to Software Product Line Engineer-

ing in [13], where the CIF 3 toolset was used to synthesise all valid

products of a product line composed of behavioural components

and requirements modelled as automata.

Based on the synthesis of the mpc in [8], our approach to synthe-

sise a family of services does not consider all actions to be control-

lable, as in [13], but considers increasing levels of uncontrollability

(from urgent to lazy requests). The information related to the spe-

ci�c requirements of each product (required and forbidden features)

is also integrated into the synthesis algorithm. Moreover, whilst

the number of products is in general exponential in the number of

features, the organisation of the family’s products (and their mpc)
into a partial order makes our approach more scalable. As a result,

the obtained mpc of the family of services can be synthesised from

only a subset of its products, whereas other approaches require to

synthesise the mpc of each single product. Finally, the presented

theory has been implemented in a prototypical tool, which was

used to compute all examples given throughout the paper.

It remains to compare our approach with other synthesis algo-

rithms and to quantify how well it scales. To this aim, we would

like to model and analyse a real world service-based application, as

was done in [5] for a system without variability.

We conjecture the existence of a correspondence between FMCA

and FTSs, which might allow to apply some of the simulation re-

sults from [18] concerning the preservation of important correct-

ness properties. In particular, we would like to exploit the results

from [18] to introduce a notion of uncontrollable disagreement in

the re�nement of FMCA, such that the re�nements will coincide

with the image of the synthesis function of De�nition 5.10 (i.e. all

and only re�nements such that at least one product has a non-

empty mpc). In order to adapt such simulation results directly to a

partial order of FMCA, it remains to extend the results from [18]

towards the re�nement of FMCA, which is planned as future work.

Another direction for future work is to enhance service requests

and o�ers with quantities. In Sect. 2, e.g., Clients could express

the actual amount of money they are willing to pay. Reaching

an agreement would then amount to �nding the optimal trade-o�

among principals such that each one has a positive pay-o� function.

This might lead to a formalisation of Quality of Service parameters

of Service Level Agreements in our model, allowing us to assess

non-functional parameters like reliability or energy consumption

in a composition of service contracts.
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7 DEFINITIONS
We de�ne projection and composition mentioned in Sect. 4 in detail.

De�nition 7.1 (Projection). Let A be an FMCA. Then the projec-
tion
∏i (A)= 〈

∏i (Q ), ~q0 (i ) ,
∏i (A3),

∏i (A2u),
∏i (A2д),

∏i (A2`),∏i (Ao ),
∏i (T ),

∏i (φ),
∏i (F )〉 on the ith principal, i ∈1 . . .n, is s.t.

•
∏i (Q ) = { ~q(i ) | ~q ∈ Q }

•
∏i (Ar ) = { a | a ∈ Ar , (q,a,q′) ∈

∏i (T ) }
•
∏i (Ao ) = { a | a ∈ Ao , (q,a,q′) ∈

∏i (T ) }

•
∏i (T3) = { (~q(i ) , ~a(i ) , ~q

′
(i ) ) | ((~q, ~a,

~q′) ∈ T3 ∧ ~a(i ) < •)

. ∨ ((~q, ~a, ~q′) ∈ T2 ∧ ~a(i ) ∈ O) }

•
∏i (T2) = { (~q(i ) , ~a(i ) , ~q

′
(i ) ) | ((~q, ~a,

~q′) ∈ T2 ∧~a(i ) ∈ R) }

•
∏i (φ) = φi ,with φ =

∧
i ∈1...n φi

•
∏i (F ) = { ~q(i ) | ~q ∈ F }

The (associative) composition operation 4 �rst extracts from its

operands the principals they are composed of through projection,

and then reassembles them through composition ⊗.

De�nition 7.2 (A-composition). Let A1,A2 be two composable

FMCA of rank n and m, respectively, and let I = {
∏i (A1) | 0 <

i ≤ n } ∪ {
∏j (A2) | 0 < j ≤ m }. Then the a-product composition

of A1 and A2 is A14A2 =
⊗
Ai ∈I Ai .

8 PROOFS
We provide here the proofs that have been omitted from the paper.

Theorem 4.18 (�ick products validation). LetA be a FMCA
and p,p′ ∈ JφAK be two products s.t. p � p′. Then the following holds:

p is valid in A implies p′ is valid in A (1)

Proof. Intuitively, p imposes more restrictions on validity than

p′. By contradiction, assume that p is valid in A and that p′ is not

valid in A. By De�nition 4.17, it must be the case that either

(1) ∃a ∈ Required (p′) s.t. ∀(~q, ~a, ~q′) ∈ TA : ~a is an action on

b , a or ~q′ ∈ Dangling(A). In this case, p is not valid in

A because by De�nition 3.1, Required (p′) ⊆ Required (p).
(2) ∃b ∈Forbidden(p′) s.t. (~q, ~b, ~q′) ∈TA , ~b is an action onb and

~q′<Dangling(A). In this case,p is not valid inA as by De�n-

ition 3.1, Forbidden(p′)⊆ Forbidden(p), a contradiction. �

Lemma 8.1. LetKAp be the mpc of product p ofA. Then we have:

L (KAp ) , ∅ implies p valid in KAp (2)

p valid in KAp and Required (p) , ∅ implies L (KAp ) , ∅ (3)

L (KAp ),∅ ∧ ∃p1 :p1 �p implies ∃p2 :p2 �p ∧L (KAp
2

),∅ (4)

Proof. For Equation (2), by contradiction assume that p is not

valid in KAp . By De�nition 4.17, it must be the case that either

(1) ∃a ∈ Required (p) s.t. ∀(~q, ~a, ~q′) ∈ TKAp : ~a is an action on

b , a or ~q′ ∈ Dangling(KAp ). In this case, @w ∈ L (KAp )
s.t. w contains basic action a and thus, by De�nition 5.6,

KAp is not an mpc, a contradiction.

(2) ∃b ∈ Forbidden(p) s.t. (~q, ~b, ~q′) ∈TKAp ,
~b is an action on b

and ~q′<Dangling(KAp ). In this case, ∃w1
~bw2 ∈L (KAp )

for some w1,w2, and by De�nition 5.4 some state in KAp

is in uncontrollable disagreement, a contradiction.

For Equation (3), by hypothesis∃a ∈Required (p) s.t. (~q, ~a, ~q′) ∈TKAp
on a and ~q′ < Dangling(KAp ), and L (KAp ) , ∅ by De�nition 4.9.

For Equation (4), it su�ces to note that a sub-product p2 can

be obtained by adding an action a < Required (p) ∪ Forbidden(p) to

either (i) Required (p2) or (ii) Forbidden(p2) (the existence of such ac-

tion a is guaranteed by hypothesis). The action a is either present or

not present inKAp . If action a is present, the sub-product obtained

through case (i) (a ∈ Required (p2)) is such that L (KAp
2

) , ∅

by hypothesis (we are requiring an action that is present). If ac-

tion a is not present, the sub-product obtained through case (ii)

(a ∈ Forbidden(p2)) is such that L (KAp
2

) , ∅ by hypothesis (we

are forbidding an action that is not present). �

Next we state some auxiliary results used to prove Theorem 5.11.

Lemma 8.2. LetA be an FMCA, p ∈ JφAK be a valid product, Kn
be the FMCA (of p) computed through De�nition 5.10 and Rn be the
set of states computed through De�nition 5.10. Then

∀~q ∈ Rn : ~q is unreachable in Kn or ~q0 ∈ Rn (11)

let UpAKn = {~q | ~q is in unc.dis. in p of A by Kn } then

UpAKn ∪ Dangling(A) =Rn (12)

(∃w not containing basic actions a ∈ Forbidden(p) s.t.

Sw = { ~q | (~q0
w1

−−→
∗~q

w2

−−→
∗~qf ) ∧ (w = w1w2 ∈ L (A) ∩ A) } , ∅

and Sw ∩UpAKn = ∅) implies Sw ∩ Rn = ∅ (13)

Proof. We prove Equation (11). By contradiction, assume ~q0 <
Rn and exists a path p = ~q0 · · · ~q~q

′ · · · ~q′′ such that ~q′, . . . , ~q′′ ∈ Rn
and ~q < Rn . Let i be an iteration of the algorithm in De�nition 5.10

such that ~q′ ∈ Ri−1, ~q < Ri−1, and let t = ~q −→ ~q′ be the transition

traversed in p. If t is controllable, then by De�nition 5.10 it is

removed in Kn , a contradiction. Otherwise, if t is uncontrollable,

then ~q is added to Ri by De�nition 5.10 and ~q ∈ Rn , a contradiction.

We now prove Equation (12).

We start with UpAKn ∪ Dangling(A) ⊆ Rn . By contradiction,

assume ∃ ~q ∈UpAKn ∪Dangling(A) s.t. ~q <Rn . By De�nition 5.10

Dangling(A) ⊆ R0 ⊆ Rn . By De�nition 5.4, there exists a trace w
s.t. ~q

w
−→
∗~q1 by only executing forced transitions, and either (1)w <A

or containing a basic action a ∈ Forbidden(p) or (2) @w ′ ∈ A not

containing basic actions a ∈Forbidden(p) s.t. ~q1
w ′
−−→
∗~qf ∈FA .

For case (1) we �rst prove that there exists a state ~q′ ∈ R0
reachable by only executing forced transitions from ~q in A and

~q
w1

−−→
∗~q′

~a
−→ such that either ~a is a request or it is forbidden in p. If

~q′
~a
−→ is controllable, then by De�nition 5.4 it is the only outgoing

transition from ~q′, which is removed in K0 by De�nition 5.10 and

hence ~q′ ∈ Dangling(K0) ⊆ R0. Similarly, if ~q′
~a
−→ is uncontrollable

inK0, then ~q′ ∈ R0 by De�nition 5.10. We have proved that ~q′ ∈ R0
is reachable by only executing forced transitions from ~q in A.

We now proceed by induction on the length of the trace ~q −→∗ ~q′.
For the base case we have a transition t = ~q −→ ~q′. Similarly to the

previous reasoning, if t is controllable inK1 then by De�nition 5.10

it is removed in K1, and by De�nition 5.4, t is the only outgoing

transition from state ~q (i.e. it is forced) and hence ~q ∈ Dangling(K1)
and ~q ∈ R1 ⊆ Rn , a contradiction. Otherwise, if t is uncontrollable

in K1, then by De�nition 5.10, ~q ∈ R1 ⊆ Rn , a contradiction. For
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the inductive step we have ~q −→ ~q′′ −→∗ ~q′ s.t. ~q′′ ∈ Ri−1 and

~q < Ri−1. By applying the same reasoning as for the base case we

can conclude that ~q ∈ Ri ⊆ Rn , a contradiction.

For case (2) it is not possible to reach a �nal state ~qf from ~q1
without executing either a request or a forbidden action, hence by

hypothesis ~q1 cannot avoid to reach a �nal state without traversing

a state in ~q′ ∈ R0 (it is not di�cult to see that otherwise a trace

without requests and forbidden actions would exists). By De�ni-

tion 5.10, there will be an iteration i s.t. ~q1 ∈ Ri , and we can prove

~q ∈ Rn by proceeding as for case (1).

We now show Rn ⊆ UpAKn ∪ Dangling(A). The proof is by

induction on Ri . The base case is R0. From De�nition 5.10 follows

that Dangling(A) ⊆ R0. We have the case ~q ∈ Dangling(K0) \
Dangling(A) where all transitions t with source in ~q have been

pruned in K0. This means that from ~q it is not possible to reach

a �nal state ~qf without �ring either a request or a forbidden ac-

tion a, hence ~q ∈ UpAKn . The last case is { ~q | (~q −→) = t ∈ T2
A

on a unc. in K0, (t request ∨ a ∈ Forbidden(p)) }, i.e. by De�ni-

tion 5.4, inUpAKn . Note that if a transition t is unc. inKi for some

i , then for all j : i ≤ j ≤ n, t is unc. in Kj .

For the inductive step, by inductive hypothesis we know Ri−1 ⊆
UpAKn ∪Dangling(A) and we prove Ri ⊆ UpAKn ∪Dangling(A).

We proceed again by cases on De�nition 5.10. First case is S =
{ ~q | (~q −→ ~q′) ∈ T2

Ki
unc. in Ki , ~q < Ri−1 ∧ ~q′ ∈ Ri−1 } ∪ { ~q | ~q −→

∈ T2
A

uglr or ulm in Ki }. By De�nition 5.4 the transitions used

in S are forced in A because are unc. in Ki (hence in Kn ); and by

inductive hypothesis their target state is inUpAKn ∪Dangling(A).
It follows that S ⊆ UpAKn ∪ Dangling(A).

Second (and last) case is Dangling(Ki ). These states ~q have all

outgoing transitions pruned because (by De�nition 5.10) either

~q ∈ Ri−1, and the thesis follows by inductive hypothesis, or all their

outgoing transitions were controllable inKi−1 and with target state

in Ri−1. Similarly to the base case, this means that from ~q it is not

possible to reach a �nal state ~qf without passing through a state in

UpAKn ∪ Dangling(A), and the thesis follows.

We now prove Equation (13). By hypothesis Sw∩Dangling(A) =
∅, and the thesis follows by Equation (12). �

Theorem 5.11 (mpc of a product). Let A be an FMCA and let
p ∈ JφAK be a valid product. The FMCA KAp computed through
De�nition 5.10 is the mpc of product p of A.

Proof. We will prove that the algorithm always terminates, that

KAp is a controller of product p of A and in particular that it is

the mpc of product p of A.

We �rst ensure that the algorithm always terminates by proving

the existence of the least �xed point of f . The function f is mono-

tonic because it is de�ned on the cpo P and at each iteration the

set Ri can only increase, hence by the Knaster-Tarski theorem the

least �xed point of f exists.

We now prove that KAp is a controller of p ofA, i.e.: p ∈ JφAK
(trivial); (1) K is safe, (2) Dangling(K ) = ∅ (trivial), (3) L (K ) = ∅
or ∀a ∈ Required (p) ∃w ∈ L (K ) s.t. w contains basic action a,

and (4) @w ∈ L (K ) s.t. w contains actions a ∈ Forbidden(p) or

~q0K
w
−→
∗~qK , ~q0

w
−→
∗~q and ~q is in uncontrollable disagreement in p

of A.

We �rst prove (1). Since KAp is derived from A by pruning

transitions, trivially L (KAp ) ⊆ L (A). To prove L (KAp ) ⊆ A,

we have to show that no trace w ′ recognised by L (KAp ) contains

a request ~a. Note that the algorithm only prunes and never adds

transitions and since in K0 all controllable requests are pruned, ~a
cannot be a controllable request. By contradiction, assume ~a is an

uncontrollable request, executed by a transition ~q
~a2
−−→, and w ′ is

recognised by KAp . Then ~q ∈R0 and thus ~q ∈Rn by De�nition 5.10.

By Lemma 8.2(11), we have ~q0 ∈ Rn and the contradictionKAp = 〈〉.

We now prove (3). From the fact that none of the states of KAp

is dangling, (3) trivially holds by De�nition 5.10.

We conclude by proving (4). Assume ~q0K
w
−→
∗~qK

~a
−→ with ~a on

action a ∈ Forbidden(p) holds. By De�nition 5.10 ~qK
~a
−→ is not

controllable (otherwise it would have been removed), and hence

~qK ∈ R0 ⊆ Rn . Then ~qK is not a state of KAp , contradiction.

Assume that (w, ~q0K )
w
−→
∗ (ε, ~qK ) and (w, ~q0)

w
−→
∗ (ε, ~q), with ~q in

uncontrollable disagreement holds. Since KAp is derived from A,

we have ~q0K = ~q0 and ~qK = ~q. By Lemma 8.2(12), ~q ∈ Rn and

since it is reachable from ~q0, by Lemma 8.2(11), it must be that

~q0 ∈ Rn and we reach the contradiction KAp = 〈〉.

Finally, it remains to prove that KAp is the mpc. By contra-

diction, assume K ′ to be a controller of product p of A such

that L (KAp ) ⊂ L (K ′). Hence there must be a trace w1 ∈

L (K ′) which is such that w1 < L (KAp ). Let Sw1 be the set

of states traversed by K ′ to recognise w1. Since K ′ is a controller,

Sw1 ∩UpAKn =∅. By Lemma 8.2(13), S ∩ Rn = ∅. Then, by De�ni-

tion 5.10 all states in Sw1 are inKAp . Moreover, all transitions used

for recognizing w1 are not requests nor forbidden because K ′ is a

controller, and since S ∩Rn = ∅ no state in S is in any of R0, . . . ,Rn .

By De�nition 5.10 these are all possible cases for which a transition

is removed. Hence, all transitions used for recognizing w are also

in KAp , and it follows that w1 ∈ L (KAp ), a contradiction. �

The following lemma is auxiliary and useful for proving the

following results.

Lemma 8.3. Let A be an FMCA, p ∈ JφK, and KAp , 〈〉 be its
mpc computed through De�nition 5.10. Then

KAp � A

Proof. The re�nement relation is exactly R = {(~qA , ~qK ) |
~qK = ~qA ∈ QK }. From Theorem 5.11, we know that QK ⊆ Q ,

QK ∩ Dangling(KAp ) = ∅ and T3
K
⊆ T3

. It remains to prove

that (1) all uncontrollable transitions of A and (2) all controllable

transitions of A that are uncontrollable in KAp , both (1-2) with

source ~q ∈ QK , are available in KAp . For (1), by contradiction, let

~q ∈ QK , and let t = (~q, ~a, ~q′) s.t. t is uncontrollable in A and t <T2
K

.

By De�nition 5.10 t <T2
K

only if ~q ∈ Rn , and by Lemma 8.2(12) ~q ∈

UpAKn . If ~q ∈U , then by Lemma 8.2(11) KAp = 〈〉, a contradiction.

For (2), by contradiction, let ~q ∈ QK , and let t = (~q, ~a, ~q′) s.t. t
is controllable in A, uncontrollable in KAp and t < T2

K
. Hence

t must be either uдlr or ulm in KAp , and in both cases ~q ∈ Rn
by De�nition 5.10. Finally, by Lemma 8.2(12) ~q ∈UpAKn , and by

Lemma 8.2(11) KAp = 〈〉, a contradiction. �
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Theorem 5.12 (Largest refinement). Let A =
⊗

i ∈I Ai be a
composition of principalsAi , let p be a valid product ofA, letKAp ,

〈〉 be its mpc computed through De�nition 5.10 and let Πi (KAp ) =

Ari be its projections on ith principals. Then the following holds:

∀i ∈ I : Ari � Ai (5)

∀K ′, 〈〉 controller of p of A and ∀i : Πi (K
′) = Ar ′i

� Ari (6)

Proof. Equation (5) follows from Lemma 8.3 and De�nition 7.1.

To prove Equation (6), assume by contradiction that for some

i we have Ar ′i
� Ari . By Equation (5) and Lemma 8.3, there

must be t ∈T3
K ′
\T3
KAp

. By Theorem 5.11 L (K ′) ⊆L (KAp ), a

contradiction. �

Lemma 8.4 (Controller refinement). Let A be an FMCA and
let p,p′ ∈ JφAK. Then the following holds:

p � p′ and L (KAp ) , ∅ implies KAp � KAp′ (7)

Proof. By hypothesis all a ∈ Required (p) \ Required (p′) are in

KAp , and also in KA′p
, because it is an mpc and p � p′.

Conversely all a ∈ Forbidden(p) \Forbidden(p′) are not inKAp

but could be in KA′p
, unless KAp = KA′p (in this case the the-

sis follows trivially), because again KAp is an mpc and p � p′.
Hence by hypothesis, Theorem 5.11 and De�nition 3.1, we have

∅ , TKAp ⊆ TKA′p
. Moreover by Lemma 8.2(12) all states of both

mpc are not in UpAKn (resp. Up′AKn ), hence (following the same

reasoning as the proof of Lemma 8.3): (1) all uncontrollable tran-

sitions of KAp′ and (2) all controllable transitions of KAp′ that

are uncontrollable in KAp , both (1–2) reachable, are also avail-

able in KAp . Otherwise, we would reach the contradiction that

their source state is in UpAKn (resp. Up′AKn ) and KAp � KAp′

holds. �

Theorem 5.18 (mpc of a product family). Let A be an FMCA.
Then the mpc of a product family A is KA =

⋃
p∈CP (A) KAp and:

∀p ∈ JφAK : L (KAp ) , ∅ implies KAp � KA (8)

∀p′ ∈ CP (A) ∃p′′ ∈ JφAK : L (KAp′′ ) , ∅ and

KAp′′ �
⋃
p∈CP (A), p,p′ KAp (9)

Proof. Equation (8) follows straightforward from Lemma 5.14,

Lemma 5.8 and hypothesis. For Equation (9), it su�ces to consider

p′ = p′′, after which by De�nition 5.16 the statement follows. �

Theorem 5.20 (�ick mpc synthesis). Let A be an FMCA,
let ` ∈ N, let Depth(A, `) = {p | p ∈ JφAK and |Required (p) | +
|Forbidden(p) | = ` } and let p ∈ Depth(A,n). Then it holds that:

if KA,p , 〈〉 then KA,p �
⋂
p′∈Depth(A,n−1),∅, p�p′ KA,p′ (10)

Proof. Straightforward from Lemma 5.14. �

9 FMCA OF MOTIVATING EXAMPLE
All the FMCA mentioned in the running example discussed through-

out this paper are reported in Fig. 3.
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qC0

qC1 qC2

qC3

room2u

card

cash

invoice2д receipt3

(a) BusinessClientG

qC0

qC1 qC2

qC3

room2u

card

cash

invoice2` receipt3

(b) BusinessClientL

qC0

qC1 qC2

qC3

room2`

card

cash

invoice2д receipt3

(c) EconomyClientG

qC0

qC1 qC2

qC3

room2`

card

cash

invoice2` receipt3

(d) EconomyClientL

qH0 qH3 qH2

qH4

qH1

room

cash3

card3

receipt

invoice

freebrk

freebrkinvoice

(e) Hotel

qH0 qH3 qH2

qH4

qH1

room

cash3

card3

receipt

invoice
captcha3

freebrkinvoice

(f) HotelGreedyBad

qH0 qH3 qH2

qH1

room

cash3

card3

receipt

invoice
captcha3

(g) HotelLazyBad

~q0,0 ~q1,1 ~q2,2 ~q3,0

~q3,3

~q2,4

(room2u , room) (card3, card) (receipt3, receipt)

(•, freebrk)

(invoice2д , invoice)

(invoice2д , invoice)

(•, freebrk)

(h) KBusinessClientG ⊗Hotelp
1

~q0,0 ~q1,1 ~q2,2 ~q3,0

~q2,4

(room2u , room) (card3, card) (receipt3, receipt)

(•, freebrk)

(invoice2` , invoice)

(i) KBusinessClientL ⊗HotelGreedyBadp
1

~q0,0 ~q1,1 ~q2,2 ~q3,0
(room2u , room) (card3, card) (receipt3, receipt)

(j) K ill

~q0,0,0 ~q0,1,1 ~q0,2,2 ~q0,0,3

~q0,0,3

~q0,4,2

~q1,1,3 ~q2,2,3 ~q3,0,3

~q3,3,3

~q2,4,3

(•, room, room) (•, card, card) (•, receipt, receipt)

(•, invoice, invoice)

(•, freebrk, •)

(•, freebrk, •)

(•, invoice, invoice)

(room, room, •) (card, card, •) (receipt, receipt, •)

(invoice, invoice, •)

(•, freebrk, •)

(•, freebrk, •)

(invoice, invoice, •)

(k) KEconomyClientG ⊗ (Hotel ⊗ BusinessClientG) = K(EconomyClientG ⊗ Hotel) 4 BusinessClientG

Figure 3: All the FMCA of the running example used throughout the paper.
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