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1. Introduction

In this paper we propose a term rewriting approach [HO80] to verify the behavioural
equivalence between recursive (finite-state) CCS specifications [Mil80]. Verifications are
performed by executing the axiomatic presentation of behavioural equivalences by means of an
associated term rewriting system [DIN90]. Till now, we have applied our approach to the
axiomatic presentation of the observational congruence for finite CCS [HM85, Mil85]. In that
case, when trying to execute the axiomatization by means of an equivalent term rewriting
system, it results that the completion process diverges, i.e. the equivalent term rewriting
system has an infinite number of rules. We have recovered this divergence by defining a
particular rewriting strategy [IN89] that is able to compute the normal form of a finite CCS
term and verify the observational congruence of two terms without performing any completion
of its axiomatization. In doing that, we have been supported by a precise notion of normal
JSorm of a finite CCS term with respect to the observational congruence.

Now, we extend our term rewriting approach to (guarded) recursive CCS terms. In fact, a
correct and complete axiomatization of the observational congruence for recursive (finite-state)
CCS terms has been given by Milner [Mil89]. But, differently from finite CCS, the
completeness of such axiomatization has not been proved by resorting to the notion of normal
form. Thus, we do not have any information about the existence and the structure of the
normal form of a recursive CCS term. Furthermore, because of the presence of the axioms for
recursion, the term rewriting system associated to the axiomatization is not terminating.

We propose to study the axiomatic presentation of observational congruence in the
framework of the infinite normal forms [DK89, DKP89]. It results that the term rewriting
system associated to our axiomatization does not satisfy some requirements of the theory
developed in [DK89, DKP89]. Thus, we extend the framework to our case, show the
existence of normal forms for recursive CCS terms and define their structure.

Given this result, we can define a finite representation of the infinite normal forms and a
rewriting strategy that permits to decide the observational congruence of (finite-state) CCS
terms. Such strategy has to be proved correct and complete with respect to the axiomatization

SR,



by showing that it computes a specific fair derivation.

2. Observational Congruence and CCS Finite-State Expressions

In this section we present the subclass of CCS expressions under consideration [Milg9].
Let E be the class of recursive CCS expressions generated by the following syntax:

Eu=nil| XIpElrecX.EIE+E
where |L ranges over a set Act U {t} of actions and 7 is the so-called internal action.

A free occurrence of X in E is guarded if it occurs within some subexpression (.F ()L # T)
of E. The variable X is guarded in E if every free occurrence of X in E is guarded, otherwise
X is unguarded in E. A recursive expression recX.E is guarded if X is guarded in F. An
expression E is guarded if every recursive subexpression of E is guarded.

In the following we deal with the class £ g of guarded (closed) CCS expressions (i.e.
every variable is bound to a rec operator) and the well-known behavioural equivalence,
obseravtional congruence [Mil80].

A correct and complete axiomatization of observational congruence for the subclass of finite
CCS expressions, i.e. with no variables and rec operator, has been given in [HM85, Mil85].

In [IN89] we have defined a (correct and complete) rewriting strategy girar WHICh is able
to compute the OBS-normal form of a finite CCS expression and verify the observational
congruence of two finite expressions.

Let us now consider the following (correct and complete) axiomatization OBSRECg of

observational congruence Eg [Mil89]:

S1. E+F=F+E Tl. ptE=uWE
S2. E+F+G)=E+FH+G T2. E+tE=1E
S3. E+E=E T3, p(E+tF)+uF=u(E+1tF

S4. E+NIL=E
R1. recX.E = E{recX.E/X}
R2 If F=E{F/X} then F=recX.E, provided X is guarded in E

The completeness of the axiomatization OBSEQ = OBSRECg - {R1, R2]} for finite CCS has
been shown by resorting to a notion of normal form of a term with respect to observational
congruence [HMS8S5, Mil85]. Thus, E1 and E2 can be proved observationally congruent by
reducing them to their normal forms (by applying the so-called Absorption Lemma) and then
by checking for equivalence of the normal forms modulo the associative-commutative (AC)
axioms S1, S2. The notion of normal form has driven us in defining the rewriting strategy

girat for finite CCS.




This is not the case for the completeness of OBSREC, which does not resort to a definition
of “recursive normal form” over £ g [Mil89]. In fact, it has been shown by relying on the
notion of solution of suitable set of equations, where a set of equation is an equational
characterization of a recursive expression. The main difference in proving completeness
consists in dealing with “saturated” sets of equations, obtained by means of an operation which
is opposite to the reductions applied by the Absorption Lemma in the finite case.

On the other hand, in defining a recursive normal form over E g» We are supported by a
notion of (unique) normal form on process graphs. In [BK88] a characterization of the kind of
transformations necessary to obtain the unique normal graph w.r.t. observational congruence is
defined. They show that, in order to obtain the recursive normal form, it is necessary to
eliminate another source of redundance w.r.t. the finite case: bisimilar nested nodes. These

transformations will drive our definition of a rewriting strategy on recursive expressions.

- The first problem is that we want to work at the syntactic level on terms, thus we need an
injective correspondence between a term and its infinite tree semantics. This is not the case, in
general it exists a number of different terms denoting the same tree. Thus, we use a result by
[CKV74] to restrict our attention only to canonical terms, i.e. it is possible to reduc,
algorithmically, each equivalent recursive term to the canonical one. In this way we assume to

work only on canonical terms.

3. A rewriting relation on Eg

Let us consider R2, we want to replace it with a more convenient rule.
Collapsing Rule (CR)
Given E =recX.E', if F = recY.F' is a 'proper’ subexpression of E' such that
E{X/F) = F{X/Y} and FreeVar(E) = FreeVar(F), then E = E{X/F}.

Correctness wrt R2

recX.recY.E = recX E{X/Y}
recX.E=E if X ¢ FreeVar(E)

Ap: recX.1.E =trecX E{1.X/X]}

Problema che porta all'introduzione di Ap + I'idea di derivazione interessante

@@Simple terms like t = recX.1.(a.X+P) or recX.1.a.X, i.e. generic terms recX.T.E, where E



contains directly prefixed occurrences of X, show that among all the derivations from t, fair
derivations can be only obtained by applying — .., infinitely. In fact, after the first unfolding
step, any other rewriting by —¢; produces a redex for — ..., which has to be reduced in
order to guarantee fairness. This is repeated infinitely and it follows that for such derivations it
is not possible to single out an index, from which we can rewrite only by —p.

Let us characterize the infinite applications of — . due to infinite rewritings by —g ;. @@@

strat

Proposition The axiom Ap is correct with respect to the axiomatixation OBSREC,.

Proof trecX.E{tX/X] —p; T.E{(trecX.E{T.X/X})/X)
By applying R2 we obtain T.recX.E{1.X/X] =recX.T.E. ¢

; an° tome di - al caso ricors: ;
Discorso sull’estensione di > strat al caso ricorsivo ottenendo %s&n‘m@ .
Now, the rewriting relation we use is the following:

“rec = %strate U=2r1VY 2crY _aAp modulo AC and TN

where TN is the relation associated to the canonical transformation of a term.
It is immediate to verify that — .. is a non terminating rewriting relation, thus we introduce the

framework in which infinite rewritings can be studied.
3.1. Term Rewriting Systems and Infinite Normal Forms

We assume that the reader is familiar with the basic concepts of term rewriting systems. We
summarize the most relevant definitions bélow, while we refer to [DK89, DKP89, HO80] for
more details.

Let X be a set of operators, V be a set of variables and T denotes the set Tx(V) of terms
over X and V. An equational theory is any set E = {(s, t) I s, t € T}. Elements (s, t) are called
equations and written s = t. Let ~; be the smallest symmetric relation that contains E and is
closed under monotonicity and substitution. Let =g be the reflexive-transitive closure of ~.

A term rewriting system (TRS) R is any set {(I;, r;) I I, 1; € T, V(r;) €V(1,)}. The pairs
(1, rp) are called rewriting rules and written I; — r;. The rewriting relation —¢ on T is defined
as the smallest relation containing R that is closed under monotonicity and substitution. A term
t rewrites to a term s, written t —y s, if there exist i — 1 in R, a substitution ¢ and a
subterm t/u, called redex, such that t/u = o(l;) and s = tfu o(r})]. An equational TRS is a
tuple (R, E), written R/E, where R is a TRS and E an equational theory. The rewriting relation
—g g is defined by =g « = ¢ =g, where * denotes composition of relations.

Let > and %5 denote the transitive and transitive-reflexive closure of —, respectively.




Two terms s, t converge modulo E, written s LR g b, if there exist terms s, t' such that
S -*—)R s' =gt R@t t. R is confluent modulo E if whenever s Ré”‘- t ¥ q, then s iR,E q-
A TRS R is E-terminating if there is no infinite sequence t; =g/ t, ~g/E 13 Pr/pE

A term t is in R-normal form if there exists no term s such that t —¢ s. A term s is a R-

normal form of tif t #5p s and s is in R-normal form; in this case we write t -—>!R S.
Given a (possibly infinite) rewriting relation —, let us recall the following definitions
[DKP89]: Tutte queste definizioni devono essere estese modulo ACIH

Definition 1 (@-rewriting) t —® 1t ifft % t_ or there exists a chain

t=ty—>ty = .. —>t;— .. such that limn_> to=1to, .

o0
Definition 2 (w-terminating) — is w-terminating if for any infinite chain

t=1tn-—>ty —> .. —t. — .. of terms, the limit lim t_ exists.
0 1 n Moo N

Definition 3 (top-terminating) — is top-terminating if there are no infinite chains

t=ty—>t; = ... =t — .. of terms with infinitely many rewrites at the topmost occurrence.
Definition 4 (w-confluence) — is w-confluent if Qe o =@ implies —® ¢ V¢,

In other words, for any t, t{, tp such that t —0y pandt -0 ty , there exists t' such that

t] =>%t' and tp -9t

Definition § (w-canonicity) — is w-canonical if it is w-terminating and w-confluent.

The limit of an infinite chain from a term t may be seen as an “infinite normal form” of t.
Thus, w-termination implies the existence of an infinite normal form for any t, while ®-

confluence implies the uniqueness of the infinite normal form of t, if it exists.

Definition 6 (w-normal form) A term t, is an @-normal form of t iff t ->® ¢ and t, is
minimal for —, ie. if t,, = t', thent =1, .

Thus, an w-normal form need not be irreducible.

4, Infinite Normal Forms for Finite-State CCS Expressions

We aim at proving that the rewriting relation — . = straty Y R1Y R Y ap IS

canonical over E.
Let us first state the following facts on the rewriting rules in — . :

1. - deletes internal actions and/or subterms working on rec bodies and on the external

strat,
(4
context of a rec term separately, i.e. its redexes do not involve rec bodies and the external

context (except the situations in which rec terms are seen as constants(?), for example



recX.a.X + trecY.aY —)Smue TrecY.a.Y);

2. —(g reduces a rec term recX.E[recY.F] by replacing the internal rec term with X. To be

applied, =g checks subterms for equivalence by using — te Y CRY Ap in the test

stra
E{X/F} = F{X/Y} (see def.), but =g does not apply such possible reductions. Thus, the

term resulting from the application of —p, is reducible according to swrat, Y 7CR Y Ap

3. differently from — e and —cg, =>4 does not reduce a term by deleting subterms

stra
and/or internal actions or by replacing rec terms with variables, but transforms a rec term into a

prefix term;
4. once — Ap has been applied obtaining a term t.recX.E{1.X/X}, redexes can exist for

- in E{1.X/X}. This is the case when there exist directly prefixed occurrences of the

strate

variable X in the body E;

5. —p; unfolds recursive expressions by replacing variable occurrences with recursive
expressions;
6. ift—9¢

and o — U =crY =ap t,thent #t,, .

4 SlI‘Zl(C
Therefore, infinite expressions can be derived from recursive expressions only by using —g1.

On the other hand, 6. implies that — U =crY ap does not preserve the limit.

stratg
We would like to prove that — . is @w-canonical. To do that, we have to prove that — . is:

1. top-terminating;

2. -terminating;

3. wm-confluent.
4.1. o-termination of = rec

Proposition 1 The rewriting relation — U =R Y ~ap is finitely terminating and top-

stratg

terminating over E.

Proof It follows from the fact that, given any term t € £ g there exists a finite number of

rewriting steps by stratg Y CR Y Ap for any occurrence, included the topmost one. ¢

Proposition 2 The rewriting relation — . is top-terminating over Eg.

Proof For Proposition 1 the relation st Y R Y Ap is finitely terminating and top-

terminating over F g- An infinite derivation can be obtained by only applying —y; (see facts
above). This relation rewrites every guarded term t = recX.E into a term t' which contains t at




occurrences prefixed (at least) by a guard. If t = recX.E with E = recY.E', the axiom
recX.recY.E = recX. E{X/Y} can be applied, thus avoiding the rewriting of the term by —p; at
the topmost occurrence. If t = recX.E with recY.E' as a top-level summand in E, it is obvious
that after the first rewriting step by — obtaining t, recY.E' is not a topmost occurrence of t'
anymore. Every term in F/ g contains a finite number of recursive guarded subterms. Thus, the
guardness condition and Proposition 1 imply that — .. cannot apply infinite rewriting steps at

the topmost occurrence. ¢
Proposition 3 The rewriting relation — . is @-terminating over £ g

Proof It follows from Theorem 11 in [DKP89], since — . is top-terminating over E g for

Proposition 2. M
Now, we can single out “interesting” infinite derivations.
Definition 7 (fair derivation [DKP89]) A derivation is fair if no redex persists forever.

Proposition 4 (—p does not destroy redexes for —>S{rate U —=cp Yo Ap)

Given E € E, let the subexpression E/u be a redex for — U =R Y Dap

stratg
If E —R; E' on the subexpression recX.F of E, then:

i. if E/u does not occur in F, then E/u still occurs in E';

ii. otherwise (E/u occurs in F), not only E/u occurs in E', but —p, produces as many new

redexes E/u in E' as the number of the occurrences of X in F.
Proof It follows from the definition of the rewriting rule—p;. ¢

Proposition § Every fair derivation over £ g has a finite number of rewritings by straty Y

Proof Let us consider the possibility of infinite rewritings by strat, Y TCR Y " ap OVET
E g When rewriting by —p 1. Any fair derivation has a limit (Proposition 3) and —y; does not

destroy the redexes for — U =R Y ap (Proposition 4). Now, we show that rewriting

stratgy

by —g; does not produce new redexes for — U—=cr Y ~ap infinitely.

stralg

If a redex for — e ¥ TPCR Y > ap Occurs in the body of a rec expression, every

stra

rewriting step by —; produces new similar redexes. For the fairness hypothesis, such




redexes will be eventually reduced. Thus, infinitely rewriting by — te ¥ CR Y ~4p €A1

stra
arise from the ‘combination’ between a rec body and its external context.
As — Ap is concerned, its introduction as rewriting rule is motivated (see section 3) to

prevent a situation of infinite reductions by — where every reduction is produced when

straty’
rewriting by —>g ;. In fact, when directly prefixed occurrences p.X of X occur in the
expression E in recX.T.E, replacing recX.T.E in p.recX.t.E with T.E{recX.7.E/X} gives rise

to a redex for — which is produced by the 'combination’ between the external context

straty’
represented by W.[] and a piece of the rec body T.E{recX.©.E/X]}.
Further infinitely reducible combinations between a rewc body and its external context do

not exist, because the guardness hypothesis implies that a redex for — U —cr Y —4p

straty
can arise, due to such a combination, only after a finite number of rewriting by —g;. ¢

This means that for any derivation it is possible to single out an index N, such that for

every n2N t, is rewritten only by —g; (independently from the fairness of the derivation).

Corollary 1 For any derivation t =ty —

rec

1 ~rec = —rec tn rec - OVET E o there exists

an index N such that t; =gty forn 2N

Actually, we prove a stronger result, a “structuring” condition, on fair derivations.

Corollary 2 For any fair derivation t = ty — “rec tn rec -+ OVET Eg, there

rec 11 rec © “rec tn

exists an index N such that t; =g thy and not t; — U =cr Y ap it for n 2N.

stratg

Proof Any derivation has a limit for ®-termination property and the limit is reached by only
applying —p; from some index on. Therefore, any fair derivation over E g can be
“structured” in two parts: in the former — . is applied, while in the latter only - can be
applied, thus reaching the limit.

4.2. w-confluence of — ..

If a derivation is not fair, there exist “hanging” redexes for — te ¥ CR Y Ap along

stra
the derivation, which are not destroyed by —; (Proposition 4). It follows that the limit of the
derivation contains such redexes and it is not an w-normal form.

Now, we show that the limit of a fair derivation is an w-normal form. In other words, we

guarantee that all the possible reductions by — U =R Y 4 1€ applied in the first part

stralg
of the derivation and in the second one only —p can be applied.



Structured fairness implies that there do not exist reductions by ~strat, Y CR Y Ap

“hanging” on t,, n=N, for some N. To prove that the limit is an w-normal form, we show that

no reductions by — Y R Y ap which are not applicable on the finite terms along the

stra
derivation, are applicable on the limit. Vice versa, we show that if t has an w-normal form t,

there exists a fair derivation with limit t'.

Proposition 7 Given —,, and any term t € £, then:
i.) if t admits an w-normal form t', then it exists a fair derivation

[=19 rec 11 “rec - rec tn rec - With hmn—»x,t =1,

ii.) for any fair derivation t =1ty —,.t; = — oo b= ... With limn_> t =t,

rec rec " rec n rec
(=4

t'is an w-normal form of t.

Proof
i.) The term t admits an w-normal form t', hence (Definition 6) t ﬁmrec t' and t' cannot be

reduced by — U=0crY Zap By contradiction, let us suppose that it does not exist a

strate
fair derivation which computes an w-normal form of t. Let D be a derivation t = ty =0 t] ¢

e roe by ree - such that its limit ' = lim t. is an w-normal form of t. Let us suppose

Do 1

n
that D is not fair. For Definition 7, there exists a “hanging” reduction by strat, ¥ CR U

—Ap along the derivation and, for Proposition 4, it can be applied to the limit t' as well. This
contradicts the hypothesis that t' is an ®-normal form.

ii.) Let D be a fair derivation t =ty =00 1] “rec -+ rec Ih ~rec - With hmn t,=t. By

(e o)

rec n

contradiction, let us suppose that t' is not an @-normal form of t.

We have to consider two situations:

1. t' can be reduced on a (finite/infinite) redex, which is the infinite form of a redex, which
already occurs from a finite t, on and is preserved till the limit by —p4 for Proposition 4;

2. t'can be reduced on an infinite redex, the finite form of which never occurs in the finite
terms t,, along D.

The situation 1. can concern redexes of any rule in — U—=cr Y 2ap but contradicts the

stratg
hypothesis of fairness of D. On the other hand, 2. can concern ~ Strate and — g, but not
= Ap because, in order to be applied, only = strat, and — g require equivalence of
subexpressions, i.e. equivalence of infinite trees which can be represented by means of

syntactically different expressions. Thus, it could happen that a reduction by strat, O TCR is

never detected on the finite terms in D, because it involves subexpressions which are




semantically equivalent, but syntactically different. Such subexpressions become syntactically
equivalent at the limit and the reduction can be applied. The situation described can never occur
because the equivalence between subexpressions in stratg and =y, is checked modulo TN.
The transformation TN recognizes as equivalent those subexpressions which are syntactically

different but have the same tree semantics, and the possible reduction by —¢ .. or —g can
€

be applied on the finite terms in D. ¢

Proposition 7 allows us to restrict our attention to fair derivations, as they compute ®-

normal forms at the limit. To show the w-confluence of — .. = “smat, Y 7RI Y CR Y

— A, WE have to prove the uniqueness of w-normal forms, i.e. every fair derivation from a
Ap Ty

term t computes the same w-normal form (Rewriting by — ... is modulo AC and TN).

This means that given any term t and any two fair derivations from t,
Dy:t=1tg —rec 1 “rec - ~rec th ~rec - With limp_, ty =t,, and
Dot =1ty —=rec t'1 “rec - rec tn rec -+ Withlimy_y  th =1t
we have to prove to, =aoc t'es .
Dy and D are fair derivations, then (Corollary 2) there exist (finite) indexes Ny, N such that:

-t —R1 ke and not t — U DR Y —ap tgyq for every k 2Ny

stralg

- t_}

Moreover, t,, and t',, are w-normal forms for Proposition 7. Thus, every possible reduction

—R1 Uj41 and not “sirag Y TCR Y Ap t41 forevery j2Nj.

by - U —cR U =24, has been applied before Ny in Dy and before Ny in Dy, and only

stratg
rewritings by —p are applied after Ny in Dy and after Ny in D».

It follows that to prove t., =5c '« means to prove ty =N t'N2 » 1.€.
Proposition too =AC t'., if and only if N1 =TN I'N2 -

It obviously(?) follows from rewriting ty and t'yp only by =g .

Therefore, in order to prove the uniqueness of w-normal forms, i.e. the ®w-confluence of
the non terminating relation —, it is sufficient to prove the confluence of the same relation by
restricting to the subderivations from any term t to ty; and t')yy, respectively, for any two fair
derivations D, Dy from t. '

N.B. This is not possible in [DKP89] because there fairness does not imply a structuring

condition on fair derivations into two parts, where the former is ‘finite' and in the latter only

non terminating rules are applied.

10




Hence, we consider the subderivations
D'1: =19 =ec 11 Drec - rec INI
D'p: t=1t'g =pec '] rec -+ —rec I'N2
and here the relation — is treated as a terminating relation. As terminating rewriting relations
are concerned, confluence is equivalent to local confluence [HO80]. Local confluence can be
decided by means of the critical pairs generated by superposing the rewriting rules,
representing the situation in which a term can be rewritten by two (or more) rules on non

independent subterms.

Let us now consider the following facts:
1. strat, CANNOL superpose with itself (it follows from its definition: strat, applies all the
possible reductions in OBSEQ, thus returning an OBS-normal form).

2. —R does not destroy the redexes for — 1, Y PCRY —Ap (see Proposition 5). It

stra
follows that, in analysing the possible superpositions between the rules in — .., we can omit
superpositions of every rule with —g . Note that, since —¢g and — Ap always work on rec
terms, they always superpose with —g1 (at least in two occurrences as regards —cg ). (RIV.

quella tra CR e R1)

Let us prove the w-confluence of the relation — . by showing the local confluence of —e.
in the subderivations D'y and D',. This is obtained by cases on the possible superpositions

between the rules in = .
AC-unification nella superposition da problemi, come nel caso terminante???

Proposition 8 Given — . = — strat, ¥ TPR1Y T>CR Y —Aps any term t and the finite
subderivations D'y and D'y of any two fair derivations from t,

D'II t=19 ~rec 11 rec -+ rec IN1 and

D't =1 2rec 1'1 =rec - rec I'N2

then N = t'NZ (modulo TN).

Proof
Lett;=1t;, 0 <i<min(N1,N2), be the first term in D'y and D'y such that t; can be rewritten

by means of different rules in — e (t; =1t , j < i). Let us first examine the possible

superpositions between — and the other rules —cg and — pp,.

straty

Casel ¢ strat i+l 0 G =CR i -

11

S S A5 5



Case 1.1 Redex(—cR) is a subterm of redex(—)wate). We distinguish two situations:

1.1.1 — deletes a summand.

strate

Given t; = Ey + ... + Ep, let us suppose that — deletes a summand E; which is also

strate

reducible by —cg. From the definition of — it follows that there exists a summand Ey in

straty

tj which contains some derivative E', which is equivalent to E; according to —,... . Since
€

— does not make use of —>cR, also E' can be rewritten by — g and the resulting

strate

summand E'y can be then rewritten by ——>Su.ate (Fact 3) obtaining a summand E". On the other
side, once E; has been rewritten by —cg obtaining E';, the previous applicability of —strat, O1

t; deleting E; means that there exists E' in some summand Ej such that E' is equivalent to E;

according to — Hence, Ey can be reduced by — g to a summand E'} which, together

straty’

with E';, can be rewritten by — into E" thus deleting E';. (Note that — is also

stratg stratg

applicable on E'; and E'y, resulting from the two applications of —¢g, see Fact 3).

ti=E;+..+E,

J’stratC ‘LCR
E{ +.+ Ej{ + Ejz1 +...+ E{[E'] +..+ E, E{ +.+ E +...+ E{[E'] +..+ E,
ler on E Ler on E
Ey +..+ Ei +Ejy1 +..+ E}x +..+ E, E;{ +.+ E +.+ E} +.+ E;
on E';, E'y and the sum
‘Lsume ismle of the resulting terms

E{+..+Ei; +E +.+E"x +.+E,

1.1.2 — deletes an internal action.

stratg
This situation can be simply depicted by the following figure:

t; [.T.E] E contains a redex for —cg
‘Lsuatc J’CR
t; [LE] t; [LT.E']
Ler
t [W.E'] istrate (it reduces E’ and deletes
\Lsuale the internal action)

Facr 3 t [LE"]

12




Case 1.2 Redex(—)suate) is subterm of redex(—cg).
This situation is independent from the kind of reduction performed by straty’
—CR applies on a suitable subterm recX E[recY.F]. If strat, applies on E in the external

context of recY.F and/or in F, — g recognizes such reductions but it does not apply them
(Fact 3). The term t; [recX.E{X/recY.F}] resulting from the application of —>CR can be
reduced by sirat, which applies all the possible reductions according to OBSEQ, the initial

redexes for %Stra% included. On the other side, —’strate on t; reduces F to F' and the external

context of recY.F in E to E". The resulting term is still reducible by —>¢R (otherwise t; should
not be reducible by —¢g on recX.E[recY.F]). The confluence to the same term is obtained by

applying strat, again.

t; [recX.E[recY.F]]

J’strate ‘LCR
t; [recX.E"[recY.F'] t; [recX.E{X/recY.F}]
ber
tj [recX.E"{X/recY.F'}] Ysirar,
‘Lstra[c
t; [recX.E']

Case2 strat tiel AN G = ap iy
Case 2.1 Redex(— ) is a subterm of redex(= gy, )-
The same reasoning applied in Case 1.1 can be followed. In particular, the Case 2.1.2 can

be depicted by means of the same figure as for Case 1.1.2 with — R replaced by — Ap-
(Rivedere il caso 2.1.1)

Case 2.2 Redex(—>stmte) is a subterm of redex(— Ap).

This situation can be depicted by the following figure:

t; [recX.T.E] E contains a redex for —g,4,,
straty ‘LAP
t; [recX.T.E'] tj [TrecX.E{t.X/X}]
Yap (E{TX/IX} is still
t; [t.recX.E'{1.X/X}] J,Su,ate reducible by strar, )

(possible application of Fact 5) iwme
t; [t.recX.E"]

13
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Note that in t; [T.recX.E"] the internal action T can be deleted by ~strate dependently on the

confext.

Let us now consider the possible superpositions between —4p and —¢g -
Case 3 t; —»ap tiy1 and t; —>¢R e -

Case 3.1 Redex(—cr) is a subterm of redex(— ap)-

This situation can be simply depicted by the following figure:

t; [recZ.t.(E'[recX.E[recY.FID]
¢Ap iCR
t; [t.recZ.E'[recX.E[recY.F]]{t.Z/Z}] t; [recZ.t.(E'[recX.E{X/recY.F}])]
iCR iAp
t; [t.recZ.E'[recX.E{X/recY.F}{t.Z/Z}]]

Case 3.2 Redex(—éAp) is a subterm of redex(—cR).

Let t;[recX.E[recY.F]] be given, where recX.E[recY.F] is redex for =g and the external
context of recY.F in E and/or F contain redexes for — ap,. If — 4 is first applied on any redex
in the external context of recY.F or in F, the resulting term is still reducible by —¢g (otherwise
recX.E[recY.F] could not be a redex for —¢cg ). On the other side, once —¢cRr has been
applied, the resulting term can be still reduced by — 4 if a redex(— ap) is in the external
context of recY.F, while it is not reducible if a redex(—4p) is only in F.

Let —ap be applicable on the external context of recY.F in E, we have the following picture:

tilrecX.E[recY.F]]
iAp iCR
tjirecX.E'lrecY.F]] t;[recX.E{X/recY.F}]
‘LCR J’Ap

t[recX.E'{X/recY.F}]

Let —4p be applicable on F, we have the following picture:
tilrecX.E[recY.F]]

iAp iCR
tjlrecX.E[recY.F1] trecX.E{X/recY.F}]

Yer

ti[recX.E{X/recY.F'}]

and tj[recX.E{X/recY.F'}] = tj[recX.E{X/recY.F}].
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Let —p be applicable on recX.E, i.e. E = T.E'. This implies that also recY.F is a redex for
—>ap» 1.e. F = T.F', otherwise —cp is not yet applicable on recX.E[recY.F].
We have the following picture:

t[recX.T.(E'[recY.t.F])]
J’Ap ‘LCR
tiltrecX.E'frecY T.F{t.X/X}] trecX.t.(E'{X/recY.T.F'})]
(now —cp is not applicable) $ap Yap
tlTtrecX EltrecY.F{t.Y/Y}1{1.X/X}] ti[trecX.E'{X/recY.T.F'} {t.X/X}]

(now —cp is again applicable) ler
ti[trecX.E'[T.{X/recY.F'{t.Y/Y}}]{T.X/X}]

and tj[t.recX.E'[t.{ X/recY . F'{T.Y/Y }}]{t.X/X}] = g[t.recX.E'{X/recY.T.F'} {1.X/X}].

Let us now consider the possible superpositions between —¢g and itself.

Case 4 t; >cg tiy1 and G =R igg -

This is the case when a redex for — R is contained in another redex for — g, as in
ti[recX.E[recY.F[recZ.G]]] such that both recX.E[recY.F[recZ.G]] and recY.FlrecZ.G] are
redexes for —cr. Applying —cR on the external redex results in the replacement of
recY.F[recZ.G] with X, thus loosing the previously possible reduction on it. On the other side,
applying —cR on the internal redex results in a term t;{recX.E[recY.F{Y/recZ.G}]], which is

still reducible by —¢g (using strat, for its application).

t[recX.E[recY.F[recZ.G1]]

(on the external rec redex) Ler er (on the internal rec redex)
ti[recX.E{X/recY.F[recZ.G]}] ti[recX.E[recY.F{Y/recZ.G}]]
Yer

tilrecX.E{X/recY.F{Y/recZ.G} }]

and tj[recX.E{X/recY.FlrecZ.G]}] = t;[recX.E{X/recY.F{ Y/recZ.G}}].

®

Let us now consider the possible superpositions between — Ap and itself.

Case 5 & ——-)Ap tit1 and ] -—)Ap t'i+1 .

This is the case when a redex for — 5, is contained in another redex for — Ap and it can be
simply depicted by the following figure:
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ti[recX.t.(E[recY.T.F])]

(on the external redex) ) Ap d Ap (on the internal redex)
t;[t.recX.E[recY.T.F]{1.X/X}] tlrecX.T.(E[trecY.F{t.Y/Y}])]
Yap dap

t[trecX. E[TrecY.F{T.Y/Y}1{7T.X/X}]

Thus, we have shown that the rewriting relation — . is w-canonical, i.e. the w-normal
formof any termt e Eg exists and it is unique.

Let us define a “finite” representation of an ®-normal form:

Definition 8 (rec-normal-form)
Atermte E g is a rec-normal-form if every term t' such that t #5p, t' cannot be reduced by

(or is in normal form w.r.t.) ‘“)stratc U =R Y —Ap -

Corollary Forany termte F g there exists a rec-normal-form and it is unique modulo TN.
Proof It follows from the fairness property and Propositions 7 and 8. ¢

Now, we show the completeness of — .. with respect to the notion of rt-normal process
graph [BKS88].

Proposition 9 Givenany te Eg, let D t=t) = o0 t] = pe¢ - —dpec Iy =R - be a fair
derivation from t, such that t'y = TN(ty) is a rec-normal-form of t.

Then t'y denotes a rt-normal process graph.

Proof A rt-normal process graph is a graph which is (see section on results by [BK88]):

i. rT-rigid, i.e. there do not exist rt-bisimilar nodes;

ii. minimal, i.e. there do not exist arcs, double edges and T-loops.

Let us suppose to have defined a transformation £ g — Process-Graphs [Mil84, BK88].

(Note that the transformation in [Mil84] obtains root-unwound graphs).

By contradiction: let t'y; denote a graph g(t'y) which is not rt-normal. This means that at least
one of the two conditions above is not satisfied.

Let us consider 1).: g(t'y) is not rt-rigid and this means that it has not only the trivial rt-
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autobisimulation. Therefore, there exists a rt-autobisimulation R of g(t'y) such that there exist
two nodes s;, S # 100t(g(ty)), S # S and (s, sj) € R. In other words, there exists a pair (s;,

sj) of T-bisimilar (internal and distinct) nodes in g(t'y). It follows that the subgraph (g)si, (g)sj

with root s;, S respectively, are T-bisimilar. We have to consider different cases.

Case 1. (g)Si and (g)Sj are different subgraphs and one is not a subgraph of the other one.
They are t-bisimilar and this implies that (g)Si and/or (g)sj are not T-normal subgraphs. At

syntactic level, this means that in t'y there occur subterms which are not in rec-normal-form,
thus contradicting the hypothesis that t'y is a rec-normal-form.
Case 2. One of the two subgraphs, let us say (g)sj, is a subgraph of the other one, (g)si:

(g)Si - (g)Sj
2.1. The subgraphs denote the same infinite tree: tree((g)si) = tree((g)sj) .

This means that (g)sj has been obtained as an unfolding by —¢; from 8- This is not possible

because g(t'y) corresponds to a canonical term t'y, i.e. reduced w.r.t. TN.

2.2, The subgraphs denote different infinite trees, tree((g)si) # tree((g)sj), such that tree((g)si)
contains the subtree tree((g)sj) which is t-bisimilar to itself. There can be different situations:

2.2.1. The t-bisimilar nodes s; and 8j are connected by a unique path labelled with a t-action
(figura). At syntactic level, this means that in t'y there occur subterms 1.7.P for some P or
recX.T.E for some E containing directly prefixed occurrences [.X of X, contradicting the

hypothesis that t'y is a rec-normal-form and therefore reduced with respect to strat, and
= Ap- (Note that 1.1.X = (1.X is the only rule in strat, with a prefix left hand side. It reduces
vertically, while the other rules, i.e. the Absorption Lemma, have a summation left hand side
and reduce horizontally).

2.2.2. The %-bisimilar nodes s; and sy are placed in a more general context
(figura). At syntactic level, this means that there is a subterm recX.E of t'y Which contains a
subterm recX.F observationally equivalent to recX.E{X/F}. This contradicts the hypothesis

that t'y is a rec-normal-form and therefore reduced with respect t0 —cg.

Let us now consider the condition ii). Let t'y denote a graph g(t'y) which is not minimal. This
means that in g(t'y) there occur:

1. t-loops;

2. arcs with primary edge labelled L;

3. double edges.

While rewriting by — . over £ g» the case 1. cannot occur because the T-loops generated
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during the collapsing operation on graphs, are removed at syntactic level by strat, while

executing the collapse on terms. The case 3. is a particular instance of 2., the only case to
considered. The occurrence of an arc with primary edge labelled W in a graph corresponds, at
syntactic level, to the occurrence (in t'y) of a subexpression as follows:

TGt P+ ) ) L)+ uP

This subexpression is an instance of the Absorption Lemma and can be reduced by strat, thus

deleting LL.P: this contradicts the hypothesis that t'y is a rec-normal-form. ¢

5. Conclusions and Future Work
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