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Abstract

Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-
ased scheduling, dispatch, and real-time operation. However, producing accurate forecasting for individual residential
ouseholds is more challenging compared to the forecasting of load demand at the distribution level, which is smoother
nd benefits from statistical compensation of errors. This paper presents a day-ahead forecasting technique for individual
esidential load demand that is based on the Long Short-Term Memory encoder–decoder architecture, which is extended to
onsider possibly differing sets of past and future exogenous variables. A novel focus is posed on the validation of the
roposed approach considering that it is tailored for use by energy management systems. A publicly available dataset was used
or validation, and the approach was compared with three other methods, resulting in a reduction of the Mean Absolute Scaled
rror by up to 8%.
2023 The Authors. Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation

IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Forecasting; Residential electrical consumption; Energy management; LSTM

1. Introduction

Energy waste and pollutant emission reduction is nowadays considered a nondeferrable priority. The research
ommunity and policy makers have been trying to move towards smarter and more efficient energy use paradigms.
o this end, Energy Communities sharing common energy sources [5] and smart buildings enabling efficient use of
nergy are among the main pillars of this change.

Energy Management Systems (EMSs) play a key enabling role in the implementation of such strategies. They
anage power flows in the electrical microgrids among renewable sources, loads, electrical storage devices, and

he main grid. Furthermore, EMSs may pursue several goals like the maximization of operational efficiency, the
inimization of emissions, or the reduction of sources and load uncertainty [20].
Predicting the behavior of the energy system is crucial to mitigate potential uncertainties. Therefore, accurate

orecasting of electric load demand is fundamental for planning and operation management at several scales, from

∗ Corresponding author at: INM-CNR, via Ugo La Malfa 153, 90146, Palermo, Italy.
E-mail address: giuseppe.latona@cnr.it (G. La Tona).
https://doi.org/10.1016/j.matcom.2023.06.017
0378-4754/© 2023 The Authors. Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
Simulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2023.06.017
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2023.06.017&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:giuseppe.latona@cnr.it
https://doi.org/10.1016/j.matcom.2023.06.017
http://creativecommons.org/licenses/by/4.0/


G. La Tona, M. Luna and M.C. Di Piazza Mathematics and Computers in Simulation 224 (2024) 63–75

r
m
b

r
t
s

T
f
t
t
d
[

A
i
o
L
F
v
a
c

a
L
o
p
i
b

3
i
p
g

C
i
t
c

t
a
e

d
h

transmission and distribution system operators to microgrid or building EMSs. The former are interested in short-
term and medium-term aggregate load demand forecasting for day-ahead scheduling, unit commitment, and energy
trading. The latter are interested in short-term load forecasting of both aggregated and individual users’ load demand
for day-ahead scheduling and real-time control [10].

This paper focuses on forecasting individual residential household load demand, i.e., the profile of interest for
esidential EMSs. Such a profile is more volatile than the aggregated load demand. Therefore, its forecasting is
ore challenging. In fact, the aggregated load demand has a smoother profile due to the statistical compensation

etween the many users’ profiles [32].
Not many papers have been proposed in the literature about short-term load demand forecasting of individual

esidential households. In fact, there is a scarcity of datasets compared to aggregated load profiles. However, due
o the adoption of smart metering infrastructures and the diffusion of Internet of Things devices, such datasets are
tarting to become available to researchers.

Recently, pure deep learning methods have started being applied to time series forecasting with good results.
hese end-to-end data-driven methods do not require expert analysis of the historical data, manual extraction of

eatures, or decomposition into trend and seasonality components. Historically, pure deep learning methods used
o perform worse than hybrid methods combining classical statistical approaches and machine learning models in
ime series forecasting competitions [23]. However, the proposal of new architectures and the availability of bigger
atasets have paved the way for new approaches that improved over the state of the art of time series forecasting
27].

Recurrent Neural Networks (RNNs) have been used to forecast individual residential household load demand.
simple RNN is used in [33], whereas Gated Recurrent Units and Long Short-Term Memory (LSTMs) are used

n [17], and a LSTM is combined with Fully Connected (FC) layers in [16]. Furthermore, different combinations
f Convolutional Neural Networks (CNNs) and RNNs have been explored. CNNs were combined with stacks of
STMs in [2,3,15], whereas in [21,36] they were combined with Bidirectional LSTMs and in [30,34] with GRUs.
inally, dilated CNNs were combined with Bidirectional LSTMs in [14]. Some of these methods consider exogenous
ariables (i.e., variables whose values are determined outside the model and affecting the model without being
ffected by it). However, all these approaches can only be used for fixed-size horizon forecasting and are only
ompatible with past exogenous variables (i.e., historical values known at the time of forecasting).

The encoder–decoder architecture was proposed in the literature to deal with variable-length sequences. This
rchitecture has been extended to time-series forecasting and in particular the model proposed in [24] used an
STM encoder–decoder architecture to forecast individual residential household load demand. The model is capable
f variable-size horizon forecasting and of considering future exogenous variables. However, the encoder must be
retrained, and the future exogenous and past exogenous variables must coincide. Also, only a linear transformation
s applied to decoder output, although it has been shown that the nonlinearities added by final FC layers are
eneficial.

Other RNN encoder–decoder models were proposed for aggregate multihousehold-level load forecasting in [28,
1]. These models are only compatible with past exogenous variables because only recurrent outputs are given as
nputs to the decoder (initialized with the encoder state). An LSTM encoder–decoder for regional load demand was
roposed in [38]. Future exogenous variables are concatenated with the recurrent output of the decoder and are
iven as an input to the decoder. However, future exogenous variables must coincide with past exogenous ones.

Other approaches not considering exogenous variables, based on recurrence plots and CNNs [29] and on
onditional Restricted Boltzmann Machines [25], have been proposed. Furthermore, learning from multiple houses

n a neighborhood for forecasting multiple individual profiles was proposed in [32]. A pooling deep RNN was used
o learn shared uncertainties. However, this approach requires an appropriate dataset and sharing of individual load
onsumption profiles with a centralized forecaster, which may lead to privacy issues.

The use of exogenous variables has proven to be beneficial in residential load demand forecasting. Furthermore,
he constraint of using the same sets of past and future exogenous variables is very limiting. Therefore, in this paper

novel way to extend the LSTM encoder–decoder architecture that can consider different sets of past and future
xogenous variables is proposed.

Crucial aspects of short-term forecasting for EMSs are also the choice of appropriate error metrics and the
efinition of a suitable testing strategy. Too often, model performance is measured on the forecasting of just one

orizon span (e.g., the forecasting of one day) [14,17,23]. However, this is not a significant sample for forecasting
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methods used by EMSs that require new forecasting at least daily without retraining the model. Therefore, it is
important to provide performance indices based on multiple repeated forecasting over a sliding horizon of historical
data, a procedure known as backtesting without retraining. Furthermore, for reproducibility of the results, it is also
important to discuss how to aggregate error metrics over multiple forecasting. The proposed model is tested in
this paper using backtesting without retraining, and two different methods for aggregating the error metrics are
discussed.

The main contributions of the paper can be summarized as follows:

- A novel way to use the LSTM encoder–decoder architecture with both past and future exogenous inputs for
day-ahead individual household power consumption forecasting is proposed.

- The proposed model can produce forecasting with variable-length horizon, it can consider different sets of
past and future exogenous variables, and there is no need to pre-train the decoder.

- The proposed model outperforms other benchmark models on a public dataset.
- The validation is performed through backtesting on a test set without retraining the model, and different

methods for aggregating error metrics are proposed.

The rest of this paper is structured as follows: Section 2 presents the proposed method and the case study, together
with a discussion of how the method is validated and compared to other models; Section 3 presents the results and
the relative discussion; Section 4 reports the conclusions, and Appendix A summarizes the supplementary materials
of the paper.

2. Materials and method

The proposed approach is discussed in this section after briefly recalling the formal definition of time series and
he peculiarities of load demand time series. The LSTM encoder–decoder is introduced, and the way it is extended
o time series forecasting is discussed. Finally, the case study is presented, including how the data are prepared and
ow the method is validated.

.1. Load demand time series definitions

Time series are defined as sets of data points indexed by time, usually taken at regular time intervals. They can
e modeled as stochastic processes, which, in the discrete case, are sequences of random variables. Forecasting
eans predicting the value of the random variable yt given the previous observations (yt−1, . . . , y1). Furthermore,

t is usually desired to forecast the series for a horizon h in the future (yt+h−1, . . . , yt ). The considered time series
an be univariate, if the data points are scalar, or multivariate, if the data points are vectors.

It is often useful to consider other related variables called exogenous variables. Their values can be contempo-
aneous to the observed values of the considered time series (past exogenous variables) or can also be known for
uture time steps, contemporaneous to the forecasting horizon (future exogenous variables). An example of future
xogenous variables are calendar features, which are known in advance.

In general, therefore, a forecasting model approximates the relationship between future values of the considered
ime series given previous observations, past exogenous features, and future exogenous features, as in:

(yt+h−1, . . . , yt ) = f (z t+h−1, . . . , z t , yt−1, . . . , y1, x t−1, . . . , x1) (1)

here f is the unknown function that determines the evolution of the time series, and z t+h−1, . . . , z t and
x t−1, . . . , x1 indicate future exogenous variables and past exogenous variables, respectively [12].

Load demand time series in individual residential households usually consist of aggregated (at the household
evel) active power demand measurements. Useful exogenous variables are weather measurements like ambient
emperature and other electrical measurements, like submetering data. Furthermore, calendar features like time
f day, day of the year, and holiday or weekend indicators are exogenous variables that are very useful because

orrelated with household users’ habits and behaviors.
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Fig. 1. Proposed model architecture. On the left, the encoder block through LSTM layers receives the past observations and past exogenous
inputs. The resulting encoding is the initial state of the LSTM layers of the decoder, which receive as inputs the future exogenous values.
The output of the decoder is processed through fully connected layers to produce the resulting forecasting.

2.2. LSTM encoder–decoder with exogenous inputs model

The model proposed in this paper was designed with the following goals: (1) the model must support end-to-end
learning (no hand-coded feature extraction), (2) the input window and the output window do not have to be of the
same length, (3) variable-length forecasting horizon must be supported, (4) both past and future exogenous variables
must be supported and the two sets of variable do not have to coincide.

Recurrent Neural Networks (RNNs) are intrinsically able to work with sequential data. However, when trained
over long sequences they suffer from vanishing or exploding gradients. Therefore, RNNs are unable to learn
long-term dependencies on data, like what is needed in load demand timeseries, which exhibit multiple seasonality.

The building block of the proposed forecasting model is the LSTM RNN cell. LSTM is an architecture developed
with the purpose to overcome vanishing and exploding gradient issues (typical of RNNs) and learn long-term
dependencies. An LSTM consists of a memory cell that can maintain its state over time and of three nonlinear
gating units (input gate, output gate, and forget gate) that regulate the information flow into and out of the cell [7].

LSTM (like all RNNs in general) by itself is not able to predict variable-length sequences, nor it can easily
consider future values of exogenous variables. To address these limitations, the sequence-to-sequence or RNN
encoder–decoder architecture was proposed in [35].

The approach proposed in this paper is based on the LSTM RNN encoder–decoder architecture and is summarized
in Fig. 1. It consists of a stack of LSTM layers that receive as input a window of past observations of the considered
time series and of the exogenous time series, whereas it outputs an encoding of such observations. Another stack
of LSTM layers has as initial state the encoding and receives as input the future values of the exogenous time
series for the forecasting horizon. Its output is connected to a stack of fully connected (FC) layers that output the
predicted values of the considered time series for the forecasting horizon. The network activation function for the
FC layers is the Rectified Linear Unit (ReLU) g (x) = max {0, x} (where x is the result of the weighted sum of
previous layer outputs), except for the output layer, which has linear activation.

It is worth observing that this architecture is compatible with multivariate input series, and future exogenous
variables do not have to coincide with past exogenous variables. Furthermore, in a such pure deep learning fashion
(i.e., no manual feature extraction or classical time series decomposition), the network learns the features of the
time series at successive layers of abstraction and the time relations between such features, encoding them into a
latent representation. The network also learns the relations between future exogenous variables, the encoded state,
and the future observed values of the time series. The proposed model can produce variable-length forecasting. In

fact, it produces an output sequence that has the same length of the future exogenous variables passed to it.
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Table 1
Variables of the IHEPC dataset.

Variable Description

global_active_power household global active power (kW)
global_reactive_power household global reactive power (kW)
voltage power system voltage (V)
global_intensity household global current intensity (A)
sub_metering_1 energy sub-metering No. 1: kitchen

(Wh)
sub_metering_2 energy sub-metering No. 2: laundry

room (Wh)
sub_metering_3 energy sub-metering No. 3: electric

water-heater and air-conditioner (Wh)

To increase generalization and avoid over-fitting the model, three complementary regularization strategies have
een followed. First, L1 regularization of layer parameters is used. This adds a term λ

∑N
i=0 |θi |(θi are the parameters

and λ is the regularization weight) to the training objective function, acting as a form of feature selection. L1
regularization encourages sparsity of the parameter values driving to zero the parameters that are not useful. Second,
dropout is applied between the layers of both the encoder and the decoder. Dropout [9] consists in randomly
omitting units (only) during training. Such a technique approximates training of many neural networks with different
architectures in parallel and averaging the result. Finally, the third approach is the use of early stopping strategy in
training. Basically, the performance of the model on a validation set is tracked during training; then, the training is
stopped when the performance does not improve but worsens. This not only speeds up training, but also acts as a
regularizer because it stops the training when it starts to overfit the data.

2.3. Case study

The proposed model was trained and tested on half-hourly load data for forecasting with a 24 h horizon. Data
were obtained from a public dataset referring to an individual residential household located in Sceaux, France, with
a one-minute sampling rate over a period of almost 4 years between December 2006 and November 2010 (IHEPC
dataset) [8]. The dataset contains timestamped values for aggregated active and reactive power consumption and
other electrical measurements, as well as some sub-metering values, as described in Table 1.

The power consumption dataset does not contain weather measurements. Therefore, the temperature measure-
ments for the same location and time period at one-hour intervals were obtained from the Photovoltaic Geographical
Information System (PVGIS) service [11].

Next subsections describe the experimental setup of the case study from data preparation to model implementa-
tion, training and tuning, and to result evaluation.

2.3.1. Data preparation
The data had to be prepared to be used for training the proposed model, as summarized in Fig. 2. The

supplementary materials contain the code to download the data and run the data preparation steps reported in this
subsection.

The IHEPC dataset contains some missing values in the measurements (nearly 1.25% of the samples). Although
simple methods such as linear interpolation are adequate to fill in such missing values, they are likely to produce
erroneous results where the length of missing segment is high [28]. In total, there are seven missing segments longer
than 2 h, and the longest lasts 5 days. The missing segments were replaced with the mean value at the same day and
time over the previous years in the dataset, if available; otherwise, data from the corresponding day of the previous
week were used. The PVGIS dataset does not contain missing values. The datasets were re-sampled at 30-minute
intervals to make them consistent with one another and with the chosen EMS application.

ANN training benefits from feature scaling or standardization in terms of training convergence and avoidance of
local minima [22]. Therefore, the data were preprocessed as follows

x ′

t = 2
xt − xmin

− 1 (2)

xmax − xmin
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Fig. 2. Steps of experimental setup. After dataset cleanup and normalization, calendar and time features are added as exogenous features.
hen, the contiguous dataset is organized into windows of data in order to train the network models by minimizing a loss function.

here xt is the value of a variable at the generic time t , x ′
t is the resulting scaled value, and xmin and xmax are the

minimum and maximum values of the considered variable over the subset of the data used for training. This can
be easily shown to transform a variable to be in the range [−1, 1].

The time series data had then to be transformed into continuous windows of data to be used for supervised
raining of the model. Consecutive windows were split as (input, target) tuples, where the input consisted of the
bserved values of the time series and the past and future exogenous variables, as depicted in Fig. 2.

Global active power was considered as the time series to be forecasted (the output of the network). The other
ariables contained in the IHEPC dataset and the ambient temperature from PVGIS dataset were used as past
xogenous variables. Calendar and time features were used as future exogenous variables. In particular, weekend
nd holiday dummy variables and Fourier terms for seasonality were used. These last terms are preferred to dummy
ariables for long seasonal periods as discussed in [12] where the following definition is also provided:

xsin,i,t = sin
(

i2π t
m

)
, xcos,i,t = cos

(
i2π t

m

)
, i ∈ [1, . . . , n] (3)

where m is the seasonal period and n is the number of terms to add. For the proposed model, daily and yearly
seasonality were used with m equal to 48 and to 48 × 365, respectively. The number of terms n is a model
hyperparameter and it was selected as described in Section 2.3.3.

2.3.2. Models used for comparison
The proposed approach was compared against three other models commonly used in the literature for short-term

load demand forecasting.
The first model is the Nonlinear AutoRegressive with eXogenous inputs (NARX) ANN [6]. The NARX is trained

using observations of the considered time series and future and past values of the exogenous variables. However,
the same set of variables must be used for past and future values. Therefore, only calendar and time features were
used as exogenous features for the NARX in the experiments.

The second model is a stack of LSTM layers that outputs a fixed-size forecasting, as in [16] (called Block
LSTM model in the rest of the paper). This model receives as input observed values of the considered time series
and observed (i.e., past) values of the exogenous variables; it cannot consider future exogenous variables.

Finally, the last model is a simple forecasting method used as a baseline. The model is called Naı̈ve seasonal [12]
nd assumes that the considered time series has a seasonality period equal to m, in this case m = 48. It sets each
orecast to be equal to the last observed value from the same season (i.e., the same time of day):

ŷi = yt−m (4)
here ŷi is the predicted value of the time series at time t.
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Table 2
Model and training hyperparameters.

Hyperparameter NARX Block LSTM LSTM encoder–decoder

Number of exogenous
Fourier terms n

3

Initial learning rate 1.9e−3 8.6e−3 1.9e−3
Training optimizer Adam
Output window size 1 48 48
Input window size 48 48 x 3 48 x 3
Dropout rate 0.1
L1 regularization
weight

0.01

LSTM layers – 1 2
LSTM units – 121 [209,85]
FC layers 2 1 1
FC units [124,89] 484 44

2.3.3. Model training and hyperparameters tuning
The proposed model and the benchmark models were trained minimizing the Mean Squared Error (MSE)

oss [21]:

M SE =
1
N

N−1∑
i=0

(ŷi − yi )
2 (5)

here N is the number of samples, and ŷi and yi are the predicted and observed time series values, respectively.
The dataset was split into four sequential parts. Following common best practices used in the time series

orecasting literature for small datasets, the first 70% of the data was used as the training set; the next 30% was
plit equally into validation set, development set, and test set. This way, out-of-sample validation data were used
or hyperparameter tuning. The development set was used for model architecture comparison and selection. Finally,
he selected models were retrained adding the validation and development sets to the training set, and then they
ere tested on the test set obtaining the results reported in Section 3. It is worth pointing out that the dataset was
ivided before training any model in order to avoid reporting biased test results.

The considered models were implemented using Keras 2.7 [4] with Tensorflow 2.7 [1] backend. Model and
raining hyperparameters (i.e., variables set prior to the application of the learning algorithm, not directly selected
y the algorithm itself) were tuned through a two-step procedure. At first, manual search with coordinate descent
changing only one hyper-parameter at a time, always making a change from the best configuration of hyper-
arameters found up to now) was used to select a good starting point, focusing particularly on the selection of the
nitial learning rate. Then random search, implemented through Keras Tuner [26] was used to fine tune a subset of
he hyperparameters. The resulting hyperparameters for each model and its training are reported in Table 2. The
ubset of hyperparameters of the proposed model tuned through random search is reported in Table 3 together with
he corresponding values of the 10 best trials. All the evaluated values of the hyperparameters for the proposed

odel and for the models used for comparison are reported in the supplementary materials.

.3.4. Metrics for evaluation of forecasting results
The forecasting error was measured according to several metrics described hereinafter. The Mean Absolute Error

MAE), a scale-dependent error [12], is expressed as:

M AE =
1
N

N−1∑
i=0

|ŷi − yi | (6)

The Normalized Root Mean Squared Error (NRMSE) and the Mean Absolute Percentage Error (MAPE) are
ercentage errors; as such, they can be useful to compare forecasting errors across different datasets. Their
69
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Table 3
Ten best trials of the random search algorithm used to tune the proposed model hyperparameters. The resulting NRMSE is
reported in the last column.

Initial learning rate LSTM layers LSTM units FC layers FC units NRMSE

1.9E−3 2 [209, 85] 1 44 0.1184
3.3E−3 1 40 2 [51,424] 0.11867
7.9E−4 2 [195, 85] 1 101 0.1188
1.9E−3 2 [303, 168] 1 277 0.1188
8.7E−4 2 [408, 87] 1 57 0.1188
5.4E−4 3 [139, 497, 178] 2 [484, 284] 0.1190
7.3E−4 2 [60, 46] 2 [225, 190] 0.1191
3.7E−4 2 [419, 64] 2 [496, 148] 0.1192
1.7E−3 1 141 1 243 0.1194
5.9E−4 3 [35, 271, 381] 2 [34, 58] 0.1194

expression can be found in [21] and is as follows:

N RM SE =

√
M SE

max
i

yi − min
i

yi
100 (7)

M AP E =
1
N

N−1∑
i=0

⏐⏐⏐⏐ yi − ŷi

yi

⏐⏐⏐⏐ 100 (8)

Finally, it is useful to consider scaled metrics [13] that scale the error by the training MAE of simple forecasting
ethods. The Mean Absolute Scaled Error (MASE), considering Naı̈ve Seasonal forecasting as the base method,

s defined in [13] and expressed as:

M ASE =
1
N

∑N−1
i=0 |ŷi − yi |

1
T −m

∑T
t=m |yt − yt−m |

(9)

here T is the length of the training set and m is the seasonality period.
For short-term forecasting based on ANN models it is uncommon to retrain the model every time a forecasting is

roduced. Especially when intended for use by EMSs, a model is trained once and used repeatedly for forecasting
ith a specified horizon. Therefore, to validate the model and estimate its performance on forecasting future data,
acktesting without retraining is used. The procedure consists of forecasting for a fixed horizon given an input
indow from the test dataset and then repeating over a sliding window (see Fig. 3).
Through backtesting, a series of forecastings is obtained as it would have been at the historical time of forecasting

tart times. Error metrics can be calculated for each of these forecastings. Therefore, a profile of errors (daily errors
or example) can be analyzed. However, it is useful to also have a single index over the entire test set (one per used
etric) to characterize the overall error. Two ways are possible: statistics (like mean and variance) can be calculated

ver the vector of metric values; otherwise, the metrics can be calculated on the concatenation of the forecasted
indows. However, this last method is sound only if the stride between backtesting windows equals the forecasting
orizon. It is worth noting that, for metrics like MAE or MAPE, which are averages of point errors, the mean over
he vector of metric values is equivalent to the second method, but this is not the case for NRMSE.

Often, papers in the literature just test the proposed methods on a single forecasting window. Also, when
acktesting is used, and multiple forecastings are produced, it is not explained how the reported metrics are
alculated. This makes the results more difficult to interpret and to reproduce. At the best of the authors’ knowledge,
he first method is usually adopted by practitioners, even if not explicitly stated. However, it is worth considering
he alternative method as well.

Backtesting results are reported in the next section using the mean of daily metrics, and the NRMSE error index
ver the aggregated profile is also reported.

. Results

Training and testing were executed on a machine with Intel Core i7-8700 CPU, 16 GB of RAM, and an Nvidia
eForce GTX 1070 GPU. Execution times for training, backtesting over the entire test set, and one-day forecasting
70
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Fig. 3. Backtesting procedure. The forecasting is repeated giving as input to the model the observations in the input window and obtaining
he prediction for the forecasting horizon. Then, the input window is moved by a fixed stride (equal to the forecasting horizon in this case),
nd the new forecasting is produced. The model only considers observations known at the time of forecasting (For ease of representation,
xogenous variables are not depicted).

Table 4
Training, backtesting, and forecasting times (averages and std deviation).

Model Training Backtesting Forecasting

NARX 57.9 s ± 23 s 4.71 s ± 26 ms 157 ms ± 2 ms
Block LSTM 1 min 24 s ± 26 s 0.876 s ± 3 ms 146 ms ± 4 ms
Prop. model 2 min 6 s ± 13 s 1.71 s ± 8 ms 165 ms ± 1 ms

are reported in Table 4 and are calculated over 10 executions. It can be observed that the one-day forecasting time
of the proposed model is compatible with the time-steps of execution of forecasting-based EMSs, which are in
the order of minutes. The proposed model can be exported after training and be deployed on a forecasting model
running on a low-cost single board computer as in [19]. Also, the used third-party libraries are released under open
source licenses. Therefore, the deployment on a working environment would not require high costs. However, this
aspect is outside the scope of the present work.

The mean values of the daily metrics are reported in Fig. 4. It can be observed that the proposed model
utperforms the other models according to all the metrics. In particular, there is a reduction of about 8% on MASE
ith respect to NARX and Block LSTM. These results also suggest the advantage of considering both past and future

xogenous variables. In fact, the NARX model can only consider variables that will be also known in the future
nd it cannot consider historical observations at the time of forecasting (unless an external forecasting provides
he corresponding values for the forecasting horizon). The Block LSTM model, on the other hand, can consider
istorical observations, but cannot consider future exogenous variables. These gaps penalize the performance of the
enchmark models compared with that obtained with the proposed approach.

It is also interesting to look at the profile of the daily metrics. Fig. 5 shows the daily NRMSE; it can be observed
hat the proposed model exhibits a smaller error almost every day. Furthermore, it is possible to observe that the
aily NRMSE of the proposed model does not show an increasing trend that would have implied the need for
etraining the model. Therefore, the forecasting model can be used by an EMS without retraining for month-long
eriods.

The NRMSE calculated over the aggregated forecasting results is reported in Table 5. Even in this case, the
roposed model outperforms the other benchmark models. It can be observed that the NRMSE calculated over the
ggregated result is smaller than the mean of daily NRMSE; this result is due to the calculation of the metric over
longer period which makes it more tolerant to punctual errors.
As an example, the forecasting result of three consecutive days is plotted in Fig. 6. It can be observed that

he load demand variability and, thus, the forecasting error are higher during the hours of higher consumption.
urther work could account for this by using a probabilistic forecasting approach. Furthermore, it is worth noting
71
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a
t

Fig. 4. Mean values of daily error metrics for each model (MASE is not calculated for Naïve seasonal because the latter is the base method
used in the metric definition).

Fig. 5. Daily NRMSE of the proposed model and the other models used for comparison.

Table 5
NRMSE over aggregated forecast-
ing results.

Model NRMSE

Prop. model 0.1161
NARX 0.1238
Block LSTM 0.1240
Naïve seasonal 0.1521

that it is not easy to determine a cause for such errors during the hours of higher consumption. A possible future
extension of the model could explore how to make it interpretable (i.e., it cannot provide explanations for its output
in understandable terms to a human). For example, an attention layer [37] could be added to identify salient elements
of the input sequence and therefore a possible explanation of the produced output.

The reported results show that the forecasting of the individual residential load demand is more difficult than
ggregated load demand forecasting, thus justifying the application of a more complex and expressive model like

he proposed one. In fact, results reported in the literature for aggregated load demand reach lower error metrics
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Fig. 6. Plot of three sample days of forecasting results obtained using the proposed model.

sing simpler methods for example in [6]. Furthermore, the proposed deep learning approach produces good results
ithout the need for hand-coded feature extraction or specific domain knowledge, making the approach easily

pplicable to other datasets. In addition, the flexibility of the model allows the inclusion of all the available variables
n the dataset. Finally, it is worth pointing out that the proposed model is tailored for EMS applications, hence these
esults reflect the forecasting errors that an EMS would experience in its practical application and would need to
itigate. Considering that EMSs proposed in the literature (e.g., in [18]) are able to mitigate errors equal to or

igher than those reported in this paper, the proposed forecasting method proved to be fully effective for use within
n EMS.

Finally, it should be noted that all the tests were conducted using fixed-length forecasting horizon. However, the
roposed model can produce variable-length forecasting, but its evaluation and validation using backtesting deserves
urther study, in particular with regard to the error aggregation procedure because it cannot be simply applied as in
his paper.

. Conclusions

The paper presented a model for day-ahead residential load demand forecasting that is suitable for energy
anagement systems. The proposed model considers load demand observations and both past and future exogenous

ariables through a stack of LSTM cells that acts as an encoder and a stack of LSTM cells that acts as a decoder.
he output of the decoder is transformed through a fully connected network into a forecasting for the following day.
he proposed model was designed considering individual household load demand time series, which have higher
ariability with respect to utility-level load demand time series; furthermore, it was tuned, trained, and tested on
publicly available dataset. However, no other assumptions were made, and the model can be readily tuned and

rained on other individual household load demand datasets.
With respect to the other considered models, the proposed one has fewer limitations. In fact, it can consider

ifferent sets of variables as past and future exogenous variables, and it also can produce variable length forecasting.
To be used by EMSs, day-ahead forecasting is produced regularly without usually retraining the model. Therefore,

he proposed approach was evaluated through backtesting without retraining. The proposed model outperformed
hree selected benchmark methods on all the considered error metrics. Furthermore, a discussion about the
ppropriate way of reporting scalar values for the error metrics on a backtesting result was presented, and two
lternative approaches were proposed.

Finally, it is worth observing that EMSs benefit from good forecasting, but they still need to account for and
itigate forecasting errors. Therefore, their optimization formulation could benefit from probabilistic forecasting
ith prediction intervals. Future work will extend the proposed model to also provide prediction intervals.
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Appendix A. Supplementary materials

Data preparation. Folder containing a Jupyter notebook and Python code to download the data and execute the
data preparation steps described in Section 2.3.1.

Hyperparameters-tuning-results. Folder containing the full results of the random search algorithm used for tuning
the hyperparameters of the proposed models and of the NARX and Block LSTM models used for comparison in
the paper.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.matcom.2023.06.
017.
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