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A B S T R A C T

Machine learning, a subset of artificial intelligence, has emerged as a powerful tool for generating
new knowledge from observations. In the realm of geographic information systems (GIS), ma-
chine learning techniques have become essential for spatial analysis tasks. Satellite image classifi-
cation methods offer valuable decision-making support, particularly in land-use planning and
identifying asbestos cement roofs, which pose significant health risks. In Colombia, where as-
bestos has been used for decades, the detection and management of installed asbestos is critical.
This study evaluates the effectiveness of the RoofClassify plugin, a machine learning-based GIS
tool, in detecting asbestos cement roofs in Sibaté, Colombia. By employing high-resolution satel-
lite imagery, the study assesses the plugin's accuracy and performance. Results indicate that Roof-
Classify demonstrates promising capabilities in detecting asbestos cement roofs, achieving an
overall accuracy score of 69.73%. This shows potential for identifying areas with the presence of
asbestos and informing decision-makers. However, false positives remain a challenge, necessitat-
ing further on-site verification. The study underscores the importance of cautious interpretation
of classification results and the need for tailored approaches to address specific contextual fac-
tors. Overall, RoofClassify presents a valuable tool for identifying asbestos cement roofs, aiding in
asbestos management strategies.

1. Introduction
Machine learning tools, a branch of artificial intelligence, are based on the ability of a given system to generate new knowledge

from a set of observations (Parki, 2009). Deep learning, which is a subset of machine learning, employs models and algorithms that
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emulate the neural network architecture of the brain (Jakhar and Kaur, 2020). The applications of machine learning and deep learn-
ing are vast, as they autonomously extract knowledge from training data for descriptive, predictive, and prescriptive purposes
(Btown, 2021). Significant advancements facilitated by machine learning and deep learning tools can be observed in various scientific
fields over the past decades. In medical diagnostics, these tools have played a crucial role in identifying certain types of cancers
(Kononenko, 2001) (Shebab et al., 2022). They have also found applications in finance, aiding in measuring financial risk and detect-
ing fraudulent activities (Ozbayoglu et al., 2020). Additionally, machine learning and deep learning have contributed to image analy-
sis and object detection tasks, such as automated image classification for characterizing land use and recognizing objects from re-
motely captured data (Maxwell et al., 2018) (Li et al., 2022). In the context of geographic information systems (GIS) spatial analysis,
these tools have emerged as a key solution (Introduction to deep learning). Their ability to perform semantic segmentation and clas-
sify images has proven particularly valuable for solving GIS spatial analysis problems (Yuan et al., 2021).

Satellite image classification methods offer valuable decision-making support for land-use planning, including applications such
as assessing the potential for solar panel installation (Mohajeri et al., 2018) (Gassar and Cha, 2021) and measuring the vulnerability
of buildings to seismic risk (Borfecchia et al., 2010). Moreover, these methods enable the large-scale spatialization of building roofs
based on their constituent materials, employing an object-oriented approach (Walter, 2004) (Trevisiol et al., 2022). One significant
aspect is the identification of asbestos cement (AC) roofing sheets that pose a health risk. All asbestos fibers are carcinogenic to hu-
mans (Group 1) (IARC, 2012), and exposure to these fibers can lead to non-neoplastic diseases like asbestosis or pleural plaques, as
well as certain cancers including larynx, ovaries, lungs, or mesothelioma (INSERM (collective expertise), 1997). Although the extent
of asbestos fiber exposure depends primarily on the corrosion level of the asbestos-cement sheets (Dyczek, 2006), there remains a risk
of exposure, substantiated by numerous studies (Kottek and Yuen, 2022) (Spurny, 1989) (Lee and Kim, 2021a) (Ervik et al., 2021).
The identification of asbestos roofs can be conducted on a large scale either through on-site inspections, which require a substantial
budget, trained personnel, and time, or through a remote approach utilizing satellite images or data acquired by airborne sensors. The
utilization of hyperspectral imagery (Krówczyńska et al., 2020) (Frassy et al., 2014) (Fiumi et al., 2012), as well as more conventional
multispectral satellite data (Hikuwai et al., 2023) (Gibril et al., 2017) (Osińska-Skotak and Ostrowski, 2015) (Taherzadeh and Shafri,
2013) (Abbasi et al., 2022) (Tommasini et al., 2019), has demonstrated an increasing precision in identifying asbestos cement roofs
and mapping them on a broader scale: classification tools generally range from traditional machine learning approaches, such as the
random forest classification algorithm, to artificial intelligence methods like convolutional neural networks. Hyperspectral satellite
imaging and data acquisition through airborne sensors should, by virtue of improved image resolution, lead to more accurate classifi-
cations (Krówczyńska et al., 2020) (Frassy et al., 2014) (Fiumi et al., 2012) (Szabó et al., 2014) (Kaplan et al., 2023) (Valdelamar et
al., 2024). However, implementing such studies requires significant funding, which compromises the chances of large-scale replica-
tion, especially in low- or middle-income countries. Our work has the modest ambition of assessing the performance of a method that
is easily understandable and relies on readily available satellite data at a moderate cost.

It is estimated that cumulative world production of asbestos was 181 million tons between 1900 and 2003 (Virta, 2006). The peak
demand was reached in 1977 when 25 countries were producing 4.8 million tons per year, and asbestos products were manufactured
by approximately 85 countries (Virta, 2006). In 1980, asbestos-cement products, including corrugated asbestos-cement sheets, repre-
sented 66% of asbestos consumption, rising to 76% in South America (Virta, 2006). By 2003, asbestos-cement products accounted for
85% of total asbestos consumption worldwide (Virta, 2006). Colombia followed similar trends, although the lack of official govern-
ment figures brings some uncertainty regarding quantities. Based on figures provided by the asbestos industry during debates on leg-
islation aiming for a complete asbestos ban in Colombia, it was reported that by 2015, 300 million square meters of asbestos roofing
had been installed in the country (Ascolfibras). In the same year, there was an estimated annual production of 230,000 tons of fibro-
cement, equivalent to slightly over 19 million square meters of roofing, which were installed in 350,000 households annually
(Ascolfibras). Throughout the entire operational history of asbestos-cement factories in Colombia, which commenced operations in
1942, asbestos-cement roofing was installed in 5 million households, particularly low-income families, resulting in one out of every
two Colombians living or having lived in homes with asbestos-cement roofing (Ascolfibras). A complete asbestos-ban was reached in
Colombia in 2019, which came into effect on January 1st, 2021 (Law, 1968/19). However, the ban does not solve the negative legacy
of installed asbestos products, which is a major public health challenge that the country is currently facing.

The deterioration of asbestos-cement roofing sheets exposed to environmental elements is a significant concern, as it leads to the
release of toxic asbestos fibers into the air (Campopiano et al., 2009). This deterioration occurs due to various factors such as expo-
sure to atmospheric agents, mechanical actions like vibrations or maintenance interventions, and chemical reactions induced by wa-
ter, sun, ice, wind, and pollutants like sulfur dioxide and acid rain (Campopiano et al., 2009). These agents cause corrosion, dissolu-
tion of soluble salts, carbonation, and erosion of the cement structure, resulting in the liberation of asbestos fibers (Campopiano et al.,
2009). Additionally, colonization by moss and lichen further contributes to the decay of the roofing sheets, ultimately leading to the
formation of a surface layer rich in easily liberated asbestos fibers (Campopiano et al., 2009).

The identification and quantification of asbestos cement roofs are critical challenges in the management of asbestos installations
spanning several decades. This challenge becomes even more pressing in countries like Colombia, where a law prohibiting asbestos
came into effect on January 1, 2021, after more than 80 years of asbestos production and consumption (Congreso de Colombia, 2019)
(Flórez Gutiérrez et al., 2023). In low- and middle-income countries, high-resolution satellite imagery presents a viable and accessible
approach for identifying asbestos-cement roofs. Tommasini et al. (2019) have developed the RoofClassify plugin (https://
plugins.qgis.org/plugins/RoofClassify/), an open-source geographic information system plugin that utilizes the random forest algo-
rithm within an object-oriented framework to classify roofs. The plugin has demonstrated reliable performance in identifying asbestos
cement roofs in the Prato region of Italy. In our study, we aim to assess the applicability of this plugin in the Colombian context, char-
acterized by more irregular roof compositions (in terms of both geometry and materials) and less reliable input data.
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To evaluate the capabilities of RoofClassify in the Colombian context, we propose applying the methodology developed by Tom-
masini et al. in the urban center of Sibaté, located in the department of Cundinamarca, Colombia. There are two primary reasons for
selecting this site. Firstly, Sibaté is the focus of a comprehensive study aiming to characterize the entire asbestos exposome following
the discovery of the first mesothelioma cluster in Colombia (Ramos-Bonilla et al., 2019) and the identification of friable asbestos in
the municipality's subsoil (Lysaniuk et al., 2020). Therefore, conducting the evaluation in Sibaté aligns with the broader research ef-
fort focused on understanding asbestos-related risks in the region. Secondly, the topographical characteristics of the city, with its ele-
vated points, facilitate direct roof identification. This aspect is of utmost importance both for establishing the training layers required
for the analysis and for evaluating the performance of the RoofClassify plugin. This work evaluates the performance of the RoofClas-
sify plugin in classifying roof materials in the urban area of Sibaté, Colombia, where roof heterogeneity and the lack of crucial input
data pose significant challenges. Unlike the initial testing area, Sibaté lacks geolocated asbestos-cement roof data and has an impre-
cise cadastre, complicating the application of vector masks to satellite images. To address these constraints, original procedures were
implemented, such as in-situ localization of training layers and the use of less precise vector masks. Beyond assessing classification ac-
curacy, this study provides methodological insights for applying this approach in regions with similar characteristics to Sibaté.

2. Data and methods
For this project, a significant portion of the methodology was based on adapting the elements presented by Tommasini et al.

(2019). However, to ensure compatibility and functionality with QGIS LTR during the period of 2022–2023, it was necessary to up-
date the RoofClassify plugin. To accomplish this, we enlisted the services of Oslandia (https://oslandia.com/) to perform the follow-
ing tasks.
1. Transitioning the code from Python 2 to Python 3.
2. Upgrading from PyQt 4 to PyQt 5.
3. Reevaluating the necessity of certain dependencies, such as PyShp.
4. Integrating the required dependencies, such as SciKit Learn, into the plugin delivery.

These updates were completed in advance of our study, and the revised plugin was subsequently reuploaded to the QGIS libraries.
This approach aligns with the Open Source philosophy embraced by the original developers of RoofClassify, ensuring that the up-
dated plugin is available for the wider community. The step-by-step procedure and functioning of RoofClassify are detailed in the
study by Tommasini et al. (2019).

2.1. Study area and data collection
Sibaté is a city located in the department of Cundinamarca, approximately 25 km southwest of the center of Bogotá, the capital of

Colombia (see Fig. 1). The municipality is home to an industrial zone that is directly connected to the southern part of Bogotá via the
Southern Highway (Autopista Sur). Sibaté gained prominence as the site of Colombia's first asbestos-cement plant, established in 1942
to meet the domestic demand for asbestos-cement roofing sheets, as well as water supply and drainage pipes. Since the mid-2010s,
there has been ongoing research into the environmental and human health negative impacts resulting from asbestos use in Sibaté
(Ramos-Bonilla et al., 2019; Lysaniuk et al., 2020; Cely-García et al., 2020). In order to apply a detection and classification method for
asbestos cement roofs in Sibaté, a high-resolution multispectral image from DigitalGlobe's WorldView3 (WV3) sensor was purchased.
Ultimately, we acquired both a panchromatic image and an orthorectified multispectral image, with their characteristics detailed in
Table 1. The analysis of both images resulted in the production of a pansharpened image, integrating the high spatial resolution of the
panchromatic image with the spectral information from the multispectral image.

To limit the spatial coverage and reduce the number of pixels for the classification process, we employed a vector mask on the pan-
sharpened image. The purpose was to exclude areas that do not correspond to roofs from the analysis. In this study, we evaluated two
types of masks with different spatial scales. The first type of mask, which aligned with the original methodology, utilized the "build-
ings" layer sourced from the Colombian cadastral database. The second type of mask, with a coarser granularity, corresponded to the
parcels that contain the buildings. To obtain the necessary vector data, we downloaded the relevant information from the Agustin Co-
dazzi Geographic Institute (IGAC) website: https://geoportal.igac.gov.co/contenido/datos-abiertos-catastro. It is important to note
that the department code for Cundinamarca, where Sibaté is situated, is 25. By employing these masks, we aimed to refine the classifi-
cation process and focus specifically on the areas that encompass buildings and their respective parcels, facilitating more accurate
identification of roofs in the analysis.

2.2. Classification via RoofClassify
In this study, we followed the classification procedures outlined by Tommasini et al. (2019), which rely on machine learning tech-

niques using a set of training layers. For the specific case of Sibaté, we identified four main types of roofs: concrete, terracotta tiles, as-
bestos cement, and zinc sheets. To create the training layers, fieldwork was conducted by two researchers who georeferenced several
buildings representing each roof type. In total, we identified 13 concrete-roofed buildings, 29 buildings with zinc sheets, 44 buildings
with tile roofs, and 28 buildings with asbestos cement sheets. These buildings were then manually identified on satellite imagery and
vectorized into polygons, each classified according to its corresponding roof type (see Fig. 2 - left). These polygons served as training
layers. To generate a pansharpened image, we employed the Relative Component Substitution (RCS) algorithm from the Orfeo Tool-
Box, an image processing software library originally developed by the French Space Agency. This algorithm integrates with the QGIS
interface (https://www.orfeo-toolbox.org/) and merges the multispectral and panchromatic image data, utilizing the higher resolu-
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Fig. 1. Location of Sibaté (source: Digital Globe, 2016).

Table 1
Characteristics of the WV3 panchromatic (PAN) and multispectral satellite (MS) images used in this study.

Date and code of the scene April 2, 2020 (1040010056605100)

Bands 8-Band Bundle
Resolution 30 cm (Pan)/1.2m (MS)
Kernel MTF
Coordinate System UTM
Datum WGS84
Tiling None
Bit Depth 16-Bit
File Format GeoTiff
Product OR2A
Media FTP-Pull
DRA Off
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Fig. 2. Training layers and specific area of analysis.

tion of the panchromatic image. Following pansharpening, we used the ArcToolBox Cut Raster tool in ArcGIS (ESRI) to extract the rel-
evant portion of the pansharpened raster. The vector masks employed in this step were derived from the "parcels" layer obtained from
IGAC, as we encountered difficulties in rectifying the slight offset in the "building" layer. The goal of this step is to eliminate pixels
that are not associated with the identified parcels, thus enhancing the accuracy of the subsequent classification. In our work, we did
not implement the image partitioning step described by Tommasini et al. (2019) since the size of our image did not necessitate it. Con-
sequently, we proceeded directly to the classification stage in RoofClassify. The user-friendly interface of the plugin facilitated the
process, requiring the selection of the raster to be classified, the training layers, the raster associated with the training layers, and the
destination folder for the output file. The interface also offers additional options, such as creating shape counts or percentages to pro-
vide information on the number or percentage of pixels per class within a given polygon. Upon completion of the classification, the
plugin generates a raster image with pixels classified according to the training layers, allowing for the identification of different roof
types across the study area. In summary, our classification method is based on the signals acquired by the spectral bands of the World-
View-3, in the visible (VIS) and near infrared regions (NIR). Therefore, the algorithm is based and trained on the matching between
the fusion of signals in the VIS and NIR bands and the "in-situ" collected data in Sibaté. Additionally, to improve the results, the VIS
and NIR measurements (acquired with different spatial resolutions) were scaled on the same geographical grids.

2.3. Classified image cleanup
Pixel-based classification using training layers can sometimes result in isolated pixels or "false positives" that are not associated

with actual roofs. To address this issue, we employed the "sieve" utility, which is available in the "analysis" tools of the GDALTools ex-
tension in QGIS. This utility allowed us to remove raster surfaces below a user-defined threshold (s). The deleted surfaces were then
replaced with the value of the largest adjacent surface. In our study, which adopted an exploratory approach, we conducted multiple
trials using different pixel grouping threshold values: 5, 10, 15, 20, 25, 30, 35, and 40 aggregated pixels. This process helped to refine
the cleaning of the classified raster by eliminating isolated pixels or small false positive areas. To further enhance the cleaning
process, a second filter was applied. From the various sieved rasters obtained, we performed a raster-to-polygon conversion. This con-
version referred to the polygons recognized automatically by the GIS based on the raster classification results. After converting to
polygons only those areas suspected to be asbestos cement roofs that exceeded a certain surface area threshold value (a) were se-
lected. Several surface area threshold values (5, 10, 15, and 20 m2) were tested. This step ensures that only sufficiently large areas,
likely to be actual roofs, are considered. In summary, isolated pixels were removed using the sieving tool, and then after converting
the raster to polygons, asbestos-cement polygons below a certain area threshold were also removed. Thus, test several combinations
from s5a5 to s40a40 were tested. By employing these filters and thresholds, we aimed to reduce the presence of noise and false posi-
tives in the classified results, focusing on asbestos cement roofs that are more likely to be accurate and meaningful.

2.4. Validation of "identified" roofs
To evaluate the agreement or discrepancies between the asbestos cement roofs detected by the RoofClassify plugin and the actual

asbestos cement roofs on-site, we conducted another field trip. The purpose of this trip was to directly identify the asbestos cement
roofs in a specific area. The selection of the observation area was based on two criteria: the presence of a high vantage point that pro-
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vided a clear view of the roofs and the proximity (within 400 linear meters) to a densely built-up area for easier access. From Cerro La
Inmaculada, located in the area (as shown in Fig. 1), three researchers equipped with binoculars conducted the in-situ identification of
asbestos cement roofs. Each researcher independently identified the roofs, and their identifications were cross-checked by the other
two researchers. To aid in the identification process, the researchers had a color printout of the satellite image of the area and marked
the identified asbestos cement roofs on it. Subsequently, these marked roofs were vectorized using GIS software. The specific area we
focused on resulted in the identification of 78 polygons corresponding to asbestos cement roofs (as depicted in Fig. 2 on the right
side). These polygons represent the actual asbestos cement roofs observed on-site and serve as a reference for comparing the detection
results obtained from the RoofClassify plugin.

2.5. Assessment of detection quality
The evaluation of the detection quality primarily involves comparing the "asbestos-cement roofs detected" layer generated by the

RoofClassify plugin with the "asbestos-cement roofs observed" layer obtained from the on-site visual inspection. These two shapefile
polygon layers were compared to determine the level of agreement.

By comparing these layers, we could measure the following.
1. Surfaces that match: These are the areas where the "asbestos-cement detected" layer and the "asbestos-cement observed" layer

overlap or coincide, indicating successful detection by the RoofClassify plugin.
2. False positive surfaces: These are areas where the RoofClassify plugin detects asbestos-cement roofs, but they are not validated

during the visual inspection. These represent instances where the plugin falsely identifies certain surfaces as asbestos-cement
roofs.

3. False negative surfaces: These are areas where asbestos-cement roofs are present based on the visual inspection, but they are not
detected by the RoofClassify plugin. These instances represent the roofs that are missed or undetected by the algorithm.
We performed these measurements within the specific analysis zone for each combination of filters applied to clean the image.

This allows us to assess the detection quality and identify the optimal combination of filters that effectively reduce image noise (using
the sieve operation and area threshold).

To analyze the accuracy and performance of the RoofClassify plugin in detecting asbestos-cement roofs and to determine the suit-
able filter combination, we conducted the following steps.
1. Intersect function: Using the intersect function in ArcGIS, we intersected the "fibrocement detected" layer (output of

RoofClassify) with the polygon representing the zone of analysis. This operation resulted in a single layer representing the
detected asbestos-cement roofs within the zone of analysis (denoted as A).

2. Intersect function: Next, we used the intersect function in ArcGIS between layer (A) and the "asbestos-cement installed" layer.
This intersection generates matching surfaces, where the detected asbestos-cement roofs overlap with the actual installed
asbestos-cement roofs (denoted as B). These areas represent the accurate detection by the plugin.

3. Erase function: To identify false positive surfaces, we used the erase function in ArcGIS between layer (A) and the "asbestos-
cement installed" layer. This operation removes the areas where the detected asbestos-cement roofs coincide with the actual
installed roofs, leaving behind the falsely detected areas (denoted as C). These surfaces represent instances where the plugin
incorrectly identified non-asbestos-cement roofs as asbestos-cement.

4. Erase function: Similarly, we used the erase function in ArcGIS between the "asbestos-cement installed" layer and layer (A). This
erase operation highlights the false negative surfaces (denoted as D), which correspond to the areas where the plugin failed to
detect the actual asbestos-cement roofs present in the zone of analysis.
By performing these operations and analyzing the resulting layers (B, C, and D), we can evaluate the accuracy of the detection by

comparing the detected roofs with the actual installed roofs. This assessment allows us to measure the true positive, false positive, and
false negative rates and further refine the detection process by optimizing the filter combination.

In the final step of our analysis, we assessed the impact of the vector mask that corresponds to the parcels (i.e., “parcels” layer) and
that was previously described, and a second vector mask composed of manually vectorized roofs was created, to substitute the impre-
cise “buildings” layer from the Colombian cadastral database. This latter mask was generated by accurately delineating the bound-
aries of asbestos-cement roofs through meticulous manual identification. Thus, we examined three scenarios. First, we evaluated the
detection quality without a vector mask, considering the entire pansharpened image extent. This allowed us to measure the perfor-
mance of the RoofClassify plugin in identifying asbestos-cement roofs without any spatial restrictions. Next, we used the "parcels"
layer as the vector mask during the detection process. This layer represents the parcels or land plots in the study area. By limiting the
analysis to the areas defined by the parcels, we aimed to focus the detection on the roofs within those boundaries, potentially improv-
ing the accuracy of the results. Finally, we used the manually vectorized roofs mask, to further enhance the detection quality by ex-
cluding non-roof areas and focusing solely on the specific roofs of interest. By comparing the results obtained under these three sce-
narios, we were able to quantify the impact of the vector masks on the detection quality within our test area.

2.6. Detection precision from an accuracy matrix
In addition, the classification performance at the pixel level across all types of roofs included in this work was measured. To do

this, an "accuracy" post-processing tool from the SCP plugin (Congedo, 2021) developed for QGIS was applied. Thus, we determined
the overall accuracy of the classification proposed by RoofClassify for all classes at Sibaté by comparing a set of in-situ identified roof
data (zinc = 22 polygons, tiles = 21 polygons, concrete = 24 polygons, asbestos-cement = 78 polygons) with the pixels classified
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by RoofClassify. Similarly, the matrix indicated true and false positives and highlighted metrics such as overall accuracy and the
Kappa statistic.

2.7. Analysis of samples collected for validation purposes
In cases where the plugin yielded unexpected or counterintuitive results in terms of asbestos detection, field samples were col-

lected from these locations for laboratory confirmation. If the detected surface was composed of solid concrete material, a sample of
this material was collected. For detections on land surfaces, two samples of the material were collected for laboratory analysis — one
from the surface and another from 4 cm below the surface.

For laboratory analysis, samples were preliminary dried at 300 °C for 3–5 h to remove organic matter (e.g., bitumen, roots, leaves)
and sieved to obtain a fraction <100 μm. Scanning Electron Microscope (SEM) analyses were carried out with ZEISS EVO50 XVP
equipped with an X-Stream OXFORD EDS. Secondary Electron and Backscattered Images were acquired at various magnifications
(100x, 1000x, and 5000x) and accelerating voltages, commonly 5–10 kV. Microanalysis operating conditions were 10 kV, 100 pA,
and 30 s counting time; relative wt% errors are <1% for major elements and <5% for minor components. Transmission Electron Mi-
croscopy (TEM) analyses were performed by a JEOL 1400 FLASH microscope, working at 100 kV, 15000x magnification. The micro-
scope is equipped with STEM control and energy dispersive spectrometer (EDS Oxford X-Max 65T). Soil fractions were dispersed in
ultrapure water (5 mg/1,5 ml) and sonicated for 30 s at 10 W. 10 μl of solution was deposited on mesh Cu grids with supporting lacey
carbon films. 30 graticule areas were examined for each sample. Polarized Light Microscopy analyses coupled with Dispersion Stain-
ing method of observation (PLM-DS) were carried out with an Olympus BX51 microscope equipped with a phase contrast mask. Two
aliquots were examined for each sample. Asbestos fibers identification was carried out with the oil immersion method, using the fol-
lowing Refractive Indices: for chrysotile and tremolite, RI 1.550 and RI 1.605 were used as advised by the UK - Health and Safety Ex-
ecutive (Health and Safety Executive, 2021). Non-chrysotile asbestiform serpentine was observed assigned with the intermediate RI
1.5680 (Petriglieri et al., 2020).

A workflow diagram summarizing all the steps of the methodology is presented in Fig. 3.

3. Results
3.1. Classification, image cleaning and detection quality

Upon completing the classification process with RoofClassify, we obtained an image that differentiated pixels into four categories
representing our training layers: yellow for asbestos cement, blue for concrete, pink for clay tiles, and red for zinc. The resulting im-
age (Fig. 4 - A) was generated using the "parcels" vector mask. A preliminary visual analysis of the image reveals several key observa-
tions. Firstly, there is a satisfactory spatial distribution of classified elements, indicating the presence of potential roofs throughout
the study area. However, the image exhibits a notable level of noise and highlights the limitations of detection, particularly with nu-
merous small-scale features down to the pixel level. Nonetheless, a significant number of distinct clusters, representing roofs, are
clearly discernible. Additionally, a few larger elements stand out, primarily zinc roofs found on larger collective buildings such as
gymnasiums, courtyards, and village halls. Remarkably, asbestos cement roofs appear to be present in all neighborhoods of Sibaté
without exception, reflecting their widespread use. Nevertheless, some confusion arises in the classification. Certain access roads lo-
cated to the north of the urban zone, which were not included in the vector mask, are erroneously identified as concrete sectors. More-
over, two specific areas present challenges as they are classified as potentially asbestos-contaminated despite not being roofs. These
areas are the Plaza de toros (Bull ring) to the north and the athletics track to the west (Fig. 4 - A), both of which are public spaces.

Fig. 3. Workflow diagram of the methodology.
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Fig. 4. RoofClassify image of Sibaté roofs.

Given the potential risks associated with activities taking place on the surfaces classified as potentially asbestos-contaminated, we
deemed it necessary to collect samples from these areas. The samples were carefully collected and sent for analysis to a specialized
laboratory at the University of Turin, which provide further insights into the presence of asbestos or other relevant substances. In ad-
dition, it is worth highlighting the large areas depicted as clay roofs when using the “parcel” vector mask, an unexpected result that is
examined in detail in the discussion section.

The evaluation of the accuracy and performance of the RoofClassify plugin in detecting asbestos-cement roofs and the determina-
tion of the suitable filter combination showed that the best scenario for cleaning the classified image involved using a minimum ag-
gregation threshold of 30 pixels of the same class combined with a minimum surface area of 5 m2, referred to as "s30a5" (Table 2).
This specific combination yielded the highest quality in terms of matching detected asbestos cement areas with installed areas. The
analysis showed a perfect match of 53.34% between the installed and detected asbestos cement areas. However, it is important to
note that there were still areas that were not detected by the classification, amounting to 46.66% of the installed areas, which are
false negatives (Table 2). Despite this, the classification process, based on four training layers and a total of 114 polygons, successfully
detected more than half of the installed asbestos-cement surfaces.

If the interpretation of the results is focused on the identification of polygons with at least the partial presence of asbestos-cement
(i.e., not in terms of surface), the detection results should be read differently. In this context, the RoofClassify plugin partially detected
asbestos cement in 74 out of the 78 polygons that contained asbestos-cement roofs. However, it also produced 55 additional polygons
erroneously classified as containing asbestos-cement (Table 3). It is important to note that the presence of false positives can have im-
plications for the accuracy of the overall detection results. While the plugin successfully detects a considerable portion of the as-
bestos-cement surfaces in terms of surface area, the presence of false positives should be considered when analyzing the individual
polygons and assessing the precise detection performance.

3.2. Measuring the importance of the vector mask in detection quality
The assessment of the impact of vector mask refinement on the quality of asbestos cement detection, showed upon visual inspec-

tion that the differences between these detection scenarios are not immediately apparent (Fig. 5).
The spatial distribution of detected asbestos-cement roofs shows minimal variation across different vector mask scenarios. Upon

closer analysis of Fig. 5, it is possible to identify a few lines in the detection results without a vector mask (B), indicating potential mis-
classification of roads as asbestos cement. When comparing the detections using a "parcels" vector mask versus a "roofing" mask (Fig.
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Table 2
Analysis of detection quality over a portion of our study area.

Sieving
Scenarios

Areas of installed fiber-
cement roofs (visual
identification)

Areas of fiber-
cement roofs
detected by
Roofclassify

Concordance - Areas of fiber-
cement roofs detected by
Roofclassify and validated by
visual identification

False positive - Areas of fiber-
cement roofs detected by
Roofclassify but not validated by
visual identification

False negative - Areas of
installed fiber-cement
roofs not detected by
Roofclassify

s5a5 6386,91m2 5273,4m2 3327.46m2 (52.1%) 1945.95m2 (36.9%) 3059.55m2 (47.9%)
s5a10 6386,91m2 4993,86m2 3256.60m2 (50.99%) 1737.25m2 (34.79%) 3130.46m2 (49.01%)
s5a15 6386,91m2 4757,16m2 3180.70m2 (49.8%) 1576.47m2 (33.14%) 3206.31m2 (50.2%)
s5a20 6386,91m2 4528,02m2 3108.55m2 (48.67%) 1419.47m2 (31.35%) 3278.45m2 (51.33%)
s10a5 6386,91m2 5349,33m2 3366.09m2 (52.7%) 1982.97m2 (37.06%) 3020.85m2 (47.3%)
s10a10 6386,91m2 5084,28m2 3293.84m2 (51.57%) 1790.17m2 (35.21%) 3093.01m2 (48.43%)
s10a15 6386,91m2 4820,85m2 3217.93m2 (50.38%) 1602.66m2 (33.24%) 3168.86m2 (49.62%)
s10a20 6386,91m2 4626,27m2 3144.56m2 (49.23%) 1481.47m2 (32.02%) 3242.27m2 (50.76%)
s15a5 6386,91m2 5367,4m2 3387.46m2 (53.03%) 1979.76m2 (36.88%) 2999.45m2 (46.96%)
s15a10 6386,91m2 5118,64m2 3321.60m2 (52%) 1796.89m2 (35.1%) 3065.31m2 (47.99%)
s15a15 6386,91m2 4870,41m2 3259.91m2 (51.04%) 1610.46m2 (33.06%) 3126.96m2 (48.96%)
s15a20 6386,91m2 4641,64m2 3170.74m2 (49.64%) 1470.76m2 (31.68%) 3216.12m2 (50.35%)
s20a5 6386,91m2 5412,55m2 3394.73m2 (53.15%) 2017.77m2 (37.28%) 2992.23m2 (46.85%)
s20a10 6386,91m2 5145,52m2 3328.87m2 (52.12%) 1816.59m2 (35.30%) 3058.11m2 (47.88%)
s20a15 6386,91m2 4896,21m2 3267.18m2 (51.15%) 1629.09m2 (33.27%) 3119.74m2 (48.85%)
s20a20 6386,91m2 4685,71m2 3178.01m2 (49.76%) 1507.66m2 (32.17%) 3208.9m2 (50.24%)
s25a5 6386,91m2 5397,68m2 3404.44m2 (53.3%) 1993.18m2 (36.93%) 2982.47m2 (46.7%)
s25a10 6386,91m2 5149,01m2 3330m2 (52.14%) 1918.96m2 (37.27%) 3056.83m2 (47.86%)
s25a15 6386,91m2 4854,53m2 3276.61m2 (51.3%) 1577.87m2 (32.5%) 3110.28m2 (48.7%)
s25a20 6386,91m2 4680,47m2 3187.43m2 (49.9%) 1492.98m2 (31.9%) 3199.45m2 (50.09%)
s30a5 6386,91m2 5382,77m2 3406.52m2 (53.34%) 1986.24m2 (36.9%) 2980.53m3 (46.66%)
s30a10 6386,91m2 5150,85m2 3339.63m2 (52.29%) 1811.2m2 (35.16%) 3047.3m2 (47.71%)
s30a15 6386,91m2 4867,8m2 3286.25m2 (51.45%) 1581.55m2 (32.49%) 3100.74m2 (48.55%)
s30a20 6386,91m2 4708,86m2 3212.19m2 (50.29%) 1496.65m2 (31.78%) 3174.80m2 (49.71%)
s35a5 6386,91m2 5399,03m2 3405.79m2 (53.32%) 1993.19m2 (36.92%) 2981.25m2 (46.68%)
s35a10 6386,91m2 5154,95m2 3338.91m2 (52.28%) 1815.99m2 (35.23%) 3048.01m2 (47.72%)
s35a15 6386,91m2 4882,61m2 3285.52m2 (51.44%) 1597.05m2 (32.71%) 3101.47m2 (48.56%)
s35a20 6386,91m2 4723,67m2 3211.47m2 (50.28%) 1512.16m2 (32.01%) 3175.53m2 (49.72%)
s40a5 6386,91m2 5387,29m2 3397.26m2 (53.19%) 1989.99m2 (36.94%) 2989.85m2 (46.81%)
s40a10 6386,91m2 5133,40m2 3330.38m2 (52.14%) 1802.99m2 (35.12%) 3056.61m2 (47.86%)
s40a15 6386,91m2 4882,3m2 3278.94m2 (51.34%) 1603.34m2 (32.84%) 3108.07m2 (48.66%)
s40a20 6386,91m2 4723,36m2 3204.88m2 (50.18%) 1518.44m2 (32.15%) 3182.14m2 (49.82%)

Table 3
Detecting asbestos roofs.

Sieving
scenario

Installed fiber-cement
roofs (number of
polygons)

Detected fiber-cement
roofs (number of
polygons)

Number of polygons representing installed
fiber-cement roofs in which a detection
was performed

Number of polygons representing detected
asbestos cement roofs outside the polygons
representing installed roofs

s30a5 78 129 74 (94,87%) 55 (42,63%)

5 C vs D), the differences are primarily observed in the polygon geometry and the number of polygons, rather than in the overall spa-
tial distribution.

Therefore, in our study area the use of a vector mask and its spatial resolution has only a marginal influence on the quality of de-
tection. As expected, a more precise vector mask leads to smaller areas of detected asbestos cement, resulting in a lower percentage of
false-positive areas, which decreases to approximately 26% when using a "roof" vector mask (Table 4). However, the refinement of
the vector mask does not seem to significantly impact the concordance between the detected and installed asbestos-cement areas.
These findings suggest that while the spatial resolution and accuracy of the vector mask can affect the size and number of detected as-
bestos-cement polygons, they have limited impact on the overall quality of detection in terms of concordance. It should be noted that
'total area' does not exactly correspond to the sum of 'concordance' and 'false positives'. The slight differences observed are due to
rounding and the conversion from 'raster to polygons', which affects the areas.

Across all three scenarios, the percentage of perfectly matching surfaces exceeds 50% (Table 4, Concordance), indicating a rela-
tively good concordance between the detected and installed asbestos-cement areas. Interestingly, when using a fine vector mask (i.e.,
roofing), the main improvement is observed in reducing the number of false positives, rather than enhancing detection accuracy.
However, it is important to note that even with a fine vector mask, approximately 49.2% of the surface area of installed asbestos ce-
ment roofs remains undetected.
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Fig. 5. Asbestos cement detected by RoofClassify in the Sibaté test area using different vector masks.

Table 4
Comparison of detection quality according to the vector mask used.

Vectorial
mask

Areas of installed fiber-
cement roofs (visual
identification)

Areas of fiber-
cement roofs
detected by
roofclassify

Concordance - Areas of fiber-
cement roofs detected by
roofclassify and validated by
visual identification

False positive - Areas of fiber-
cement roofs detected by
roofclassify but not validated by
visual identification

False negative - Areas of
installed fiber-cement
roofs not detected by
roofclassify

without 6386,91m2 5109,01m2 3330.68m2 (52.15%) 1775.11m2 (34.74%) 3056.26m2 (47.85%)
parcels 6386,91m2 5382,77m2 3406.52m2 (53.34%) 1986.24m2 (36.9%) 2980.53m3 (46.66%)
roofing 6386,91m4 4391,63m2 3244.65m2 (50.8%) 1144.2m2 (26.05%) 3142.29m2 (49.2%)

These results suggest that while a fine vector mask can help mitigate false-positive detections, it does not significantly improve the
overall detection performance in terms of capturing all installed asbestos-cement surfaces. Therefore, other factors, such as the limita-
tions of the classification algorithm or the resolution of the satellite imagery, may be contributing to the remaining undetected areas.

3.3. Overall performance analysis of the classification using a confusion matrix
An analysis of RoofClassify's performance through a pixel-oriented evaluation was conducted. The establishment of a general con-

fusion matrix cross-referencing polygons related to the identification of four types of roofs with the classification produced by Roof-
Classify, based on the pansharpened image and cropped by the "parcels" vector mask, indicates an overall accuracy of 69.73% with a
Kappa of 0.59, which can be considered moderate (Table 5). The classification performance of RoofClassify in our context varies de-
pending on the type of roof: it is moderate for concrete identification (Kappa of 0.44) and satisfactory for identifying asbestos-cement
(Kappa of 0.75).

3.4. Results of analyses of samples taken in critical areas
An additional validation step was conducted, involving the collection of samples for laboratory confirmation from unusual or un-

expected locations where the plugin indicated the presence of asbestos-cement material. This verification process took place at a bull-
ring and on an athletic track surrounding a football field. The bullring stands are constructed from concrete, and accordingly, a sam-
ple was collected from the stands.

Additionally, numerous patches on the surface of the athletic track were flagged as asbestos-cement. Six locations on the athletic
track were sampled, with each location yielding samples from both the surface and 4 cm below the surface. These samples underwent
analysis using PCM, SEM, and TEM at the University of Turin laboratories.

Of note, only one sample from a specific location on the athletic track, collected 4 cm below the surface, reported the presence of
tremolite asbestos. This type of asbestos is typically associated with contamination rather than intentional use. This finding confirmed
that the initial reports of asbestos-cement at the bullring and the athletic track were false positives.

4. Discussion
4.1. Strengths of the study

The classification performed by RoofClassify demonstrates a significant capability to accurately detect 53% of the installed as-
bestos-cement roofs area in Sibaté. When considering the overall accuracy of the classification tool across all types of roofs at the pixel
level, the study achieves a value of 69.73%. Although this is lower than the 81.77% accuracy achieved in the Italian study
(Tommasini et al., 2019), it still represents a meaningful detection rate.

Nevertheless, it is very important to note that, in this study, asbestos-cement was identified by RoofClassify—at least partially—in
nearly 95% of the roofs where the presence of this material was confirmed in the test area (i.e., 78 visually confirmed asbestos-cement
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Table 5
Precision matrix (asbestos-cement 1, concrete 2, clay tiles 3, zinc 4).

V_Classified > ERROR MATRIX (pixel count)

1 2 3 4 Total

1 37080 6140 870 188 44278
2 7661 9711 321 501 18194
3 12564 2333 32400 5156 52453
4 6921 6498 1199 58503 73121
Total 64226 24682 34790 64348 188046

V_Classified > AREA BASED ERROR MATRIX

1 2 3 4 Area

1 0.1672 0.0277 0.0039 0.0008 126236.7900
2 0.0733 0.0929 0.0031 0.0048 110066.2200
3 0.0839 0.0156 0.2163 0.0344 221473.3500
4 0.0261 0.0245 0.0045 0.2209 174623.3100
Total 0.3505 0.1607 0.2278 0.2610 632399.6700
Area 221639 101622 144089 165051 632399
SE 0.0010 0.0008 0.0008 0.0006
SE area 646 531 496 411
95% CI area 1266 1041 972 806
PA [%] 47.6971 57.8101 94.9436 84.6489
UA [%] 83.7436 53.3747 61.7696 80.0085
Kappa hat 0.7497 0.4445 0.5049 0.7295

Global accuracy [%]69.7311.
Kappa hat classification = 0.5965.

roofs). This indicates the generation of false negatives by RoofClassify, which can be explained by the proximity of spectral signals be-
tween visually similar roofs. Conversely, it demonstrates the significant capability of this plugin to identify asbestos-cement. This
makes the tool potentially valuable for identifying asbestos-affected areas, enhancing territorial knowledge, and supporting asbestos
removal strategies. The double sieving classification cleaning process helps reduce the number of pixels associated with false-positive
noise, improving the overall accuracy of the results. Furthermore, using a "parcels" vector mask provides a balance between computa-
tional efficiency and maintaining satisfactory accuracy in identifying asbestos-cement roofs. This choice offers faster processing
speeds while preserving reasonably good quality in classification outcomes.

4.2. Weaknesses and limitations
However, the study has several limitations that need to be addressed. The technique is prone to generating false-positive surfaces

on materials or structures with similar colors to asbestos-cement, such as aged concrete or asphalt. For instance, the Plaza de Toros
(Bull ring), which appears to be degraded concrete and the athletics track, composed of small greyish rock fragments, were mistak-
enly classified as asbestos-cement roofs. As mentioned earlier, the classification method relies on the signals acquired by the spectral
bands of the WorldView-3, in the visible and near-infrared regions. Unfortunately, these spectral bands are not narrow enough to per-
form a fine spectral analysis of the sensed targets, which is the primary cause of detection errors. Additionally, the classification tool
tends to classify all bare or partially bare soil as "tile" (representing clay roofing), making RoofClassify highly sensitive to soil charac-
teristics. This bias is exacerbated when using a "parcels" vector mask, as it automatically classifies non-built elements as tiles.

To gain a better understanding of this bias, a simple comparison between the classification without a vector mask and the classifi-
cation with a "roofing" vector mask is helpful (Fig. 6). These observations highlight the need for careful interpretation and validation
of the classification results, considering the specific characteristics and limitations of the classification tool. Finally, the choice of vec-
tor mask may depend on the specific context and characteristics of the study area. Local conditions, data quality, and analysis objec-
tives should all be considered when selecting the most appropriate vector mask for asbestos-cement detection.

Despite these limitations, combining RoofClassify's capabilities with subsequent on-site assessments can enhance the accuracy and
reliability of asbestos detection efforts. Through this study, RoofClassify demonstrates encouraging performance in two very different
urban contexts in Italy and Colombia. Scaling up is feasible and primarily constrained by the spatial extent of the satellite images
used. The main limitation would then be the time required to analyze larger areas. The uniqueness of Sibaté also lay in its topography,
which facilitated the visual identification of both training layers and control roofs. For future work, using a drone equipped with a
high-resolution camera could be a moderately costly solution to replicate this approach in other regions.

5. Conclusion
One of the main advantages of the procedures and tools presented in this study, are the potential applicability in low- and middle-

income countries because of their low cost (i.e., the satellite images have a reasonable price if the area studied is not too vast, and the
RoofClassify plugin is open access), the accuracy of detection of asbestos-cement roofing is not strongly dependent on the precision of
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Fig. 6. Comparison of classifications without vector mask (left) and "roof" vector mask (right) on the test area.

input data (i.e., vector masking), and because of the latter, it is potentially adaptable to the limitation in the quality of geospatial data
frequently found in these type of countries.

On the other hand, the application of RoofClassify in Sibaté resulted in large false positive and false negative detection rates for as-
bestos roofing. Thus, in future applications of the plugin we suggest increasing the number of training layers and the number of poly-
gons within each training layer, to explore if the accuracy improves.

Despite the limitations found and the structure of local roofs typically made up of an assembly of several types of materials over
small areas, the plugin detects the partial presence of asbestos-cement roofs in 95% of the polygons that correspond to roofs in which
this material has been visually confirmed.

Although asbestos-cement products release asbestos fibers over time due to deterioration of the encapsulating material, friable as-
bestos materials pose a much higher health risk (Lee and Kim, 2021b) (Government of Western Australia and Department of Health).
Therefore, the decision to remove corrugated asbestos-cement sheets should be based on a technical assessment of the material's con-
dition, as the replacement process can lead to asbestos exposure (Government of Western Australia and Department of Health) (UK
Health Security Agency, 2024). Consequently, the management of corrugated asbestos-cement sheets should be guided by rigorous
risk management plans (Government of Western Australia and Department of Health) (UK Health Security Agency, 2024).

In summary, the study introduces a novel application by integrating our methodology in a unique context. We have clarified the
differences between the geographical areas of the first study and Sibaté, demonstrating how the change in context has modified the
quality of the information used, such as cadastral data. Despite the limitations and varying quality of the information, RoofClassify
shows encouraging results, highlighting its adaptability and reliability even with suboptimal data quality. Furthermore, our analysis
of the changes implemented shows how they have affected the accuracy of our results in the Colombian context. This demonstrates its
potential applicability across different regions worldwide. Additionally, RoofClassify is notable not only for its effectiveness but also
for its affordability and accessibility. It is freely available and user-friendly, requiring no expert knowledge to be used effectively,
which makes it a practical tool for a wide range of users.
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