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ABSTRACT
The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider
a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify
novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the
system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular,
stochastic thermodynamics. We call them “entropons” because they are the modes of spectral entropy production (at a given frequency and
wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular
active matter, as well as in living systems, such as dense cell monolayers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156312

I. INTRODUCTION

Active matter1,2 includes a broad range of systems composed
of particles that locally convert energy from the environment into
directed motion.3,4 The energy exchange with the environment,
often induced by chemical reactions or self-imposed gradients, leads
to self-propulsion of the particles and internally drives an active
system out of equilibrium.

Dense systems of self-propelled particles are rather ubiqui-
tous in nature and often form crystalline structures. Cell mono-
layers of the human body5–8 and dense colonies of bacteria9–11 are
common examples. Moreover, active colloidal Janus particles may
cluster and form dense crystallites,12 named “living crystals.”13,14

These active crystals show fascinating phenomena uncommon
for equilibrium solids15–18 ranging from intrinsic spatial velocity
correlations,19–22 spontaneous velocity alignment,23–25 and non-
Gaussian velocity distributions25,26 to “traveling” crystals,27–29 col-
lective rotations,16,30–32 and even flocking.33 Activity also shifts the
equilibrium freezing transition,34–37 affects the nature of the two-
dimensional melting scenario,35,38–41 and changes the relaxation
properties of amorphous solids.42–47 Systematic studies of collective
excitations in active solids are still in their infancy,48 and they remain

poorly explored even in general non-equilibrium solids (beyond
active matter). Unveiling how the nature of the vibrations of a solid
changes out of equilibrium represents an open issue relevant in
statistical as well as solid-state physics.

External forces or internal mechanisms that dissipate energy
drive a system away from equilibrium and spontaneously pro-
duce entropy. While self-propulsion is generated by an uptake of
energy from the environment, likewise active particles dissipate
energy, leading to local entropy production.49–54 Quantifying the
non-equilibrium character of active systems via this observable has
represented a topic of central interest in recent years.55–58 This sub-
ject has been investigated numerically, simulating both active field
theories,59–62 active particle dynamics in interacting systems,63–65

as well as colloids in the presence of an active bath.66,67 Particular
attention has been devoted to phase-separated configurations where
the main contribution to the spatial profile of the entropy produc-
tion has been observed at the interface between dense and dilute
phases.59,68,69 Conversely, analytical results for entropy production
have been only derived for simple cases, such as the potential-free
particle,70–72 and for near-equilibrium regimes through perturba-
tive methods.73,74 Entropy production in active crystals, however,
remains unexplored.
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FIG. 1. Schematic representation of a solid formed by self-propelled particles that
locally inject energy via their active force. Each particle is represented by a capped
sphere. The orientation of the green hemisphere denotes the direction of the active
force, while red hexagons are drawn to highlight the hexagonal crystal struc-
ture. Undulated curves on the solid are schematic illustrations of the vibrational
excitations: the phonons (yellow) in both equilibrium and non-equilibrium and the
entropons (orange) in non-equilibrium.

In this paper, we fill this gap by discovering novel vibrational
excitations characterizing non-equilibrium active solids and respon-
sible for entropy production. Following the standard nomenclature
of solid-state physics,75 we term these new modes “entropons”
because each of them represents a spectral contribution to the
entropy production rate. Unlike phonons, which describe the vibra-
tional dynamics of equilibrium solids, entropons exist only in non-
equilibrium, i.e., they are purely induced by activity. Entropons
coexist with phonons but dominate over them for large activity and,
therefore, represent the thermodynamically most relevant modes of
an active crystal far from equilibrium. The underlying basic pic-
ture for active solids is shown in Fig. 1: in equilibrium, the thermal
bath coupled to a crystal induces collective vibrational excitations
like phonons (yellow color in Fig. 1); in non-equilibrium active
solids, the self-propelling force injects energy into the crystal, this
energy is dissipated in the environment, and the system produces
entropy. In this process, entropons are generated as new collec-
tive vibrations, encoding the entropy production (orange color in
Fig. 1). Our analysis is based on analytical theory combined with
particle-resolved computer simulations and can, in principle, be
verified in experiments with dense self-propelled Janus colloids12,76

or vibrated granular particles,29,77–79 as well as in living systems,
such as confluent cell monolayers,6,8 which can exhibit crystalline
patterns.

This paper is structured as follows: In Sec. II, we introduce the
model, while in Sec. III, we present our theoretical and numeri-
cal results, discussing the concept of entropons as novel collective
excitations of the system. Finally, conclusions are presented in
Sec. IV.

II. MODEL
We study a two-dimensional crystal of N inertial active Brow-

nian particles (ABP) in a square box of size L with periodic
boundary conditions. Each particle with mass m evolves through

underdamped dynamics80–83 for its position, xi, and velocity vi = ẋi,

mv̇i = −γvi + Fi +
√

2Tγζ i + f a
i , (1a)

θ̇i =
√

2Drηi, (1b)

where ζ i and ηi are Gaussian white noises with zero average and
unit variance. The term f a

i = γv0ni models the active force, with
v0 being the swim velocity and ni = (cos θi, sin θi) being the ori-
entational unit vector, determined by an orientational angle θi. The
coefficients γ and T correspond to the friction coefficient and tem-
perature of the solvent bath, respectively, and define the inertial time
τI = m/γ. Dr is the rotational diffusion coefficient, which determines
the persistence time, τ = 1/Dr , i.e., the time that the particle needs
to randomize its orientation. The single-particle dynamics is often
described in terms of the so-called active temperature, Ta = v2

0τγ/2,
that vanishes in the equilibrium limits, either τ → 0 or v0 → 0.
The interaction force Fi stems from a soft repulsive pair poten-
tial, U tot = ∑i U(∣xi − xi∣), where U = 4ϵ[(d0/r)12 − (d0/r)6] + ϵ if
r < d021/6 and zero otherwise (Weeks–Chandler–Andersen poten-
tial84), with ϵ and d0 being the energy scale and the particle diameter,
respectively. The packing fraction ϕ = ρd2

0π/4 = 1.1 (where ρ = N/L2

denotes the number density, with N = 104 and L/σ = 88.6) is cho-
sen high enough to ensure a solid-like behavior characterized by a
defect-free triangular lattice, as illustrated in Fig. 1. Further details
are reported in Appendix C. In the following, we chose an inertial
regime such that τI ∼ τ. Indeed, the inertial regime will play a key
role in the spectral analysis of collective excitations.

III. RESULTS
A. Collective excitations and spectral
entropy production

The non-equilibrium properties of the system are investi-
gated by applying path-integral techniques to calculate the total
entropy production rate, ṡ = limt→∞⟨log (P/Pr)⟩/t, where P and
Pr represent the path probabilities of the forward and backward
trajectory,55,56,85 respectively (see Appendix A for details and Ref. 86
for a general review). The steady-state entropy production rate can
be decomposed into its space-time Fourier spectrum as

ṡ = ∫
Ω

dq
Ω ∫

∞

−∞

dω
2π

σ(ω, q), (2)

where q is the wave vector, ω is the frequency, and Ω represents the
area of the first two-dimensional Brillouin zone.

The spectral entropy production σ(ω, q) is analytically pre-
dicted as (see Appendix A)

σ(ω, q) = lim
t→∞

1
t

1
2T
(⟨v̂(ω, q) ⋅ f̂a(−ω,−q)⟩ + CC)

≈ Ta

T
K(ω)

τ2
I

τ2
I ω2

τ2
I (ω2 − ω̄ 2(q))2 + ω2 , (3)

where the symbol CC stands for complex conjugate. The vectors
f̂a(−ω,−q) and v̂(ω, q) are the Fourier transforms of active force
and velocity fields in the frequency and wave vector domains, respec-
tively (see Appendix A for their definitions). The second line of
Eq. (3) is obtained in the limit of a harmonic crystal and expresses
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σ as a function of the model parameters since the shape function
K(ω) reads

K(ω) = 1
1 + ω2τ2 . (4)

The term ω̄(q) in Eq. (3) denotes the phonon dispersion relation
of equilibrium solids, whose expression is reported in
Appendix A for a triangular lattice. In general, ω̄(q)∝ ωE, where
ωE = 1

2m(U
′′(x̄) + U′(x̄)

x̄ ) is the Einstein frequency of the solid
determined by the derivative of the potential calculated at the
average distance between neighboring particles, x̄ ∼ 1/√ρ.

As a main result of this paper, we characterize the col-
lective excitations of the system by analytically calculating the
dynamical correlation function of the particle displacement with
respect to the unperturbed position of the lattice, Cûû = Cûû(ω, q)
= limt→∞⟨û(ω, q) ⋅ û(−ω,−q)⟩/t. In a passive solid, Cûû has a ther-
mal origin (∝ T) and consists of a single term corresponding with
phonons. In an active solid, Cûû is formed by the sum of two contri-
butions with thermal and active origins from which we can identify
two distinct collective excitations. We have

Cûû ≈
T
ω

Im[Rûû] +
Ta

γ
K(ω)

τ2
I (ω2 − ω̄ 2(q))2 + ω2 , (5)

where the second term ∼σ(ω, q)/ω2 coincides with the spectral
entropy production given by Eq. (3) and Im[Rûû] = Im[Rûû(ω, q)]
is the imaginary part of the response function due to a small pertur-
bation, h, evaluated in the frequency and wave vector domains. The
response is defined as Rûû(ω, q) = δ⟨û(ω)⟩/δh(ω)∣h=0, and one has

Im[Rûû(q, ω)] = ωτI

τ2
I (ω2 − ω̄ 2(q))2 + ω2

. (6)

Relation (5) indicates that collective excitations [through
Cûû(ω, q) ∼ ⟨û(ω, q) ⋅ û(−ω,−q)⟩/t] are determined by the
sum of two contributions: (i) thermally excited crystal vibrations,
independent of activity, that are identified with the phonons of
equilibrium solids and (ii) additional vibrational contributions
of the crystal that are purely induced by the activity. The latter
are named entropons because each of them represent a mode of
the spectral entropy production. We remark that the latter are
dominant if Ta = v2

0τγ/2≫ T, i.e., far from equilibrium: There
exists a typical τ (or v0) at which the contribution of entropons
becomes negligible compared to that of phonons. In the limit of
vanishing active force (Ta → 0), the response balances the lhs
of Eq. (5) and the entropy production vanishes at equilibrium,
as required. As a consequence, entropons disappear and thermal
phonons remain the only collective excitations. Formula (5) can
be interpreted as a Harada–Sasa relation applied to active solids
at a given wave vector87 (see also Ref. 59 for a derivation of the
Harada–Sasa relation in active field theories) and justifies the
decomposition into conventional phonons with thermal origin and
entropons, arising from entropy production.

The decomposition of the collective excitations in phonons and
entropons has a deep physical meaning directly linked to emergent
collective phenomena. Indeed, active systems at high density show
velocity patterns and spatial velocity correlations, independently

observed in numerical simulations in Refs. 20 and 23 and in exper-
iments based on cell monolayers in Ref. 8. Since thermally excited
phonons do not produce spatial patterns in real space, entropons
are clear evidence of novel excitations in active solids.

B. Properties of entropons
A typical shape of σ(ω, q)T/Ta is shown in Fig. 2(a) as a func-

tion of ω/ωE for a given q. A sharp peak occurs at a characteristic
frequency ω∗(q). We identify this peak with an elementary exci-
tation in the crystal and coin the term “entropon” to describe it,
following the standard notation of elementary excitations in solids:75

Each entropon is identified with a peak of σ(ω, q).
Figures 2(b) and 2(c) show σ(ω, q)T/Ta as a function of ω/ωE

for different values of q, revealing a good agreement between the-
ory, Eq. (3), and numerical simulations. Close to the equilibrium,
in the regime of small persistence time such that τ = 1/Dr ≪ 1/ωE
[Fig. 2(b)], the peaks of σ(ω, q)T/Ta occur at the phonon frequency
ω∗(q) = ω̄(q). In this regime, entropons have the same proper-
ties of phonons, but their amplitudes are small and proportional to
τ (because of the prefactor Ta): The active force behaves as an addi-
tional thermal source at effective temperature Ta. In the opposite
regime of large persistence time, τ = 1/Dr ≫ 1/ωE [Fig. 2(c)], the
peaks of σ(ω, q) are shifted to ω∗(q) < ω̄(q). As a consequence,
entropons are different from phonons since the crystal vibrations
are now peaked at frequencies not coinciding with those typical of
equilibrium solids. The frequency ω∗(q) that maximizes σ(ω, q) is
reported in Fig. 2(d) as a function of q for different rescaled per-
sistence time, τωE, while the difference ω̄(q) − ω∗(q) is shown in
Fig. 2(e) as a function of τωE for several values of q. Despite ω∗(q)
linearly increasing with q in the small persistence regime, a clear
discrepancy from the linear law emerges in the large persistence
regime for small q, where entropons follow a non-linear disper-
sion relation. As a consequence, the difference ω̄(q) − ω∗(q) grows
when τωE is increased much more as q is decreased. Finally, the
width of the peaks of σ(ω, q) increases with τωE [compare the curves
with the same colors in Figs. 2(b) and 2(c)], implying shorter-lived
excitations at high activities.

Figure 2(f) displays the integral over ω of the spectral entropy
production, s(q) = ∫ dωσ(ω, q) = ρ Ta

T (τI + τ)−1(1 + τ2τI
τ+τI

ω̄ 2(q))−1,
as a function of τωE for different q to quantify the weight of
each entropon. For τωE ≲ 1, this observable is nearly q-independent
and increases with τωE: The larger the τωE, the larger is the con-
tribution of each entropon to s(q). This linear behavior is due
to the increase in the prefactor Ta ∼ τ. For τωE ≳ 1, the value of
s(q)T/(v2

0γ) strongly depends on q, displaying higher values for
smaller q. Interestingly, s(q)T/(v2

0γ) decreases as τωE is increased
and, consequently, shows a non-monotonic behavior with a maxi-
mum that shifts for larger τωE as q is decreased. To shed light on this
surprising non-monotonicity, the height of the peak of the rescaled
spectral entropy production, σ(ω∗, q)T/Ta, is shown in Fig. 2(g)
vs τωE for different values of q, revealing approximately the profile
∼1/(1 + bτ2ω2

E), where b = b(q) is a fitting parameter. Considering
formula (3), the height of the peak of σ is roughly determined by
σ(ω∗, q)T/Ta ∼ K(ω∗). By approximating ω ∼ ω̄(q), we obtain

σ(ω∗, q) T
Ta
= 1

1 + ω̄ 2(q)τ2 ≈
1

1 + (1 + τ
τI
)ξ2q2

, (7)
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FIG. 2. Spectral entropy production. (a) Schematic representation of the spectral entropy production σ(ω, q)T/Ta to identify entropons as a peak in the spectrum. (b) and (c)
σ(ω, q)T/Ta as a function of ω/ωE for different values of the rescaled wave vector qd0 for τωE = 7 × 10−2, 7, respectively. Points are obtained by simulations, while solid
lines are obtained by Eq. (3). Dashed and solid vertical lines mark the phonon frequency ω̄(q)/ωE and the maximum ω∗(q)/ωE . (d) Frequency ω∗/ωE , where σ(ω, q) is
peaked as a function of qd0 for different values of the rescaled persistence time τωE . The black dotted line is an eye guide to show a linear curve. (e) Difference between
the frequency of the phonon, ω̄(q)T/Ta, and ω∗(q)T/Ta as a function of τωE = ωE/Dr for different values of qd0. (f) Integrated entropy production, s(q)T/(v2

0 γ), as a
function of τωE for different values of qd0. (g) Maximal value of the entropy production, σ(ω∗, q)T/Ta, as a function of τωE for different values of qd0. Lines are obtained
by fitting the function 1/(1 + bτ2ω2

E), where b is a fitting parameter. Data with error bars are reported in Appendix C for (b) and (c), while the error for the other panels is
smaller than the point size. The parameters are N = 104 and ϕ = 1.1.
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FIG. 3. Total entropy production rate. (a) Rescaled entropy production rate ṡ T/(mv2
0) as a function of τωE . (b) Entropy production rate ṡ/ṡfree as a function of ξ/d0. Solid

lines are obtained by theoretical predictions, while points are obtained by numerical simulations. The black dashed line is a guide for the eyes for the scaling ∼log (ξ)/ξ2.
The parameters are N = 104 and ϕ = 1.1.

where ξ is the correlation length of the spatial velocity correlation,
⟨v(r) ⋅ v(0)⟩, of an active solid and reads20

ξ2 = 3
2

x̄ 2 τ2τI

τI + τ
ω2

E. (8)

Evaluating the denominator of Eq. (7) and requiring that the
q-dependence is negligible, we determine the typical wave vectors
at which σT/Ta starts decreasing,

q2
∗
= 1

ξ2(1 + τ/τI)
. (9)

The wave-vectors with q ≲ q
∗
∼ 1/ξ (length scales larger than ξ)

provide the main contribution to the rescaled entropy, while those
with q ≳ q

∗
∼ 1/ξ (length scales smaller than ξ) have a much smaller

weight. Since ξ increases with τωE, the modes with larger q give a
smaller contributions as τωE is increased.

Finally, we recall that the present analysis has been obtained in
the underdamped regime, when the inertial time τI is of the same
order or larger than the typical relaxation time of the solid, given
by the inverse of the Einstein frequency 1/ωE. Indeed, in the over-
damped regime for τI ≪ 1/ωE, the spectrum shows only a single
peak around ω ≈ 0, similarly to the case of equilibrium solids. This
can be understood by looking at the denominator of Eq. (5) or Eq. (6)
that suppresses the dependence from ω̄ 2(q) for vanishing τI .

C. Total entropy production rate
By integrating over ω and q and our prediction for σ(ω, q)

[Eq. (2)], we can derive analytically the expression for the global
density of entropy production rate of the solid, ṡ,

ṡ ≈ ṡfree∫
Ω

dq
Ω

1

1 + τ2τI
τ+τI

ω̄ 2(q)
, (10)

where ṡfree = ρ Ta
T (τI + τ)−1 is the density of entropy production rate

of non-interacting active particles. ṡfree is proportional to the ratio
between the active temperature (Ta = v2

0γτ/2) and the thermal tem-
perature (T) and is a function of persistence time τ and inertial

time τI . The integral in Eq. (10) can be analytically expressed in
terms of elliptic functions depending on the parameters of the model
(see Appendix B). Figure 3(a) plots ṡ as a function of τωE, showing
a non-monotic behavior: in the small persistence regime (τωE ≪ 1),
ṡ ∼ 0 because the system behaves as an inertial solid in equilibrium.
Increasing τωE, the system departs from equilibrium and ṡ grows
until reaching a maximum, roughly at τωE ∼ 1. For further increase
in τωE, ṡ decreases almost to zero. This decrease is consistent with the
arrested states observed in dense active systems when τ →∞44,88 for
which ṡ ≈ 0.

While the increase in ṡ is expected when the system departs
from equilibrium and is well-explained by the increase (up
to saturation) in the non-interacting entropy production rate
ṡfree ∼ τ/(τ + τI), the physical picture behind the decrease in the
large persistence regime can be understood by expressing ṡ as a
function of ξ. Here, we report the scaling behavior of σ̇ for ξ ≫ 1,

ṡ
ṡfree
∼ log (ξ)

2
√

3 ξ2 for ξ ≳ 1, (11)

which is shown in Fig. 3(b). The decrease in ṡ as ξ increases suggests
that the onset of spatial velocity correlations, characterizing active
solids, reduces the entropy production rate. Coherent domains of
strongly correlated velocities produce less entropy, while the inco-
herent behavior of the velocities of the particles determines a higher
dissipation as if coherent motion, somehow, minimizes the effec-
tive friction between different particles. This disorder-order picture
has been employed to explain non-monotonic behaviors also in
conservative dynamics displaying collective motion.89

IV. DISCUSSION
In conclusion, we have predicted new elementary vibrational

excitations in active solids, termed entropons, because they are
modes of the spectral entropy production. Our combined numeri-
cal and theoretical study revealed the properties of entropons, which
coexist with phonons but dominate over phonons far from equi-
librium when the active temperature is larger than the thermal
one.
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The concept of “entropons” as additional lattice vibrations has
a broad generality that goes beyond monodisperse active crystals. It
will certainly apply to binary crystals composed of active and passive
particles.90,91 Moreover, we expect that in disordered dense systems,
such as active glasses43,45–47,92,93 and dense active liquid crystals,94

entropons could play the dominant role of system excitations in
determining entropy production. For instance, they could shed light
on the activity-induced shift of the glass transition temperature.

Many experimental realizations of active crystals are avail-
able. Examples include confluent cell monolayers,6,8,95 dense assem-
blies of active colloids,76 as well as highly packed active granular
systems,29,77,79 for which the solid structure has been achieved by
connecting Hexbug particles by springs.48 Therefore, the existence
of entropons can, in principle, be verified by analyzing particle
trajectories in real space. To identify the contribution of entropons,
it is crucial to have experimental access to the measurements of
velocities and active forces, i.e., orientational angles. In this way, one
can directly calculate the spectral entropy production in experiments
by using Eq. (3). Alternatively, entropons can be measured indirectly
without knowing the active forces through Eq. (5) by evaluating the
dynamical correlations of the particle displacement and subtracting
the contribution of thermal phonons, i.e., the response function due
to a small perturbation.

Despite derived in the active case, entropons will characterize
more general non-equilibrium crystals, as shown in Appendix E for
a class of non-active solids driven out of equilibrium by tempera-
ture gradients. Therefore, the present paper reveals how concepts in
the field of stochastic thermodynamics could have a determinant
role in solid physics. For instance, we strongly believe that our
theoretical approach can be applied to active solids characterized
by polar, nematic, or even implicit alignment interactions between
velocity and self-propelled angle. As a consequence, we speculate
that entropons could be helpful to interpret and systematically ana-
lyze the collective excitations in a solid consisting of active granular
particles, as the one experimentally realized in Ref. 48. Future studies
on entropons can be manifold, for instance, the scattering of entro-
pons near crystalline defects and the shifted spectra of entropons in
a crystal exposed to a temperature gradient. This could lead to pos-
sible applications such as shock absorbers and active mass dampers
as well as controlled heat radiators obtained by active crystals.
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APPENDIX A: DERIVATION OF THE SPECTRAL
ENTROPY PRODUCTION

In this appendix, we derive the analytical expression for the
spectral entropy production of the system, σ(ω, q), in the frequency
and wave vector domains, e.g., Eq. (3), and the expression for the
dynamical correlation function of the displacement, e.g., Eq. (5).

1. Dynamics in the Fourier space
Before introducing the path-integral approach and defining the

entropy production, it is useful to define the Fourier transform in
frequency and wave vector domains of the dynamical variable of the
system, namely, the displacement with respect to the unperturbed
lattice position, ui = xi − x0

i , the velocity vi, and the active force f a
i ,

û(ω, q) = ∫
t/2

−t/2
dt

N

∑
i=1

ui(t)e−iq⋅x0
i e−iωt , (A1a)

v̂(ω, q) = ∫
t/2

−t/2
dt

N

∑
i=1

vi(t)e−iq⋅x0
i e−iωt , (A1b)

f̂ a(ω, q) = ∫
t/2

−t/2
dt

N

∑
i=1

f a
i (t)e−iq⋅x0

i e−iωt , (A1c)

where t is the time-window numerically used to define the Fourier
transform, corresponding to the time window of the simulations.

By multiplying the dynamics (1) of the main text by e−iωte−iq⋅x0
i

and using definitions (A1a)–(A1c), the dynamics (1) can be
expressed in the wave vector and frequency domains as

−mω2û(ω, q) = F̂(ω, q) + f̂ a(ω, q) + iγωû(ω, q) +
√

2Tγξ̂(ω, q),

(A2)

where v̂(ω, q) = −iωû(ω, q) and F̂(ω, q) is a function of û(ω, q).
The term ξ̂(ω, q) is a white noise vector such that

⟨ξ̂(ω′, q′)ξ̂(ω, q)⟩ = δ(q + q′)δ(ω + ω′).

2. Definition and implicit expression for the spectral
entropy production

The spectral entropy production σ(ω, q) can be operatively cal-
culated by using path-integral methods in frequency and wave vector
domains starting from the path-integral definition of the entropy
production rate ṡ,49,55,56,86
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ṡ = lim
t→∞

1
t
⟨log [ P

Pr
]⟩, (A3)

where P and Pr are the forward and backward trajectory expressed
in terms of the forward and backward actions, A and Ar ,
respectively, as

P ∼ e−A , (A4a)

Pr ∼ e−A r. (A4b)

From the dynamics (A2) in wave vector and frequency domains, one
can easily derive the actions A and Ar that read

A = −1
2 ∫

dω
2π∑q

L(ω, q)L(−ω,−q), (A5a)

Ar = −
1
2 ∫

dω
2π∑q

Lr(ω, q)Lr(−ω,−q), (A5b)

where L(ω, q) and Lr(ω, q) are related to the forward and backward
systems in q and ω, respectively. The former reads

L(ω, q) =

¿
ÁÁÀ m2

2Tγ
[−ω2û(ω, q) − F̂(ω, q)

m

− f̂ a(ω, q)
m

+ γ
m

v̂(ω, q)], (A6)

while the latter is given by

Lr(ω, q) = T L(ω, q), (A7)

with T being the operator that performs the time-reversal trans-
formation (so that reverses the dynamics). To apply T to the
Lagrangian, we need to account for the parity of the dynamical
variables under TRT. In particular, applying the time-reversal
operator, T (that reverses the dynamics), we get

T û(ω, q) = û(ω, q), (A8a)

T v̂(ω, q) = −v̂(ω, q), (A8b)

T f̂ a(ω, q) = f̂ a(ω, q), (A8c)

since the displacement is even, the velocity is odd, and, finally,
the active force is even under TRT. While the choice for position
and velocity is intuitive, the parity of f̂ a could depend on the sys-
tem considered. We observe that our even choice is fully justified,
for instance, in those systems (such as colloids) where the active
force arises from a local gradient of concentration, i.e., a position-
dependent variable. In addition, we specify that the force F̂(ω, q)
is even under TRT, being a function of u(ω, q) only. In this way,
Lr(ω, q) is given by

Lr(ω, q) =

¿
ÁÁÀ m2

2Tγ
[−ω2û(ω, q) − F̂(ω, q)

m

− f̂ a(ω, q)
m

− γ
m

v̂(ω, q)]. (A9)

Combining the expressions for A and Ar , taking the average, and
dividing by t, the total entropy production rate ṡ can be expressed as
follows (after some algebraic manipulations):

ṡ = lim
t→∞

1
t ∫

dω
2π∑q

1
2T
[⟨v̂(ω, q) f̂ a(−ω,−q)⟩

+ ⟨v̂(−ω,−q) f̂ a(ω, q)⟩]. (A10)

This leads to identifying the spectral entropy production as

σ(ω, q) = lim
t→∞

1
t

1
2T
[⟨v̂(ω, q) f̂ a(−ω,−q)⟩

+ ⟨v̂(−ω,−q) f̂ a(ω, q)⟩], (A11)

which coincides with the right-hand side of Eq. (3) of the main text
(first line). Note that Eq. (A11) is an implicit formula that can be
calculated numerically.

We further remark that, as usual in the framework of stochas-
tic thermodynamics, additional terms are obtained in the expression
of ṡ, for instance, a term proportional to ⟨F̂ ⋅ v̂⟩ and another term
proportional to ⟨ωv̂ ⋅ v̂⟩. These terms are boundary terms that do
not contribute to the steady-state entropy production rate. Indeed,

∫ dω(iω)⟨v̂(ω) ⋅ v̂(−ω)⟩ = ∫ dt⟨v̇(t) ⋅ v(t)⟩

= ∫ dt
d
dt
⟨v(t)

2

2
⟩, (A12)

∫ dω⟨v̂(ω) ⋅ F̂(−ω)⟩ = ∫ dt⟨v(t) ⋅ F(t)⟩

= −∫ dt⟨v(t) ⋅ ∇U(t)⟩ = −∫ dt
d
dt

U(t).
(A13)

Dividing by t and taking the limit t →∞, both terms vanish. How-
ever, the dependence on the force is implicitly contained in the
expression for the entropy production rate, for instance, in the
expression for the Einstein frequency [see Eq. (A15)].

a. Discretization scheme for the path-integral
approach

To employ the path-integral approach, i.e., in writing the
expressions for A and Ar , we have adopted a continuous time for-
malism, assuming the Itô convention. Of course, since our system
does not involve any multiplicative noise, the resulting entropy pro-
duction rate is not affected by the choice of the integration scheme:
Itô and Stratonovich conventions lead to the same results. The
difference between Itô and Stratonovich conventions in the calcu-
lation of entropy production rate using path-integral approaches is
described in detail in Refs. 49 and 85.

3. Explicit expression for the spectral
entropy production

To obtain an analytical expression for σ(ω, q), it is necessary to
calculate the cross-correlation involved in Eq. (A11). In order to do
that, we shall make two simplifying assumptions in the dynamics,
Eq. (1) of the main text:
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● Each particle performs small oscillations around a node of a
triangular lattice so that the total inter-particle potential can
be approximated as the sum of quadratic terms. Introducing
the displacement ui of the particle i with respect to its equi-
librium position, x0

i , namely, ui = xi − x0
i , the pair potential,

in the harmonic approximation, reads

Utot ≈ m
ω2

E

2 ∑i≠ j
(u j − ui)2, (A14)

where ωE is the Einstein frequency of the solid, given by

ω2
E =

1
2m
(U′′(x̄) + U′(x̄)

x̄
). (A15)

ωE is determined by the first and second derivative of
the interacting potential, U, calculated at x̄, i.e., the lat-
tice constant of the solid, e.g., the average distance between
neighboring particles in the solid.

● We approximate the active Brownian particle (ABP) active
force, f a

i , as an Ornstein–Uhlenbeck process for each particle
evolving as

τḟ a
i = −f a

i + γv0
√

2τζ i, (A16)

where ζ i is a vector of white noises such that ⟨ζ i(t)ζ i(0)⟩
= δ(t).

By using these approximations, the resulting dynamics reads

v̇i = −
γ
m

vi − ω2
E

n.n

∑
j
(ui − u j) +

f a
i

m
+
√

2γT
m

ξi

ḟ a
i = −

1
τ

f a
i + γv0

√
2
τ

ζ i.

(A17a)

The equations of motion in the Fourier Space become (switch-
ing from real space to wave vector)

d
dt

û(q) = v̂(q), (A18a)

d
dt

v̂(q) = − γ
m

v̂(q) − ω̄ 2(q)û(q) + f̂ a(q)
m
+
√

2γT
m

ξ̂(q), (A18b)

τ
d
dt

f̂ a(q) = − f̂ a(q) + v0γ
√

2τζ̂(q), (A18c)

where the dispersion relation for a triangular lattice in two-
dimensions, ω̄(q), reads

ω̄ 2(q) = −2ω2
E[cos (qxx̄) + 2 cos(1

2
qxx̄) cos(

√
3

2
qyx̄) − 3].

(A19)

By applying the time-Fourier transform (switching from time
to frequency) and recalling that d/dt → −iω, it is possible to rewrite
the dynamics in a compact form upon introducing the vector
â(ω, q) = (û(ω, q), v̂(ω, q), f̂ a(ω, q)),

− iωI ⋅ â(ω, q) = −M(ω, q) ⋅ â(ω, q) + ŵ(ω, q), (A20)

with i being the imaginary unit and I being the identity matrix.
M is the dynamical matrix that rules the deterministic part of the
dynamics that reads

M =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −1 0

ω̄ 2(q) γ
m
− 1

m

0 0
1
τ

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (A21)

and w is a vector of white noises such that

⟨ŵ(ω, q)ŵ(ω′, q′)⟩ = b ⋅ b⊺δ(ω + ω′)δ(q + q′), (A22)

where T stems for transpose matrix and the noise matrix b reads

b =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0
√

2
√

Tγ
m

0

0 0
√

2γ
v0√

τ

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (A23)

This equation can be rewritten as

M̃(ω, q) ⋅ â(ω, q) = b ⋅ ŵ(ω, q), (A24)

where

M̃q(ω) =Mq(ω) − iωI. (A25)

From here, we can derive the dynamical correlation matrix as
⟨â(ω, q)â⊺(ω′, q′)⟩ by multiplying the dynamics (A24) by M̃−1 on
the left and by â⊺(ω′, q′) on the right to obtain96–98

⟨â(ω, q)â⊺(ω′, q′)⟩ = M̃(ω, q)−1 ⋅ b ⋅ ⟨ŵ(ω, q) ⋅ â⊺(ω′, q′)⟩
= M̃(ω, q)−1 ⋅ b ⋅ b⊺

× [M̃⊺(ω′, q′)]−1δ(ω + ω′)δ(q + q′).
(A26)

By applying this formula, we get the explicit expression for the
dynamical correlations and, in particular, for the cross correlations
occurring in the expression for σ(ω, q), i.e., Eq. (A11),

1
2T ∫ dω′∑

q′
[⟨v̂(ω, q) f̂ a(ω′, q′)⟩ + ⟨v̂(ω′, q′) f̂ a(ω, q)⟩]

= Ta

T
K(ω)

τI

τ2
I ω2

τ2
I (ω2 − ω̄ 2(q))2 + ω2 , (A27)

where we have introduced the inertial time τI = m/γ, the active tem-
perature Ta = γv2

0τ, and the shake function K(ω) = 1/(1 + τ2ω2).
From this equation, we can straightforwardly identify the spectral
entropy production as

σ(ω, q) = Ta

T
K(ω)

τI

τ2
I ω2

τ2
I (ω2 − ω̄ 2(q))2 + ω2 , (A28)

which coincides with the main result of this paper, Eq. (3) (second
line).
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4. Derivation of the positional dynamical correlation
By using the compact expression for the dynamics (A26), one

can derive all the dynamical correlations in frequency and wave
vector domains and, in particular, the dynamical correlation of the
displacement, Cû,û, defined as

Cûû(ω, q) = lim
t→∞

1
t
⟨û(ω, q) ⋅ û(−ω,−q)⟩. (A29)

By performing simple algebraic calculations, one obtains

Cûû(ω, q) = 2T
τI

τ2
I (ω2 − ω̄ 2(q))2 + ω2

+ 2Ta
1

τI(1 + ω2τ2)
τ2

I

τ2
I (ω2 − ω̄ 2(q))2 + ω2 . (A30)

The first term in the right-hand side of Eq. (A30) has a thermal origin
(∝ T) and is activity-independent, while the second term has a pure
active origin being proportional to the active temperature.

We recognize that the last term in Eq. (A30) is proportional to
the spectral entropy production [i.e., ∼σ(ω, q)/ω2] after consider-
ing the shape function K(ω) as in Eq. (4) of the main text. The first
term in the right-hand side of Eq. (A30) is proportional to the imag-
inary part of the response function, Rûû, obtained by perturbing the
system by a small force h and defined as

Rûû(q, ω) = δ⟨û(ω)⟩
δh(ω) ∣h=0

. (A31)

This observable explicitly reads

Im[Rûû(q, ω)] = ωτI

τ2
I (ω2 − ω̄ 2(q))2 + ω2

. (A32)

Therefore, the first term in the right-hand side of Eq. (A30) can be
expressed as ∼ Im[Rûû(q, ω)]/ω. By using these identifications, we
obtain Eq. (5) of the main text. Extending the brief comment in the
main text on this relation, we outline that this formula is a relation
of the Harada–Sasa form,87 i.e., a formula constraining dissipation
(through entropy production), to response function and the correla-
tion function of the displacement. At variance with the Harada–Sasa
relation, developed in the case of particles in contact with a heat bath
and driven out of equilibrium by ratcheting or constant forces, we
have applied such a relation to active solids both in frequency and
wave vector domains, and we have used such a relation to predict
the existence of additional vibrational excitations, coexisting with
phonons.

APPENDIX B: DERIVATION OF THE TOTAL ENTROPY
PRODUCTION OF THE SYSTEM

The prediction for the spectral entropy production σ(ω, q)
allows us to calculate the entropy production of the system, ṡ,
explicitly as a function of the parameters of the model.

The integration over the frequency domain can be performed
without approximations and yields the following result for ṡ:

ṡ = 1
N + 1

v2
0

T
τγ2

m ∑q
1

1 + τγ
m + ω̄ 2(q)τ2

≈ v2
0

T
τγ2

m ∫Ω

dq
Ω

1
1 + τγ

m + ω̄ 2(q)τ2 , (B1)

where, in the right-hand side, we have approximated the sum by an
integral, introducing the symbol Ω to denote the area of the Brillouin
region associated with the triangular lattice.

The integral in the right-hand side of Eq. (B1) can be calculated
through a simple change of variable, which allows us to rewrite the
integral as follows:

ṡ ≈ v2
0

T
γ2τ
m

1
1 + τ

τI
+ 6ω2

Eτ2∫
π

−π

dk1

2π ∫
π

−π

dk2

2π
1

1 − zr(k1, k2)
, (B2)

where the function r(k) for a triangular lattice in two-dimensions
reads

r(k) = 1
3
[cos (k1) + cos (k2) + cos (k1 + k2)], (B3)

and the components of k are given in terms of the cartesian
components of q by the relations

k1 =
1
2

qxx̄ +
√

3
2

qyx̄, (B4)

k2 =
1
2

qxx̄ −
√

3
2

qyx̄. (B5)

The function z in Eq. (B2) is given by

z = 1
1 + 1+τ/τI

6ω2
Eτ2

. (B6)

The solution of the integral (B2) is known in terms of elliptic
functions and allows us to express the entropy production rate ṡ as

ṡ ≈ ṡfree
1

1 + ξ2
6

πz
√

c
K(a), (B7)

where K(a) is the modified Bessel function of the first kind. The
term ṡfree coincides with the entropy production rate of a potential-
free particle and is given by

ṡfree =
v2

0γ2τ
Tm

1
1 + τ/τI

,

and ξ is the correlation length of the spatial velocity correlation given
by

ξ2 = 3
2

ω2
E

τ2

1 + τ/τI
x̄ 2. (B8)

Finally, z, c, and a are explicit functions of the parameters of the
model through the expression for ξ and are given by

z = 1

1 + x̄ 2

4ξ2

, (B9)
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FIG. 4. Spectral entropy production, σ(ω, q)T/Ta, as a function of ω/ωE . Different panels show σ(ω, q)T/Ta for different values of τωE and different rescaled wave vector
qd0. (a)–(c) are obtained with qd0 = 0.1, 0.2, and 0.5, respectively, for τωE = 7. These data correspond to those reported in Fig. 5(c) of the main text. (c)–(e) are obtained
with qd0 = 0.1, 0.2, 0.5, respectively, for τωE = 7 × 10−2. These data correspond to those reported in Fig. 5(b) of the main text. Points with error bars are obtained from
numerical simulations, while solid lines are theoretical predictions. Dashed, vertical colored lines mark the phonon frequency ω̄(q). The other parameters of the simulations
are v0/(d0ωE) = 2 × 10−1, ϵ/(m d2

0ω2
E) = 10−2, τIωE = 3.5, and T/Ta = 10−4, where Ta = v2

0 γτ (as introduced and discussed in the text). In addition, N = 104 and
ϕ = 1.1.

c = 9
z2 − 3 + 2

√
3 + 6

z
, (B10)

a = 2
(3 + 6

z )
1/4

c1/2 . (B11)

Prediction (B7) has been used to calculate the theoretical curve in
Fig. 4(a) of the main text. Expanding expression (B7) in powers of
1/ξ, one gets Eq. (11) of the main text.

APPENDIX C: NUMERICAL DETAILS
1. Numerical details of the simulations

To integrate the dynamics 1(a) and 1(b) of the main text, we
employ the Euler integration scheme, with a time step δt = 10−5τ,
that explicitly reads

xi(t + δt) = xi(t) + δtvi(t), (C1)

mvi(t + δt) = mvi(t) − δtγv(t)
+
√

δt
√

2TγWi(t) + δtF({x(t)}) + δtf a
i (t), (C2)

f a
i = v0γni, ni = (cos (θi), sin (θi)), (C3)

θi(t + δt) = θi(t) +
√

δt
√

2DrYi(t), (C4)

where Wi and Yi are Gaussian random numbers with unit vari-
ance and zero average. Simulations were usually performed up to a
final time of at least tmax = 103τ. The active solid contains N = 104

particles, at packing fraction ϕ = 1.1, so that the size of the box
reads L = 85d0. Positions are rescaled by the nominal particle dia-
meter d0, while time is rescaled by using Einstein frequency, ωE
(see definition in the main text). The dynamics is characterized
by three typical times: the persistence time τ (τ = 1/Dr), the iner-
tial time τI = m/γ, and the inverse of the Einstein frequency 1/ωE
(typical of equilibrium solids). Their combinations give rise to two
dimensionless parameters: τωE and τIωE. In the main text, the latter
is kept fixed to τIωE = 3.5, and we have evaluated only the effect of
the former parameter because it controls the non-equilibrium effects
related to the spectral entropy production. In addition, the dynamics
is characterized by the ratio between thermal and active temperature,
T/Ta = 10−4, where Ta = v2

0γτ (as introduced and discussed in the
text). Finally, the rescaled swim velocity reads v0/(d0ωE) = 2 × 10−1,
and the rescaled energy constant is given by ϵ/(m d2

0ω2
E) = 10−2.

2. Measure of the spectral entropy production
and error estimate

To measure the spectral entropy production σ(ω, q), we have
considered Eq. (3) (first line) of the main text. To do so, we have
calculated the Fourier transform of data both in frequency ω and
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FIG. 5. Displacement maps, Δxi(t) = xi(t) − xi(0), obtained for different values of the reduced persistent time: (a)–(c) with τωE = 7 and (d)–(f) with τωE = 7 × 10−2. Maps
are reported for different duration times Δt: in particular, ΔtωE = 6 × 10−3 in (a) and (d), ΔtωE = 6 × 10−2 in (b) and (e), and ΔtωE = 1.2 × 10−1 in (c) and (f). The other
parameters of the simulations are v0/(d0ωE) = 2 × 10−1, ϵ/(m d2

0ω2
E) = 10−2, τIωE = 3.5, and T/Ta = 10−4, where Ta = v2

0 γτ (as introduced and discussed in the text).
In addition, N = 104 and ϕ = 1.1.

wave vector q, applying the definition on displacement, velocity,
and active force by using Eqs. (A1a)–(A1c). Then, we have calculated
the average dynamical correlation in the steady-state performing the
average over the realization of the noise.

In the main text, Figs. 5(b) and 5(c) plot the spectral entropy
production σ(ω, q) as a function of ω/ωE for three values of the
rescaled wave vector qd0 and two values of the rescaled persistence

time τωE. Data are reported without error bars for presentation rea-
sons. Figure 2 contains the same data reported in Fig. 5 of the main
text but split into several panels to confirm the agreement within the
statistical error between data (points with error bars) and theoretical
predictions (solid lines), given by Eq. (3) of the main text. In partic-
ular, panels (a)–(c) are realized with τωE = 7 [Fig. 5(c) of the main
text], while panels (d)–(f) are realized with τωE = 7 × 10−2 [Fig. 5(b)

FIG. 6. Snapshots and mean-square displacements. (a)–(d) Snapshot configurations in the plane of motion for several values of the reduced persistent time
τωE = 7 × 101, 7, 7 × 10−1, 7 × 10−2 (from left to right). For presentation reasons, we are showing a small portion of the simulation box, i.e., a square with size L/10.
Colors represent the direction of the self-propulsion, while hexagons are drawn as eye guides to emphasize the hexagonal order characterizing the triangular lattice. (e)–(h)
Mean-square displacement, MSD(t), as a function of tωE for τωE = 7 × 101, 7, 7 × 10−1, 7 × 10−2 (from left to right). Error bars are obtained from the statistical error,
while solid black lines are eye guides showing the scaling ∼t. The other parameters of the simulations are v0/(d0ωE) = 2 × 10−1, ϵ/(m d2

0ω2
E) = 10−2, τIωE = 3.5, and

T/Ta = 10−4, where Ta = v2
0 γτ (as introduced and discussed in the text). In addition, N = 104 and ϕ = 1.1.
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of the main text]. Finally, panels (a) and (d), (b) and (e), and (c) and
(f) plot qd0 = 0.1, 0.2, and 0.5, respectively.

APPENDIX D: VISUALIZATION OF THE SYSTEM:
SNAPSHOTS AND MEAN-SQUARE DISPLACEMENT

In this section, we provide a visualization of the system in
real space. In Figs. 3(a)–3(d), we report several snapshot configu-
rations in the plane of motion of the system for different values
of the reduced persistent time τωE = 7 × 101, 7, 7 × 10−1, 7 × 10−2.
All of them display the typical hexagonal order characterizing two-
dimensional crystals, as explicitly illustrated in Fig. 3, while the color
gradient confirms the absence of spatial order in the direction of the
active force, as expected.

To characterize the dynamics of the system, we also study the
mean-square displacement, MSD(t), defined as

MSD(t) = ⟨(x(t) − x(0))2⟩. (D1)

In Figs. 3(e)–3(h), the MSD(t) is plotted as a function of tωE for
the same values of τωE shown in the snapshot configurations (same
column). After transient regimes, for instance, showing the typical
subdiffusive effects characterizing the dynamics of solids, the system
reaches a diffusive regime ∼t outlined by the solid black line (which
is a guide for the eyes). This analysis also confirms that the time win-
dow considered for the statistical analysis of the entropy production
is enough to reach the steady state.

In Fig. 6, we also report the displacement maps Δxi(t) = xi(t)
− xi(0) for different values of the reduced persistent time τωE and
for different duration times ΔtωE, where Δt = t − t0. For the smaller
value of τωE, the displacement maps show weak structures that
become more evident when ΔtωE increases. Spatial structures in the
displacement maps are more evident and larger when τωE increases.

APPENDIX E: THE CONCEPT OF ENTROPONS
BEYOND ACTIVE SOLIDS

In this section, we show the generality of the concept of entro-
pons that, in general, characterize a broad class of far from equilib-
rium solids, governed by a breaking of the fluctuation–dissipation
theorem. This emphasizes the generality of entropons beyond active
systems supporting our claim of generality expressed in the last
sentence of the main paper.

Let us consider an elastic solid on a square lattice in two dimen-
sions. The results could be easily generalized to arbitrary dimensions
and arbitrary lattice structure, but we have chosen this case for sim-
plicity. The particles are placed on a square lattice with periodic
boundary conditions and connected by harmonic springs. The two
cartesian components x and y of the displacement are driven by ther-
mal baths at temperatures Tx and Ty, respectively (with Tx ≠ Ty),
and mutually interact through a linear force,

Fi = −
⎛
⎜
⎝

K −λ

−λ K

⎞
⎟
⎠

⎛
⎜
⎝

Δxij

Δyij,

⎞
⎟
⎠

(E1)

where Δxij = (xi − xj) and Δyij = yi − yj. While the force Fi is sym-
metric for x → y and y → x, the matrix of the coupling constants
is not symmetric for K → λ and λ→ K. K and λ have a different

physical meaning. Indeed, K is the diagonal coupling, providing
the amplitude of the usual vectorial harmonic force of components
(xi − xj, yi − yj). Physically, this term is a harmonic force that keeps
fixed the solid structure. Instead, the constant λ determines the
amplitude of an additional force, usually absent in equilibrium
solids, that has components (yi − yj, xi − xj) and that couples the
dynamics of the x component to that of the y component of the
crystal. The force acting on the x component is determined by the
y component of the displacement (and vice versa).

The dynamics of this non-equilibrium crystal read

v̇x
i = −γvx

i − K
n,n

∑
j
(xi − x j) + λ

n,n

∑
j
(yi − y j) +

√
2Txηx

i , (E2a)

v̇
y
i = −γvy

i − K
n,n

∑
j
(yi − y j) + λ

n,n

∑
j
(xi − x j) +

√
2Tyηy

i , (E2b)

where ẋ = vx, ẏ = vy, the sum runs over the first neighbors (four
in the case of square lattice), K represents the elastic constant of
the solid, and λ is a coupling constant mixing x and y components.
The solid is pushed far from equilibrium by the temperature differ-
ence and the coupling between x and y coordinates, as known even
in the case of two particles coupled by a harmonic spring.99

Again, we can define the Fourier transform of the vari-
ables in the wave vector, q, and frequency domain, ω. Using
definitions (A1a) and (A1b), we define the vector of displace-
ment, û(ω, q) = (X̂(ω, q), Ŷ(ω, q)), around the lattice positions and
velocity v̂(ω, q) = (v̂x(ω, q), v̂y(ω, q)). The transformed dynamics
(E2) in Fourier space read

(−ω2 + iωγ + ω̄ 2(q))X̂(ω, q) + λ
K

ω̄ 2(q) Ŷ(ω, q) =
√

2Txη̂ x(ω, q),
(E3a)

(−ω2 + iωγ + ω̄ 2(q))Ŷ(ω, q) + λ
K

ω̄ 2(q) X̂(ω, q) =
√

2Tyη̂ y(ω, q),
(E3b)

where ω(q) is given by

ω(q)2 = −2K(cos (qx) + cos (qy) − 2), (E4)

and v̂(ω, q) satisfies the relation

v̂(ω, q) = iωû(ω, q). (E5)

Applying the method reported in the previous sections, i.e.,
Eq. (A3)–(A5), we can analytically calculate the spectral entropy
production of the system, σ(ω, q)). Indeed, the actions A and Ar
read

A = ∫ dω∫
dq
2π
{ 1

4Tx
[(−ω2 + iωγ + ω̄ 2(q))X̂ + λ

K
ω̄ 2(q) Ŷ]

2

+ 1
4Ty
[(−ω2 + iωγ + ω̄ 2(q))Ŷ + λ

K
ω̄ 2(q) X̂]

2

}, (E6a)

Ar = ∫ dω∫
dq
2π
{ 1

4Tx
[(−ω2 − iωγ + ω̄ 2(q))X̂ + λ

K
ω̄ 2(q) Ŷ]

2

+ 1
4Ty
[(−ω2 − iωγ + ω̄ 2(q))Ŷ + λ

K
ω̄ 2(q) X̂]

2

}, (E6b)
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having used the time-reversal transformation rule considered in
Eq. (A8). With this method, we obtain

σ(ω, q)) = − lim
t→∞

λ
t
( 1

Tx
⟨v̂x(ω, q)Ŷ(ω, q)⟩

+ 1
Ty
⟨v̂y(ω, q)X̂(ω, q)⟩). (E7)

In this case, we can analytically evaluate the averages in Eq. (E7) by
taking advantage of the linearity of the system. By adopting the same
method employed in Eq. (A26), we calculate the analytical expres-
sion for the entropy production as a function of the parameters of
the model,

σ(ω, q)) = γ2[(Tx − Ty)2

TxTy
]( λ

K
ω̄ 2(q))

2

ω2 1
∣D(ω, q)∣2

, (E8)

where

D(ω, q) = ((−ω2 + ω2
q)2 − γ2ω2 − ( λ

K
ω̄ 2(q))

2

)

+ 2iωγ(−ω2 + ω̄ 2(q)). (E9)

This expression for the entropy production rate vanishes if λ = 0 but
also if Tx = Ty (equilibrium limit).

In the same way, we can calculate the other elements of the
dynamical correlation matrix that will shed light on the vibrational
excitation of the solid. They are defined as

CX̂X̂(ω, q) = lim
t→∞

1
t
⟨X̂(ω, q)X̂(−ω,−q)⟩, (E10a)

CŶŶ(ω, q) = lim
t→∞

1
t
⟨Ŷ(ω, q)Ŷ(−ω,−q)⟩. (E10b)

The dynamical correlations can be analytically calculated as a
function of the parameters of the model, and we obtain the relation

CX̂X̂(ω, q)
Tx

+ CŶŶ(ω, q)
Ty

= 2
ω
[ Im(RX̂X̂(ω, q))

+ Im(RŶŶ(ω, q))] + σ(ω, q)
ω2γ

, (E11)

where σ(ω, q) is the spectral entropy production given by Eq. (E8),
while Im(RX̂X̂(ω, q)) and Im(RŶŶ(ω, q)) are the imaginary
parts of the two diagonal elements of the response matrix that
explicitly read

Im(RX̂X̂(ω, q)) = Im(RŶŶ(ω, q))

= 1
∣D(ω, q)∣2

Im([−ω2 − iωγ + ω̄ 2(q)]D∗(ω, q)),

(E12)

where the symbol ∗ denotes the complex conjugate of a complex
quantity.

The expression for the dynamical correlations, contained in
Eq. (E11), provides the information on the vibrational excitations
of the non-equilibrium solids described by Eq. (E2). This observ-
able is formed by the sum of two terms: (i) an equilibrium term,

proportional to the response matrix, that provides the contribution
of phonons along x and y directions and (ii) a second term that is
proportional to the entropy production of the system and can be
identified as the contribution of entropons, being proportional to
the spectral entropy production. Consistently with our picture, this
term disappears in the equilibrium limit for λ = 0 and/or Tx = Ty,
i.e., when the entropy production rate vanishes.

The results of this section show that the picture of entropons
goes beyond the case of active solids and characterizes more, in gen-
eral, non-equilibrium solids reaching a steady state. In addition, in
the case of solids driven out of equilibrium by the presence of differ-
ent thermal baths, new vibrational excitations, encoding the spectral
entropy production, coexist with thermal phonons.
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