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Summary

In recent years, studies have shed light on the physiological role of plant glutamate receptor-like

channels (GLRs). However, the mechanism by which these channels are activated, and in

particular, what is the physiological role of their binding to amino acids, remains elusive. The first

direct biochemical demonstration that theArabidopsis thalianaGLR3.3 isoformbindsglutamate

and other amino acids in a low micromolar range of concentrations was reported only recently.

The first crystal structures of the ligand-binding domains of AtGLR3.3 and AtGLR3.2 isoforms

also have been released.We foresee that these newexperimental pieces of evidence provide the

basis for a better understanding of how GLRs are activated and modulated in different

physiological responses.

I. Introduction:plantglutamate receptor-like channels

Calcium (Ca2+) is a key second messenger in plant cells. It is
universally involved in different developmental programs as well as
in plant local and systemic responses to changing environments.
The generation of free cytosolic Ca2+ transients requires the
opening of Ca2+-permeable channels which regulate cytosolic Ca2+

influx (Kudla et al., 2018).
Ionotropic glutamate receptors (iGluRs) are ligand-gated

nonselective cation channels that mediate neurotransmission in
the animal central nervous system (Traynelis et al., 2010).
Homologous proteins were identified in plants, namely glutamate
receptor-like channels (GLRs). In Arabidopsis thaliana, 20 GLR
members were grouped into three clades (I, II and III; Lam et al.,

1998), and have been found to be involved in root development,
seed germination, ion transport, metabolic pathways and Ca2+

signaling (reviewed in Wudick et al., 2018a). Several members of
the Arabidopsis GLRs are expressed in pollen and are crucial for
the generation of the Ca2+-tip gradient as well as for proper pollen
tube growth, attraction and fertility (Michard et al., 2011;
Wudick et al., 2018b; Mou et al., 2020). In addition, the two
Physcomitrella patens GLRs are essential for both chemotaxis and
reproduction (Ortiz-Ram�ırez et al., 2017). Intriguingly, both
Arabidopsis and Solanum lycopersicum GLRs, particularly those
belonging to Clade III, are elemental in long-distance signaling
(Mousavi et al., 2013; Farmer et al., 2014; Nguyen et al., 2018;
Toyota et al., 2018; Wang et al., 2019; Goto et al., 2020; Shao
et al., 2020).
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Original studies and valuable reviews have plausibly adopted the
model of regulation/activation of the animal iGluRs for plant
GLRs; however, several sets of data have described the functionality
of someGLRs without the need for the ligand. Here, in the light of
recent biochemical and structural characterization of GLRs, we
provide insights into how to use this information to clarify the ways
in which these proteins exert their roles.

II. Structural features and conservation of GLRs

The architecture and stoichiometry of plant GLRs are believed to be
similar to those of iGluRs, with the assembly of four subunits
(homomeric or heteromeric) arranged to form a functional channel
(Wudick et al., 2018a). Each subunit hosts an extracellular amino-
terminal domain, a ligand-binding domain (LBD), three full
transmembrane helices plus a partial one, and a cytoplasmic tail. As
a general feature, the LBD has a conserved clamshell architecture
(Fig. 1). In animals the binding of a ligand/agonist induces a variable
degree of closure of the LBD that pulls on the transmembrane
segments, opening the channel pore (Traynelis et al., 2010). The first
crystal structures of the LBDs of the two plant isoforms AtGLR3.2
and AtGLR3.3 were recently released. They displayed the predicted
bilobed structure resembling prokaryotic and eukaryotic LBDs
(Gangwar et al., 2020; Alfieri et al., 2020; Mayer, 2020). Binding
experiments performed on AtGLR3.3-LBD revealed its preference
not only for L-Glu, but also for sulfur-containing amino acids (AA)
(i.e. L-Cys and L-Met). Four solvedAtGLR3.3-LBDcrystal structures
in complexwith L-Glu,Gly, L-Cys and L-Met provided a rationale for
how the plant LBD binding site evolved to accommodate diverse AA
and identified key residues involved in their binding (Alfieri et al.,
2020). A key feature coming from both structural and biochemical
data is that, in contrast to the selectivity profiles of prokaryotic and
other eukaryotic GLRs, where a restricted preference for 1 or 2 L-AA
is usually observed, AtGLR3.3 is able to bind and accommodate
different AA. Remarkably, despite their different affinities and their
different abilities to evoke cytosolicCa2+ increases in root tip cells, the
extent of the AtGLR3.3-LBD clamshell closure is the same for all
ligands (Alfieri et al., 2020). Structural data of AtGLR3.2 and
modeling analyses predict that other Arabidopsis GLRs also show
‘ligand promiscuity’ even if with important differences. As examples,
GLR1.2, GLR1.4 and GLR3.1/GLR3.5, are predicted to accom-
modate D-Ser or bulkier hydrophobic AAs (Michard et al., 2011;
Tapken et al., 2013; Kong et al., 2016). Besides, the nonproteino-
genic amino acid 1-Aminocyclopropane-1-carboxylic acid (ACC) is
another possible AtGLR3.3 ligand (Mou et al., 2020), a suggestion
well-supported by a modeling approach (Fig. 1).

Overall, the AtGLR3.2-LBD and AtGLR3.3-LBD crystal
structures represent a rational tool to generate homology models
for other Arabidopsis GLRs and to derive clues about their binding
specificities, thus helping to define, by in vivo approaches, the
functional role of GLR ligands which is still unclear.

III. GLRs in long-distance electrical andCa2+ signaling

Although plants do not have a nervous system, distant organs can
‘communicate’ the perception of environmental stimuli by means

of various mechanisms (Choi et al., 2016), including the fast
propagation of electrical signals (Hedrich et al., 2016) which can be
coupled with changes in free cytosolic Ca2+, as in the local and
systemic wounding responses (Kiep et al., 2015; Vincent et al.,
2017; Nguyen et al., 2018; Shao et al., 2020). Besides electrical and
Ca2+ signals, reactive oxygen species (ROS) also play a role in long-
distance signaling with clear connections to Ca2+ signaling. The
ROS–Ca2+ crosstalk has been the subject of recent reviews;
therefore, we direct the readers to them (e.g. Gilroy et al., 2016).

The first demonstration that plants generate electrical signals
moving within the body in response to different stimuli dates to the
end of the 19th Century (reviewed in Hedrich et al., 2016, and
Farmer et al., 2020), with an important contribution from Bowles’
group in tomato (Wildon et al., 1992). A leap forward to the
understanding of their physiological roles came from Farmer’s
group who demonstrated that leaf wounding, by triggering long-
distance electrical signals, elicits an increase in the jasmonic acid
(JA) concentrations and the expression of genes involved in JA
signaling in systemic leaves (Mousavi et al., 2013). The genetic
demonstration that electrical signals were dependent on the activity
of several isoforms of the Clade III AtGLRs (3.2, 3.3 and 3.6)
provided the first evidence that these channels mediate long-
distance signaling. It was notable that the double glr3.3/glr3.6
mutant showed no electrical signals in the systemic leaves upon
wounding (Mousavi et al., 2013). The following demonstration
that AtGLR3.3 and AtGLR3.6 are expressed in different vascular
tissues (phloem and xylem parenchyma cells, respectively) proved
that both tissues are synergistically involved in the electrical signal
transmission (Nguyen et al., 2018). However, it appeared that, in
this specific case, these two GLRs do not assemble in a heteromeric
complex, as instead predicted in root epidermal cells (Mou et al.,
2020) where they are co-expressed (Vincill et al., 2013; Singh et al.,
2016).

In Arabidopsis, by simultaneously performing surface mem-
brane potential measurements and cytosolic Ca2+ imaging, the
coupling between wounding-induced GLR-mediated electrical
signals and propagating Ca2+ waves was demonstrated, albeit the
maximum Ca2+ increase temporally followed the depolarization
(Nguyen et al., 2018). Evidence exists that different GLRs show
Ca2+ permeability (e.g. AtGLR1.4, AtGLR3.2, AtGLR3.3,
AtGLR3.4, AtGLR3.6,OsGLR2.1; PpGLR1) (Vincill et al., 2012;
Tapken et al., 2013; Kong et al., 2016; Ni et al., 2016; Ortiz-
Ramirez et al., 2017; Wudick et al., 2018b; Shao et al., 2020), and
thus, based on the results reported in Nguyen et al. (2018), it is
plausible that at least AtGLR3.3 andAtGLR3.6 can directly couple
these two long-distance signals induced by wounding. However,
more complex scenarios cannot be excludedwithGLRs responsible
for the surface depolarization that in turn activates voltage-
dependent Ca2+-permeable channels (Zimmermann & Felle,
2009). Admittedly, many unsolved questions regarding the link
between GLRs activation, membrane depolarization and Ca2+

increase still need to be clarified, and we direct interested readers to
a recent review (Farmer et al., 2020). Nevertheless, although there
may be a direct or indirect role of GLRs in triggering the free
cytosolic Ca2+ increase, this rise stimulates JA biosynthesis that
helps plants to cope overall with injuries caused by pathogens (e.g.
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by chewing insects) (Nguyen et al., 2018; Yan et al., 2018). As an
example, larvae of the African cotton leafworm, Spodoptera
littoralis, gained more weight feeding on the glr3.3 and glr3.3/
glr3.6 (as well as glr3.1/glr3.3) mutants than on the wild-type
(Nguyen et al., 2018). The strict relationship between pathogen
attack, long-distance GLR-mediated electrical signaling and JA
biosynthesis also has been found in tomato. Grafting experiments
demonstrated that SlGLR3.5 (homologous to AtGLR3.3) is
required for the root-to-shoot systemic transmission of electrical
signals generated in response to the root-knot nematode
Meloidogyne incognita, the root attacks of which led to an increase
of jasmonates in leaves (Wang et al., 2019).

IV. How do plant GLRs work?

A wealth of genetic information on the role played by the Clade III
GLR isoforms in long-distance signaling is currently available, but

the mechanisms of their in planta activation/regulation need to be
refined. In the glutamatergic synapse of the animal nervous system,
the glutamate is released from the presynaptic neuron with the
consequent activation of the iGluR receptors in the postsynaptic
neuron, allowing the passage of sodium (Na+) and Ca2+ (Fig. 2a)
(Traynelis et al., 2010). As proposed previously by Nguyen et al.
(2018), making a simple analogy with iGluRs activation, we can
foresee that in plants mechanical wounding or insect chewing
might induce the release of glutamate or other AAs in the apoplast,
thus activating – through direct binding – the GLRs with a
consequent Ca2+ influx into the cytosol (Fig. 2c) (Vincent et al.,
2017; Nguyen et al., 2018; Toyota et al., 2018; Shao et al., 2020).
In Arabidopsis this scenario is supported by two pieces of evidence:
(1) the use of the genetically encoded glutamate fluorescent sensor
(iGluSnFR) reported a local increase in the apoplastic Glu
concentration of the wounded leaf (Toyota et al., 2018); and (2)
treatment of Arabidopsis leaves or roots with a high concentration
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Fig. 1 Predicted architecture of plant glutamate receptor-like channels (GLRs) and structural determinants of the ligand-binding domain. The schematic drawing
shows the predicted membrane structure of a single GLR subunit which hosts an extracellular amino-terminal domain (ATD), a ligand-binding domain (LBD)
composedof segmentsS1andS2, fourmembranehelices (M1 toM4,oneofwhich–M2– is not fully transmembrane),anda cytoplasmic tail (CTD),arranged in the
order ATD-S1-M1-M2-M3-S2-M4-CTD. The four upper green-lined circles show the structures in ribbon representation of theAtGLR3.3-LBDbound to different
ligands (from the left to the right: L-Glu, Gly, L-Cys and L-Met). The atomic coordinates and structure factors are deposited in the Protein Data Bank, http://www.
wwpdb.org (PDB IDcodes6R85, 6R88,6R89and6R8A for the complexes of theAtGLR3.3-LBDwith L-Glu,Gly, L-Cys and L-Met, respectively). The red-lined circle
shows that the same AtGLR3.3-LBD structure is in principle able to accommodate the Aminocyclopropane-1-carboxylic acid (ACC) ligand without any obvious
steric hindrance. The remaining four bottomblack circles showhomologymodeling, based on the above-mentionedAtGLR3.3-LBD structure, of the LBDs of other
GLR isoforms. The modeling approach appears to justify the binding of their respective predicted ligands (L-Met for AtGLR3.1 and AtGLR3.5, D-Ser for AtGLR1.2
and L-Trp for AtGLR1.4) and, more generally, the preference of these isoforms for bulkier hydrophobic amino acid ligands.
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maximum response to 500 µM) triggers a transient increase in the free cytosolic Ca2+ concentration that in Arabidopsis is dependent on the presence of the
AtGLR3.3 isoform (for which the in vitro Kd for L-Glu is 2.2 µM). (c) Leaf and root wounding triggers long-distance surface potential depolarizations and free
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might be hypothesized that in the vascular tissues the GLR activation also requires AA binding; however, in this case, owing to the absence of any damaged cells, a
controlled releaseofAAshouldoccur. If theAAtransportersUmamiTareexpressed in thevascular tissues, their activity couldbeupstreamof theGLRactivation.The
question marks represent possible speculative models that need to be proven experimentally.
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of Glu triggered long-distance Ca2+ signaling (Toyota et al., 2018;
Shao et al., 2020). Moreover, in Arabidopsis, several studies
reported that Glu (and other AAs) induced free cytosolic Ca2+

increase and plasma membrane (PM) depolarization in seedlings
and root cells, two events dependent onAtGLR3.3 (Qi et al., 2006;
Alfieri et al., 2020) (Fig. 2b). The fact that AtGLR3.3-LBD binds
Glu and other AAs in the low micromolar range of concentrations
matches with the demonstration that concentrations as low as
50 lM of L-Glu, L-Cys and Gly can induce Ca2+ increase in
Arabidopsis root cells (Stephens et al., 2008; Alfieri et al., 2020),
and that different AAs, including ACC, when administrated at a
maximum of 500 lM, stimulate ion transport in mammalian
COS-7 cells expressing PpGLR1 (Mou et al., 2020). However, this
high binding affinity is at odds with the high glutamate concen-
tration required to trigger the long-distance plant defense signaling
in Arabidopsis (50–100 mM) (Toyota et al., 2018; Shao et al.,
2020), and the systemic potentials transmission (10 mM) (Zim-
mermann & Felle, 2009) and action potentials (1–100 mM) in
Hordeum vulgare (Felle & Zimmermann, 2007). Whereas the
requirement for high AA concentrations in planta can be explained
by the presence of physical barriers, the need for very high AA
concentrations to trigger Ca2+ increases in mammalian HEK293T
cells expressing the AtGLR3.3 and AtGLR3.6, as reported in Shao
et al. (2020), might be carefully considered because this does not
match up to both in vitro and in vivo measurements (Alfieri et al.,
2020; Mou et al., 2020), and certainly needs clarification.

We might hypothesize that in response to wounding – not only
locally, but also in vascular tissues – a release of AA into the apoplast
may trigger the activation of PM-localized GLRs (e.g. AtGLR3.3
and 3.6), thus driving Ca2+ influx (Fig. 2b). If this is so, we can
foresee that the AA release must be fine-tuned through the activity
of AA transporters. In this scenario, members of the UmamiT
(Usuallymultiple acidsmove in and out Transporter) family which
are expressed in vascular tissues (Tegeder & Hammes, 2018) may
be potential candidates (Fig. 2c). However, there are no data in
support of this hypothesis as yet. Further research is required to
understand whether a systemic apoplastic release of Glu or other
AAs (possibly from phloem) occurs, and whether the speed of the
release lies in the same time range as that of the long-distance
electrical and Ca2+ waves, possibly anticipating them (Mousavi
et al., 2013; Nguyen et al., 2018; Toyota et al., 2018). To achieve
this goal, the use of plants expressing the apoplastic localized
glutamate iGluSnFR (Toyota et al., 2018) or the recently
developed FRET-based FLIPE (fluorescent indicator proteins for
glutamate) sensors (Castro-Rodr�ıgue et al., 2020), together with a
Ca2+ sensor (e.g. R-Geco1) (Keinath et al., 2015) could be pursued.
However, proper controls need to be used, because, for example,
iGluSnFR has been shown to exhibit pH-sensitivity (Marvin et al.,
2013).

Nevertheless, to complete the picture we should point out that
some evidence might not fully support the model of apoplastic
release of AAs in long-distance signaling with the consequent
activation of GLRs. First, it has been shown that different GLRs
(PpGLRs, AtGLR3.2 and AtGLR3.3) can mediate ion fluxes (Na+

and Ca2+) without the need for an externally added ligand when
expressed heterologously (Ortiz-Ram�ırez et al., 2017; Wudick

et al., 2018b). Secondly, Clade III GLRs are apparently not
detected in the PM of vascular tissue cells. AtGLR3.1- and
AtGLR3.3-VENUS chimeric proteins localize mainly at the
endoplasmic reticulum in the xylem contact cells and in the
phloem cells, respectively, whereas AtGLR3.6-VENUS localizes at
the tonoplast (Nguyen et al., 2018). To shed light on this critical
point, immunogold labeling with specific GLR antibodies should
be pursued, because only a few proteins can reach PM, and then
only to a concentration insufficient for fluorescent tag detection.

Based on the collected evidence, is it therefore possible to
reconcile the ‘animal model’ of GLR activation with the data
currently available for plants? The fact that GLRs might be
differentially activated/regulated in different tissues could be an
option: for instance, in root cells (where theAtGLR3.3 is expressed)
or stomatal guard cells (where the AtGLR3.1/AtGLR3.5 hetero-
complex forms)GLRs could be gated by the AA binding (including
ACC) (Qi et al., 2006; Stephens et al., 2008; Kong et al., 2016;
Alfieri et al., 2020; Mou et al., 2020), whereas in pollen the
interaction with the CORNICHON chaperones is essential for
their sorting and activation (Wudick et al., 2018b). In the vascular
cells, other mechanisms may be required instead and might be
different between local and systemic. One plausible alternative
mechanism for working at long distance has been called the
‘squeeze cell hypothesis’, in which rapid axial changes in xylem
hydrostatic pressure, occurring for example in response to wound-
ing, lead to radially dispersed pressure changes that activate GLRs
(Farmer et al., 2014). The possible apoplastic pH regulation of
GLR activity also could be taken into consideration (Shao et al.,
2020) because changes in apoplastic pH are associated with long-
distance electrical signals (Felle & Zimmermann, 2007).

V. Concluding remarks and perspectives

Plant GLRs have various physiological functions and their role in
long-distance signaling places them as key players of plant
acclimation to biotic and abiotic stress. However, unsolved
question remain, such as GLRs’ activation and regulation in
different tissues (e.g. the vasculature). The recent release of GLRs–
LBD structures represents a new tool helpful in driving rational
mutagenesis approaches to alter or eliminate the AA binding. The
expression ofmutated forms of different GLRs in heterologous and
homologous systems will help to define the functional role of LBDs
and demonstrate the physiological importance of the ligand
binding, which is still pending. This aspect also needs to be re-
evaluated in the light of the ACC activation of GLRs (Mou et al.,
2020). The work by Tapken et al. (2013) pioneered the
mutagenesis approach in Xenopus oocytes for the AtGLR1.4, but
nowadays the identification of accessory proteins (e.g.
CORNICHON)makingClade IIIGLRs functional also in animal
cells (e.g. AtGLR3.3 in COS-7) (Wudick et al., 2018b), can allow
us to extend this approach to other isoforms (e.g. Ortiz-Ramirez
et al., 2017; Mou et al., 2020). Both electrophysiological and
imaging techniques will be instrumental to reveal the role of LBD
AA binding. The availability of Arabidopsis mutants with easy-to-
analyze phenotypes (e.g. glr3.3/glr3.6) (Mousavi et al., 2013), will
enable researchers to design straightforward complementation or
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genome-editing strategies to test – in planta – the effects of LBD
mutations, giving key information regarding the functional role of
the GLRs amino acid-binding both in the local sensing of AA as
well as in long-distance signaling.
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