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Abstract. Radiomics can quantify tumor phenotypic characteristics non-
invasively by defining a signature correlated with biological information.
Thanks to algorithms derived from computer vision to extract features
from images, and machine learning methods to mine data, Radiomics is
the perfect case study of application of Artificial Intelligence in the con-
text of precision medicine. In this study we investigated the association
between radiomic features extracted from multi-parametric magnetic res-
onance imaging (mp-MRI)of prostate cancer (PCa) and the tumor histo-
logic subtypes (using Gleason Score) using machine learning algorithms,
in order to identify which of the mp-MRI derived radiomic features can
distinguish high and low risk PCa.

Keywords: Machine Learning - Artificial Intelligence - Radiomics - Im-
age Processing - Computer Vision - Prostate Cancer.

1 Introduction

In the paradigm of precision medicine, Radiomics is an -omic science, aiming at
the improvement of diagnostic, prognostic, and predictive accuracy [1,2].

Mining quantitative images features from clinical imaging, Radiomics uses
advanced quantitative features to objectively and quantitatively describe tumor
phenotypes. These features can be extracted from medical images using advanced
mathematical algorithms [3] to discover tumor characteristics that may not be
appreciated by the naked eye. Radiomic features can provide richer information
about intensity, shape, size or volume, and texture of tumor phenotype that is
distinct or complementary to that provided by clinical reports, laboratory test
results, and genomic or proteomic assays.
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Radiomics may thus provide great potential to capture important phenotypic
information, such as intratumoral heterogeneity, subsequently providing valuable
information for personalised therapy [4-7].

In this work, we aimed at implementing a machine learning-based automatic
classification of PCa aggressiveness (Low-grade PCa vs. High-grade PCa) by
using mp-MRI-based radiomic features. In particular we will focus on two dif-
ferent MRI maps, T2-weighted (T2w) MR imaging, and the Apparent Diffusion
Coefficient (ADC) from diffusion-weighted MR imaging (DWTI), both being valu-
able and well established parameters for differentiating PCa aggressiveness [17,
26-28).

PCa is among the most common cancers and the second leading cause of
cancer-specific mortality among Western males, imposing a huge economic and
social burden [8]. In general, patients with PCa and a Gleason Score® (GS) <=
3 + 4 (Low-grade PCa) have better survival rates, lower biochemical recurrence
rate and lower prostate cancer-specific mortality in comparison to the patients
with GS >= 4+ 3 (High-grade PCa) [9]. As a consequence, the early grading and
stratification of PCa aggressiveness play a key role in the therapy management
and in the evaluation of patient long-term survival.

Nevertheless, PCa aggressiveness assessed by biopsy may result in an incor-
rect diagnosis, in addition to patient discomfort. Moreover, GS evaluated from
biopsies may differ from that assessed following radical prostatectomy due, for
example, to an incomplete sampling [10-12]. Therefore, non-invasive and robust
radiological image-based techniques that can help the clinicians in the evalua-
tion of PCa aggressiveness are needed to enhance the quality of both clinical
outcomes and patient care.

The role of machine learning techniques in analysing radiomic features have
been investigated in many studies, e.g. for the discrimination of PCa from non-
cancer prostate tissue [13-17], or in the classification of PCa with different GS
[18,19], or in the assessment of PCa aggressiveness [20]. In particular, texture-
based radiomic features showed effectiveness in discriminating between cancer
and non-cancer prostate tissue [21,22] and in the assessment of PCa aggressive-
ness [23, 24].

Despite a huge amount of works it is important to highlight that there is
not a unanimous consent about the specific radiomic signature that is most
effective in distinguishing PCa aggressiveness. In our opinion the origins of this
failure can be sought in the lack of standardised and robust data, in the use of
small dataset which are usually unable to explain all the variability of the real
samples. A solution to this phenomenon could be obtained using shared imaging

5 The Gleason grading system is used to help evaluate the prognosis of men with
prostate cancer using samples from a prostate biopsy. The pathologist looks at how
the cancer cells are arranged in the prostate and assigns a score on a scale of 3 to
5 from 2 different locations. Please note the notation: the first number is the most
common grade in all the samples, while the second number is the highest grade of
whats left. Gleason Score = the most common grade + the highest other grade in
the samples
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biobanks. Datasets originating from a single institution can be very useful to
test algorithms and to begin to understand which radiomic features can be the
most representatives for PCa, but the definition of a radiomic signature with a
strong clinical impact requires a different kind of dataset. The dimension of the
imaging dataset is obviously directly related to the clinical problem of interest
and at to kind of algorithm implemented.

In the presented work, we aimed at implementing a machine learning-based
system to automatically classify PCa aggressiveness (Low-grade PCa vs. High-
grade PCa). We compared the results obtained using (%) the whole set of 851
radiomic features (first-order statistics, shape-based 3D features, shape-based 2D
features, Gray level Cooccurence Matrix features, Gray level Run Length Matriz
features, Gray level Size Zone Matrix features, Neighbouring Gray Tone Differ-
ence Matrix features, Gray level Dependence Matrix features and their wavelet
transform which yields 8 decompositions per level - all possible combinations of
applying either a High or a Low pass filter in each of the three dimensions) and
(#) only those calculated on the original image (107, without wavelet filtering);
and considering three dataset (i) T2w, (i) ADC, (iii) T2w + ADC.

The paper is organised as follows: Section 2 describes the whole radiomic
process (image acquisition, image segmentation, feature extraction and selection,
analysis and model building); Section 3 reports the achieved results; Section 4
concludes the paper.

2 METHODS AND MATERIALS

2.1 Patient Cohort

This retrospective study involved 125 patients who underwent a 1.5 T mp-MRI
and free hand transperineal MRI/US fusion-guided targeted biopsy (MyLab-TM
Twice Esaote).

From such cohort of patients, we selected 50 peripheral zone PCa patients for
our pilot study, with a PI-RADS score” 3-5, corresponding to an intermediate-to-
very high probability of malignancy. 57 lesions were biopsed and the histopatho-
logical result was as follow: 37 with GS <= 3+4, consistent with a less aggressive
behaviour of the prostate cancer, and 20 with GS >=4 + 3.

2.2 Image Acquisition

In this study all exams were performed using a 1.5 T MR scanner (Magnetom
Aera, Siemens Healthcare, Erlangen, Germany) equipped with a pelvic phased-
array 32-channels coils (Fig. 1).

" The PI-RADS v2 [25] (Prostate Imaging Reporting & Data System) assessment
categories are based on the findings of mp-MRI, combining T2-weighted (T2W),
diffusion weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging.
The PI-RADS assessment category determines the likelihood of clinically significant
prostate cancer. A score, ranging from 1 to 5, is given accordingly to each imaging
technique, with 1 being most probably benign (clinically significant cancer is highly
unlikely to be present) and 5 being high suspicious for malignancy
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Our acquisition protocol included:

- High-resolution T2w sequences in the axial (voxel size 0.6 x 0.6 x 3.0 mm),
sagittal and coronal planes (voxel size 0.7 x 0.7 x 3.0 mm);

- T1w pre-contrast sequence in the axial plane (voxel size 0.8 x 0.8 x 5 mm);

- a multi-b DWI (range 0 — 2000 s/mm?, step of 500 s/mm?, voxel size
0.8 x 0.8 x 3mm) EPI sequence from which corresponding ADC maps were
automatically calculated using software on board the Siemens MRI console;

- Dynamic Contrast Enhancement (DCE) assessment with time intensity
curves evaluation.

10 epZ0difiera Sm-pZAMIBRADC_DFC_MIX

Fig. 1. Example of prostate mp-MRI images. Left: T2w; Right: ADC. Please note that
slices are different in the 2 maps

2.3 Image Segmentation

Segmentation was performed on the two most representative sequences for PI-
RADS assessment in clinical practice, T2w images and the ADC maps derived
from the Diffusion Weighted Imaging (DWT).

Tumor regions were defined by manually drawing ROIs using the 3D Slicer
software [29]. For consistency between ROIs, all depicted lesions were strictly
segmented with the same criteria and visually validated by three radiologists
(with different experience in reporting prostate mp-MRI (15, 5 and 1 year re-
spectively) in consensus, both on T2w images and ADC maps (Fig. 2, Fig. 3).

2.4 Feature Extraction

Quantitative features were extracted both from original images and after ap-
plying wavelet transform for T2w dataset and for ADC dataset. All the feature
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Fig. 2. Example of prostate mp-MRI images ROIs segmentation. Left: T2w; Right:
ADC. The green line defines the border of the tumor.

Fig. 3. Example of prostate mp-MRI image 3D segmentation showing the entire tu-
mour volume used for radiomic analysis.
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classes were computed: shapes features, first- order statistics features, second-
order statistics features (that included the so called texture features) and higher-
order statistics features, for a total of 851 features.

The features were evaluated using a home-made software based on the open-
source python package pyradiomics [30].

2.5 Feature Selection and Classification

The analyses, implemented on MATLAB® R2018 platform, were carried out
by considering the whole set of features (851) and only those calculated on the
original image (107, without wavelet transform), on three dataset: T2w, ADC,
T2w+ADC. Radiomics raw data were firstly normalized across all patients by
using quantile normalization.

Then, for each dataset, a correlation analysis was run to detect redundancy.
Pearson’s correlation coefficient was calculated, and one feature was dropped
from those pairs of features showing high correlation (> 0.95, p-value < 0.05)
and, hence, more linear dependence.

A feed-forward feature selection method was applied to select the most dis-
criminative radiomic features. A predictive model was devised to distinguish
low-grade (GS <= 3 + 4) from intermediate/high-grade (GS >= 4+ 3) PCa. A
non-linear Support Vector Machine (SVM) was used as the classifier. Starting
from an empty feature set, the implemented selection method created candidate
feature subsets by sequentially adding each of the features not yet selected. At
each step, 10-fold cross-validation was applied to get the prediction accuracy for
each candidate feature subset. The process was repeated until the criterion value
(that is, the mis-classification error) reached the global minimum.

3 RESULTS

3.1 Radiomic signatures building

In Table 1, the built radiomic signatures are shown for each dataset (T2w, ADC,
T2w+ADC) and according to the set of features that was considered for the anal-
ysis, that means, the whole set of 851 features (Fgs1) and the features computed
only on the original image (F1o7).

3.2 Diagnostic performance of radiomic signatures

All the built radiomic signatures were used to train a non-linear Support Vector
Machine (SVM) classifier. It was trained on 40 cases (26 GS <= 3+4 and 14 GS
>=4+3) and tested on the remaining 17 (11 GS <=3+4 and 6 GS >=4+3).

As shown in Figure 4, the best performance was obtained with the T2w+ADC
radiomic signature built including the wavelet parameters, with an overall accu-
racy of 94.12%, 100% sensitivity, 90,9% specificity (just one case misclassified).

We obtained in the other cases: 88.23% accuracy (60% sens, 100% spec) for
T2w+ADC (9 features without wavelet); 88.23% accuracy (71,42% sens, 83,33%
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Table 1. The computed radiomic signatures and criterion values (CV) for each dataset.

F851 Fl107
T2w wavelet-LHL glszm Zone Entropy orig. first ord. Total Energy
wavelet-LHH glcm Joint Entr. orig. glszm Size Zone Non Unif. Normal.
wavelet-HLL glszm Size Zone Non Unif. |orig. shape Max. 2D Diameter Row
original glem Idmn original glem Idmn
wavelet-LHL first ord. Root Mean Sq. orig. ngtdm Strength
orig. glem Sum Entropy orig. gldm Large Dep. High Gray Lev. Emph.
wavelet-LLH first ord. Entr. orig. glrlm Long Run High Gray Lev. Emph.
orig. glszm Size Zone Non Unif.
orig. gldm Dependence Non Unif. Normal.
orig. first ord. Energy
orig. glem Correlation
orig. glem Idm
orig. glem Sum Entropy
CV: 0.086 CV: 0.069
ADC wavelet-LHH glrlm Run Len. Non Unif. |orig. first ord. Entr.
wavelet-LHH first ord. Tot. Energy orig. ngtdm Contrast
wavelet-LLL glem Correlation orig. shape Minor Axis Length
wavelet-LHH first ord. Root Mean Sq. orig. first order Uniformity
wavelet-HHL glszm Gray Lev. Non Unif. |orig. ngtdm Complexity
wavelet-LLL ngtdm Contrast orig. glcm Contrast
wavelet-HLL first ord. Root Mean Sq. orig. glem Diff. Average
wavelet-LLH glem Id orig. shape Least Axis Length
wavelet-HLH first ord. 10 Percent. orig. glrlm Long Run High Gray Lev. Emph.
orig. glem Joint Entropy
orig. glrlm High Gray Lev. Run Emph.
orig. glem Difference Variance
orig. gldm Small Dep. Low Gray Lev. Emph.
orig. glszm Size Zone Non Unif.
CV: 0.024 CV: 0.155
T2w 4+ ADC|wavelet-HLL glem Joint Energy orig. glem Idmn
orig. glszm Size Zone Non Unif. Nor. orig. shape Minor Axis Length

wavelet-HLL gldm Dep. Non Unif.
wavelet-LHH first ord. Tot. En.
wavelet-HLL glem Imcl

wavelet-LLH glem Correlation
wavelet-HLH first ord. Range
wavelet-LHL glszm Gray Leve. Non Unif.
wavelet-LLH glem Correlation
wavelet-HLL gldm Low Gray Lev. Emph.
CV: 0.000

orig.
orig.
orig.
orig.
orig.
orig.
orig.

CV:

ngtdm Complexity

glszm Size Zone Non Unif.

glem Diff. Average

glem MCC

glszm Gray Lev. Non Unif. Normal.
first ord. Maximum

glrlm Gray Level Non Unif.

0.053
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Confusion matrices
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Fig. 4. Confusion matrices for all the investigated cases.
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spec) for T2w (7 features with wavelet); 82.35% accuracy (60% sens, 100% spec)
for T2w (13 features without wavelet); 94.11% accuracy (80% sens, 100% spec)
for ADC (9 features with wavelet); 78.94% accuracy (50% sens, 100% spec) for
ADC (14 features without wavelet).

4 CONCLUSION

In this study, we evaluated the potential role of radiomic features in predicting
the aggressiveness of prostate cancer compared with bioptic Gleason score. We
compared the prediction power of six radiomic signatures, selected from three
dataset (T2w MRI-based radiomic features dataset, ADC MRI-based radiomic
features dataset, and the combination of both) and using both the whole set
of computed features, that integrated also the ones computed on the wavelet
transformed images, and the set of features that included the features calculated
on the original images only.

The ADC dataset with the whole set of features gave good accuracy in dis-
criminating between high vs low risk PCa. Also, the combination of ADC and
T2w radiomic features, along with the inclusion of wavelet filtering, seemed to
add discriminative information to the lesions classification.

The idea would be to ground on the latter result and build a radiomic sig-
nature which include both ADC and T2w radiomic features, in accordance with
the fact that also PI-RADS assessment uses a combination of mp-MRI T2W
and DWI findings. However, a deeper investigation will be carried on a larger,
multicentre dataset with a more balanced distribution to confirm such results.

The identification of a robust and validated radiomic signature would be
fundamental to move precision medicine forward. Indeed, in combination with
other omics data, radiomic signatures can then be used for the development of
diagnostic and prognostic models, describing phenotypic patterns connected to
biological or clinical end points, aiming at tailoring of the therapies based on
patients needs and at the monitoring of the response to care.
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