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Bending stiffness collapse, buckling, topological bands of freestanding twisted bilayer graphene
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The freestanding twisted bilayer graphene (TBG) is unstable, below a critical twist angle θc ∼ 3.7◦, against
a moiré (2 × 1) buckling distortion at T = 0. Realistic simulations reveal the concurrent unexpected collapse
of the bending rigidity, an unrelated macroscopic mechanical parameter. An analytical model connects bending
and buckling anomalies at T = 0, but as temperature rises the former fades, while buckling persists further. The
(2 × 1) electronic properties are also surprising. The magic twist angle narrow bands, now eight in number,
fail to show zone boundary splittings despite the different periodicity. Symmetry shows how this is dictated
by an effective single-valley physics. These structural, critical, and electronic predictions promise to make the
freestanding state of TBG especially interesting.
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Two-dimensional (2D) bilayers and multilayers with vari-
able lattice mismatch and/or twist angles exhibit a host of
physical properties that also hold promise for applications
[1–4]. With exceptional electronic properties at the magic
twist angle, twisted bilayer graphene (TBG) is prominent
among them [5–7]. Experimental bilayers are generally stud-
ied in deposited/encapsulated configurations, which preserve
a flat geometry and the twist-related moiré pattern plays no
mechanical role. Yet, TBG may also be realized as free-
standing [8,9]. Below a critical twist angle θc, moiré-related
structural instabilities and a variety of “buckled” states were
suggested by pioneering freestanding simulations [10–12], but
the actual nature and properties of the true TBG buckled state
remain unknown. We use here theory and simulation to show
that the moiré buckled state formed at a low twist angle is
quite different from expectations. Mechanically, it is accom-
panied by the unanticipated collapse of the TBG macroscopic
bending rigidity. Electronically, the magic twist angle narrow
bands, now doubled in number, are unexpectedly degenerate
at the zone boundaries, the vanishing Bragg scattering sym-
metry motivated reflecting single-valley physics.

Starting with molecular dynamics (MD) simulations, large-
size model TBGs with variable twist θ and variable numbers
Nmoire of moiré cells were constructed with periodic bound-
ary conditions in the (x, y) plane. Based on well-tested
interatomic interactions and protocols (detailed in the Supple-
mental Material [13]) we sought the zero stress equilibrium
T = 0 structure versus θ . We found that, similar but not iden-
tical to suggestions [10–12], two regimes emerge, separated
by a structural phase transition at a critical θc ≈ 3.77◦. Above
θc the two layers remain flat and specular relative to the central

*These authors contributed equally to this work.
†tosatti@sissa.it

plane [Fig. 1(b)]. Below θc the layers jointly buckle, giving
rise to a “moiré (2 × 1)” cell doubling along the armchair
direction x, leading to two inequivalent, z-antisymmetrical AA
nodes, AA1 (up) and AA2 (down) per cell, as in Fig. 1(a).
The magnitude of buckling is large. At the magic twist angle
θm ≈ 1.08◦, for example, the zigzag z corrugation is ≈10 Å
[Figs. 1(a) and 1(c)]. A competing (

√
3 × √

3) buckling dis-
tortion, with one AA1 (100% up) hexagonally surrounded by
AA2 and AA3 (50% down), was also found. It led to a slightly
lower-energy gain, and its details are not further pursued here
(see, however, Supplemental Material [13] Sec. VIII).

The energy gain driving the buckling distortion at θ < θc

is interlayered, with increased AB and BA, Bernal stacked
areas, relative to the flat, unbuckled state’s. That gain is bal-
anced by an intralayer cost concentrated at the AA nodes,
now transformed into buckling “hinges” AA1 (up) and AA2
(down). As θ decreases, the 2D density of AA nodes, thus of
hinges, drops ∼θ2, and so does the cost, eventually favoring
buckling for θ � θc. The transition, simulated by maintaining
zero external stress and zero temperature, was found to be
continuous. We define the T = 0 K buckling order parameter
Q0 as the large-size average Fourier component of the (2 × 1)
moiré corrugation

Q0 = aGr

NxNyA

〈
Nat∑

n=1

zn exp

(
−2π i

lx
xn

)〉
, (1)

where aGr is graphene’s lattice constant, lx = √
3λ is the

size of the buckled unit cell along the armchair direction x
[Figs. 1(a) and 1(b)], λ ∼ aGr/θ is the moiré lattice constant
[Figs. 1(a) and 1(b)], xn and zn are coordinates of the nth atom
(n = 1, 2, . . . , Nat), A = √

3λ2 is the buckled unit cell area,
and Nx, Ny are the number of cell replicas along x and y. This
Q0(θ ) is proportional to the buckling-induced bilayer thick-
ness increase 〈(zAA1 − zAA2)〉 [inset of Fig. 1(c)]. Simulation
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FIG. 1. Visual models of small twist angle TBG structure at T = 0. Out-of-plane displacements of (a) optimal freestanding (2 × 1) buckled
and (b) flat structures, magnified by factors 3 and 100, respectively, are sketched for twist angle θm = 1.08◦, where the moiré size λ ≈ aGr/θm ≈
13 nm. (c) Twist angle dependence of the optimal buckling order parameter Q0 (red and blue, left axis) for Nx = Ny = 1, T = 0 K, and of the
normalized soft phonon frequencies ω2/θ4 (right axis, green). Critical twist angle θc ≈ 3.77◦ marked by a gray dashed line. Red and green
lines are power-law fits as described in text. The inset shows the maximum out-of-plane corrugation �zmax.

for a set of θ values (see Supplemental Material [13] Sec. I)
characterized by a sufficient numbers of moiré cells Nmoire

showed, at T = 0, a growth of Q0(θ < θc) [Fig. 1(c)] well ap-
proximated by a power-law rise Q0(θ ) ≈ 0.48�(θc − θ )(θc −
θ )β , where � is the Heaviside function, and β = 0.7(0) a
critical exponent. Within fitting uncertainty, reflected by the
second decimal in parentheses, this exponent differs from 1/2,
which could be expected for a classical T = 0 transition.

As in other displacive phase transitions, the local free
energy around equilibrium supports a soft buckling phonon
mode ωi [i = (+,−) refers to above or below θc], a mode
which will also control critical fluctuations at T > 0. Its fre-
quency was extracted from oscillations around equilibrium
of a (2 × 1) moiré cell by starting the dynamics with Q =
Q0 + δQ, with |δQ|/Q0 � 1, while maintaining T = 0 and
zero stress. Because the cell area A(θ ) varies as θ−2, it is
convenient to further normalize the soft mode frequencies
to constant area in the form ω2/θ4. Power-law fits near the
singularity at θc yield [Fig. 1(c)], ω2

i /θ
4 ∼ ai|θ − θc|γi , with

γ+ = 0.3(7), γ− = 1.3(0), with a+ = 8.58 × 1020 s−2, a− =
3.24 × 1021 s−2. Note the strongly asymmetric, again unusual
exponents. We observe nevertheless that γ−/β ≈ 2 as in stan-
dard mean-field theory.

More interestingly, the buckling amplitude Q0 and its soft
mode frequency are not the only critical quantities at θ → θc.
We found an unexpected macroscopic partner, the bilayer’s
bending stiffness. Defined for direction μ = (x, y) as Dμ =
dF/d[(∂2h/∂μ2)2], where F is the Helmholtz free-energy
density, ∂2h/∂μ2 is the μth component of the 2D Lapla-
cian, and h the bilayer’s corrugation profile h(x, y) (Fig. 2).
Controlling the membrane’s deviations from planarity, Dμ

determines the macroscopic flexural mode dispersion along
μ, ωμ(qμ) = (Dμ/ρ2D)1/2q2

μ, of an infinite membrane of 2D
density ρ2D.

The freestanding TBG bending stiffness Dμ was extracted
by starting simulations with a slight x compression (Fig. 2),
i.e., Lμ = L0μ − δL, of the bilayer’s zero-pressure equilibrium
size. Either the initial energy increase δE , or the ensuing flex-

ural oscillation ωμ yield Dμ = limδE→0
L4

μδE
π4Ah2 = ρ2DL4

μω2
μ

16π4 [14].
The resulting Dx is shown in Fig. 2. For 6◦ < θ < 30◦, Dx is
close to 2D0, where D0 = 1.44 eV is the bending stiffness of
monolayer graphene [15], the factor 2 reflecting free sliding

between the two layers [16,17]. At the opposite end θ = 0◦,
layers are instead locked in Bernal’s AB stacking. That pushes
Dx up to DB ≈ 100 eV, now reflecting the large in-plane
stiffness of graphene [18,19]. Between these extremes, Dx

drops below 2D0 when θ � 6◦, critically collapsing at θc, and
rising immediately below towards DB. Near θc the collapse is
critical,

Dx(θ ) ∼ ci|θ − θc|εi , (2)

with exponents ε+ = 0.2(2) and ε− = 1.4(4), and c+ =
2.4 eV and c− = 7.5 eV, for θ > θc and θ < θc, respectively.

Why does a macroscopic mechanical parameter such as
Dx(θ ) drop critically at the microscopic buckling transition?
We developed an analytical “zigzag” model that explains it.
As sketched in Fig. 3(a) the buckled structure can roughly be
modeled as a zigzag shape where flat (AB-commensurate) re-
gions are separated by maximally bent (AA-centered) hinges.
The total length of the system along the buckling direction is
Lx = Nxlx. Upon bending along x both hinges and flats un-
dergo deformation, and the free-energy increase with bending
angle � is F (�) = Df Kly

2N (2Df ly+Klx )�
2 where Df is the bending

FIG. 2. Freestanding TBG bending stiffness Dx/D0, normalized
to the monolayer’s D0, from zero stress simulations at T = 0. Note
the critical collapse (red circles for θ > θc, blue squares for θ < θc).
Dashed and dotted curves are power-law fits near θc. Multiplicity
of circles at the same twist angle shows convergence for simulation
cells with increasing size Nmoire (the Nmoire dependence is weak for
θ < θc). Inset: Simulation protocol (see text).
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FIG. 3. Zigzag model of bending stiffness Deff in a buckled bi-
layer. (a) Unbent and bent models; (b) bending stiffness from real
simulations of Fig. 2 (circles and squares) and from the zizgag model,
Eq. (3) (red dashed line). Assumed flat piece stiffness Df (blue line)
(more detail in Supplemental Material [13] Sec. V).

stiffness of the flat pieces, K the angular stiffness of the
hinges, and ly the bilayer size perpendicular to the bending di-

rection x. Defining an effective bending stiffness F = Deff ly
2Lx

�2,
one obtains, using ly = λ,

Deff = Df

1 + 2Df/
√

3K
. (3)

We can now assume Df = DB ≈ 100 eV of the flat pieces
for θ < θc, dropping to Df = 2D0 = 2.88 eV for θ > θc

[Fig. 3(b)]. The collapse of Dx(θ ) at θc is controlled by that
of the hinge stiffness K , connected to the buckling frequency
ω± by simple mechanics

K ∝ ρ2Dl4
x ω2

±. (4)

Inserting ω± into Fig. 3(b), theoretical and simulated bending
stiffnesses agree fairly well, both in magnitude and in critical
scaling (details in Supplemental Material [13] Sec. V). Thus
the TBG bending stiffness collapse is a direct consequence of
that of the buckling modes ω±. In return, the buckling critical-
ity must be influenced by the bending one. The coexistence of
these two coupled degrees of freedom, with important cross
correlations, is likely to account for the unusual exponents.

We come next to two important properties predicted for
the freestanding TBG buckled state, namely temperature be-
havior, and the narrow-band electronic structure at the magic
twist angles.

Temperature. Finite-temperature MD simulations show
that at a small twist angle the buckling persists up to high
temperature. Flexural fluctuations, abundant and not gapped,
do not cancel the buckling order parameter, which survives up
to a remarkable ≈500 K at the magic twist angle [Fig. 4(a)].
If bending could be ignored, this robust buckling order should
drop at some Tc with three-state Potts universality, whose
behavior is critical as opposed to first order, despite the
presence of Landau third-order invariants [20,21]. Unfortu-
nately, size limitations obscure the precise high-temperature
buckling demise, replacing it with the smooth crossovers of
Fig. 4(a) (see Supplemental Material [13] Sec. IV), equally
compatible with either continuous or discontinuous decays.
We also extracted the temperature dependence of bending
stiffness [Fig. 4(b)]. We do not deal with the long-wavelength
anomaly of the freestanding bilayer as a membrane [22], but
simply extract the buckling-related evolution, as predicted

FIG. 4. Effect of temperature. (a) Buckling order parameter at
high temperatures. The expected critical behavior is smoothened by
a small simulation size [three (2 × 1) cells at each θ ]. (b) Bending
stiffness at T = 0 (gray, from Fig. 2), 100 K (blue), and 300 K (red).
Note the extreme sensitivity to temperature.

for observation in microscopic size samples. Contrary to the
buckling robustness, bending stiffness changes dramatically
with temperature. The singularity near θc is quickly wiped out
[Fig. 4(b)], the two layers eventually bending independently
despite the large buckling. Reflecting that, the flexural fluc-
tuations of a TBG near θc should grow anomalously at low
temperature, when Dx is small, but not above.

Electronic structure. Near the magic twist angle θm =
1.08◦, the flat TBG has four ultranarrow bands, whose physics
has been at the center of much attention [5,6]. What will
happen of these bands in the freestanding TBG, where the
buckling sets in? We should anticipate eight narrow bands,
separated by zone boundary gaps caused by the large (2 × 1)
distortion. We carried out tight-binding calculations at θm and
compared buckled and unbuckled TBG. Shown in Fig. 5 [23]
are the eight bands of the buckled state. The bands, almost
a factor 2 wider, display the following: First, unlike the un-
buckled TBG [or even the nonoptimal (1 × 1) buckled state
[12]] the Dirac zero gap, formerly at point K , is now split
into two close-by points K ± ky (see the inset). Second, and
striking, zone boundary splittings at the W and X points—
expected because (2 × 1) buckling removes the C3z symmetry,
and Bragg scattering should in principle take place—do not
occur. This anomaly calls for a full symmetry analysis.

FIG. 5. The eight narrow bands of the (2 × 1) buckled TBG at
the twist angle θ = 1.08◦ (see Ref. [23]). Inset ∗ shows how the gap
closing point is now split into two, above and below (not shown) the
point K where it lies in the flat TBG.
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The buckled structure has, unlike the flat one, a nonsym-
morphic space group P21212 (No. 18) that includes {1 | 0},
{2010 | 0, 1/2, 0}, {2100 | 1/2, 0, 0}, and {2001 | 1/2, 1/2, 0},
(in Seitz notation, with fractional translations) which we
shortly denote as E , C2y, C2x, and C2z, respectively. The
Bloch states of the eight bands at the high-symmetry points
transform as the irreducible representations (irreps) of the
corresponding little groups (see Table S3 in the Supplemental
Material [13]). In our reference frame only C2y commutes
with the generator of U (1) valley symmetry, while C2x, and
thus C2z, exchange the valley index—as time-reversal sym-
metry T̂ also does. It follows that, e.g., at the � point, C2x

and valley U (1) get promoted to SU (2). That enforces de-
generacy between eigenstates with opposite parity under C2x

and the same parity under C2y [24], making �1 degenerate
with �4, and �2 with �3. The interplay between valley U (1)
and the nonsymmorphic group’s fractional translations has
further consequences at the zone boundary points W and
X. Physical insight is obtained by switching to a single-
valley representation where the valley index is conserved [25].
This representation obeys the magnetic space group P212′

12′
(No. 18.19) generated by E , C2y, T̂ C2x, and T̂ C2z. The four
flat bands per valley can be generated by Wannier orbitals
centered at the Bernal stacked regions. Their centers corre-
spond to the Wyckoff positions 4c in the magnetic space
group P212′

12′ [26], whose corepresentation contains just the
identity and thus allows a single irrep. The single-valley el-
ementary band representation is [26] 2�1(+) ⊕ 2�2(−) and
2Y1(+) ⊕ 2Y2(−), where (±) indicate the parity under C2y;
X1X2(2) and W1W2(2), transforming under C2y, respectively,
as σ3, the third Pauli matrix, and iσ3 (see Table S3). Along
the path X → W, ky ∈ 0 → π , the irreducible representa-
tion remains twofold degenerate and transforms under C2y

as eiky/2 σ3. This now yields double degeneracies within a
single valley. Bearing in mind that the two valleys must be
further degenerate at all high-symmetry points and paths that
are invariant under C2x, one readily recovers the fourfold de-
generacy at W. In fact, all “accidental” degeneracies of the
band structure in Fig. 5 are explained in terms of single-valley
physics, enforced by nonsymmorphicity.

These one-electron degeneracies, and the ways they might
be broken by interactions, represent an interesting question

for freestanding TBG experiments, where topology should
also play a role. Since narrow bands do admit an elemen-
tary representation, the arguments used in the unbuckled
case to diagnose a fragile topology [25] do not strictly ap-
ply here. The unexpected similarity of buckled bands to the
(2 × 1) Brillouin zone (BZ) folded unbuckled ones (Fig. S12)
nonetheless suggests that the topological properties remain
similar. Thus [24,27] the interplay between Coulomb repul-
sion and electron-phonon coupling to Kekulé modes should
split the degeneracies and open the gaps that are absent at
the one-electron level, stabilizing topological insulators in
(2 × 1) buckled TBG, giving rise to fractional fillings absent
in the flat state (see Supplemental Material [13] Sec. VI).

In summary, several important phenomena are predicted
to occur once freestanding TBG will be realized. First, a
zigzag buckled state should set in with a critical behavior
as a function of twist angle θ → θc ≈ 3.7◦. At θ ≈ 1◦ the
normals to the bilayer should deviate from ẑ by a sizable
∼ ± 3◦ (Supplemental Material [13] Sec. VII), experimentally
observable. Second, the macroscopic bending stiffness, a cru-
cial mechanical parameter for a membrane, should collapse at
the buckling transition, giving rise to gigantic flexural fluctu-
ations already at very low temperatures. Third, the buckling
distortion should survive up to relatively high temperatures,
whereas the bending stiffness anomaly will on the contrary
dwindle upon heating. Fourth, narrow electronic bands are
predicted for the buckled magic TBG displaying unexpected
single-valley degeneracies, to be broken by interactions, with
the possibility of doubling the number of quantized fillings
upon gating. That should offer a richer playground for topo-
logical features and insulating states than for flat TBG. Other
properties including kinetic and tribological behavior will be
addressed in follow-up work. Similar buckling phenomena
could take place in freestanding bilayers of other 2D mate-
rials, now being pursued.
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