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The estimation of the transmission matrix of a disordered medium is a challenging problem in disordered pho-
tonics. Usually, its reconstruction relies on a complex inversion that aims at connecting a fully controlled input to
the deterministic interference of the light field scrambled by the device. At the moment, iterative phase retrieval
protocols provide the fastest reconstructing frameworks, converging in a few tens of iterations. Exploiting the
knowledge of speckle correlations, we construct a new phase retrieval algorithm that reduces the computational
cost to a single iteration. Besides being faster, our method is practical because it accepts fewer measurements than
state-of-the-art protocols. Thanks to reducing computation time by one order of magnitude, our result can be a
step forward toward real-time optical imaging that exploits disordered devices. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.462578

1. INTRODUCTION

One of the great efforts in modern optics is the exploitation of
disordered structures for imaging and focusing through (or, per-
haps, inside) optical materials. The revolution started by using
light shaping devices to manipulate the light field, observing
how the turbid medium reacts to controlled excitations [1].
Initially, imaging procedures were accomplished mainly by
taking advantage of the memory effect [2], whereas, for focus-
ing, feedback-based genetic algorithms were common [3,4].
However, the light propagation through a scattering device
can be modeled as a linear process, in which a complex and
unknown transmission matrix (TM) deterministically controls
how the light is transported by the medium [5,6]. Rapidly,
measuring the TM became a successful approach for turning
turbid devices into standard optical tools, stimulating intense
research activities [7]. Because of this, researchers developed
many approaches for the recovery of TM in different scenarios
(see Ref. [8] and references therein). Among these, holography
requires accessing both edges via an interferometric configura-
tion [9]. Although complex to implement, these setups pro-
vided thriving results. For holographic imaging, the usage of
the reference arm permitted obtaining complete control over
the image transmission through disordered channels [10].
Recently, compressed sensing approaches were used to recover

the optical TM of multi-mode (MM) fiber with a reduced
number of probing measurements [11]. Information about co-
herence within spatial and angular windows (the memory ef-
fect) was also exploited to assist the recovery of the TM in
an MM fiber [12].

Although the holographic approach allows accurate charac-
terization of the transmission, it is of difficult applicability in
the real-measurement scenario. The presence of the reference
arm, external to the fiber bundle, hinders the miniaturization
of the optical device. This fact stimulates the investigation in
non-interferometric configurations [13,14]. As schematized in
Fig. 1, a straightforward imaging setup consists of using a light
shaping device to send a given pattern on the input side of a
disordered medium (an MM fiber, in our case) and recording
its transmission at the output edge with a camera. Initially, the
transmission recovery in such a simple configuration was done
by keeping a portion of the spatial light modulator (SLM) fixed,
using it as a self-reference for the characterization [6,15].
Successively, using random measurements also provided excel-
lent frameworks for the TM reconstructions with the reference-
less prVBEM Bayesian approach [14], or with Gerchberg–
Saxton iterative approaches [16]. Furthermore, measurements
done on the Hadamard basis have permitted the approximation
of the TM using only real-valued entries [17]. These methods
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are supervised inversions, meaning that a known sequence of
patterns is sent, and the related output fields are measured.
Repeating this procedure several times, one can gain complete
knowledge of the scattering process that the light field under-
goes during propagation. Usually, the higher the number of
patterns sampled, the better the estimation of the matrix is.

Once recovered, the TM can be used to produce a focus on a
user-specified position or to invert the scattering process, di-
rectly recovering images on one edge. In both applications,
the statistics of the speckle pattern produced by the light trans-
mission through the random medium tells us information
about its optical response [18]. A fundamental property is that
a point source produces a speckle whose auto-correlation sets
the optimal resolution achievable by the system [19,20]. This
quantity is connected to the point spread function (PSF) in the
propagation through homogeneous media. When analyzing a
speckled image, there are regions of coherence that are, in gen-
eral, larger than a single pixel. The vast majority of these meth-
ods to reconstruct the TM assume a “single-pixel camera”
approach, which delineates a separable problem at the output
plane. That implies that each calibration pattern sent at the
input contributes independently to the output of every single
pixel. Such a simplistic assumption uses less memory and is very
useful for algorithm parallelization, but it discards neighboring
interactions that are potentially useful. Different approaches
have tried incorporating information encoded in spatial corre-
lations, particularly those dictated by the memory effect
[11,12,21]. In this study, we decided to exploit the physical
information provided by the speckle statistics to aid the
reconstruction of the TM. We implement our strategy by pro-
posing a modified, non-interferometric, Gerchberg–Saxton
(GS) phase retrieval (PR) approach for imaging through disor-
der. GS implementations have, in fact, the advantage of being
the fastest framework for reconstructing the TM [22]. In a nut-
shell, our modification consists of linking adjacent pixels in the
output plane by adding a step of image convolution with a tun-
able kernel. The idea takes inspiration from the oversampling
smoothness (OSS) protocol, which is an algorithm proposed to
suppress noise outside the support region in a Fourier PR set for
imaging [22]. Here, contrarily to OSS, the smoothing step is
used to couple adjacent output pixels according to the physical
connection described by the average speckle size. To test the
effectiveness of our modification, we decided to tackle the
problem of imaging through MM fiber, performing a complete

study on the number of patterns and iterations needed to
achieve optimal reconstruction results. Compared to state-
of-the-art methods, our algorithm converges within a single
iteration and can reconstruct images using undersampled
measurements. We begin our study by describing the protocol
and the non-interferometric experimental setup used for imag-
ing. After this, we will present a numerical study based on the
experimental measurements to characterize the behavior of our
method, discussing the results and additional perspectives.

2. MATERIALS AND METHODS

As described by Goodman [23], the speckles distributed in a pat-
tern produced by a scattering medium have an average size that
can be estimated via its auto-correlation. For fully developed
speckles, the auto-correlation turns out to be a sharply peaked
function since the average speckle size is of the order of the wave-
length. Such dimension is typically much smaller than currently
available camera pixels; thus, the auto-correlation in this regime
reduces to that of a broadband noise [24]. If we call S the speckle
pattern recorded by the camera, this implies that the auto-cor-
relation in the discretized imaging plane is S ⋆ S ≈ δ, where δ is
the Dirac distribution and ⋆ is the cross correlation operator.
Within the memory effect range approach [2,24], this property
was exploited to perform hidden imaging based on direct speckle
observation. Experimentally, however, we are far away from
obtaining a delta function. The fact that the auto-correlation
is not point-like implies that neighboring modes detected by
the camera are not independent completely but, instead, are spa-
tially correlated on the plane. For the purpose of our study, we
can assume that the speckles exhibit a Gaussian auto-correlation,
S ⋆ S � g�Σ�, of which its extent can be approximated by
recovering its standard deviation Σ. In the following, we exploit
this information to allow our method to converge faster than
state-of-the-art implementations. So far, many TM recovery ap-
proaches proposed consider each pixel in the output edge inde-
pendent of each other. Here, instead, we include neighboring
interaction by introducing a step in the GS algorithm that cou-
ples the output pixels via the system’s expected PSF, providing
imaging benefits in terms of reconstruction efficiency.

A. Phase Retrieval Description
PR is a class of algorithms aiming at the recovery of the phase of
a wavefront given a set of intensity measurements. The problem
we analyze can be formalized as a linear field combination,
which results in the formation of a disordered speckle pattern
on the output edge of the MM fiber. By using the camera pixels
as a spatial unit for length, we describe the problem as follows.
We send a set of random binary patterns of size N i � L × L
from the input edge modulated by the SLM. Even if the pat-
terns are bi-dimensional, we store them as single dimension
arrays within the probing matrix P, so each row in P represents
a given pattern. In general, we consider a variable number of
measurements M (each corresponding to a different input pat-
tern) so that P has a dimension ofM × N i. We assume that the
disordered medium can be described by an unknown complex
TM X, which scrambles the input P into the output measure-
ments Y, with each measurement composed by No output pix-
els. The underlined linear transmission model can be written as

Fig. 1. Scheme of the setup used for our imaging experiments. A
laser source (vertical polarization) is modulated into a probing pattern
using a spatial light modulator (SLM). Once modulated, the field is
projected onto the input edge of a multi-mode fiber (I). The light that
trespasses the disordered medium is imaged at the output edge (O) by
a standard camera sensor (horizontal polarization).
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Y � PXT : (1)

The matrix XT has a size of N i × No, and the output matrix
Y has dimensions ofM × No. The goal of the PR problem is to
find X, given the probing matrix P and the sole measurement
of the modulus jYj. In our case, in fact, the camera records the
field intensity I � jYj2, which stores every speckle pattern S
obtained in response to each input pattern. We refer to it as
PR because the method retrieves the phase of the output Y
and, consequently, lets us estimate X. As already mentioned,
the class of PR problems was tackled in several ways, such
as with the EKF-MSSM approach [25], SDP algorithm
[26,27], prVBEM [14,28,29], GAMP [30] and its extension
GVAMP [31]. However, these algorithms are computationally
demanding, whereas GS approaches represent the fastest and
workflow efficient alternatives, as thoroughly discussed by
Huang et al. [16]. The GS PR is, in fact, a simple and efficient
protocol based on an iterative approach, which we schemati-
cally describe in Fig. 2. The method begins by assigning a ran-
dom phaseΦ0 to the measured intensity to form the (complex)
estimated output observation, Y0 � AeΦ0 . Here, A � ffiffi

I
p

is
the squared root of the intensity detected on the camera.
Since the method is based on forward and backward application
of the measurement patterns, we pre-compute the Moore–
Penrose pseudo-inverse [32] of the matrix P, which we denote
with P†.

The method that we propose consists of five steps schema-
tized in Fig. 2.

1. First, we form an estimation of the complex output field
Y i keeping the recorded modulus A and associating a phase
from the previous iteration. In the beginning, the phase Φ0

is initialized by extracting random numbers from a uniform
distribution.

2. We use the output estimation to compute the new guess
for the TM as Xi � P†Y i.

3. We let the sequence of input patterns P propagate
through the retrieved TM, and we calculate the new output
estimation as Ỹ i � PXT

i .

4. We convolve the predicted output Ỹ i with a smoothing
Gaussian kernel, setting its variance as a function of the iter-
ation number.

5. We keep the phase of the estimated output as Φ̃i�1 �
ArgfỸ i�1g, and we pass it to step 1, restarting the cycle.

We refer to our method as SmoothGS (where appropriate,
also abbreviated with SGS). When the smoothing kernel tends
to a δ-function, the iteration described reduces to the standard
GS PR [16]. As a rule of thumb, we decided to vary the neigh-
boring interaction size by controlling the sigma of the Gaussian
kernel. The first iteration starts with half the standard deviation
determined by the fit of the auto-correlation with a Gaussian
function, σ � Σ∕2 (see Appendix D). Such kernel g�σ� repre-
sents a Gaussian ensemble average of the speckle size observed
in the fiber. The value is decreased linearly as a function of the
number of steps to σ � 0.1 pixels, which returns approxi-
mately a delta function. In a discretized kernel, the latter
corresponds to an image with only the central pixel having a
non-null value, whereas all the surrounding is set to zero. In
this way, we allow for a strong neighboring coupling at the be-
ginning of the iteration and weaken its effect as the iteration
proceeds. After a certain number of iteration steps, we recover
the TM that describes the system.

On the other hand, the imaging procedure consists of send-
ing an unknown pattern to the input edge and reconstructing it
based on the speckle recorded at the output and the estimated
TM. The problem to be solved, in this case, is analogous to the
previous one:

�Y 0�T � X�P 0�T , (2)

where �Y 0� is the set of the observed speckle patterns and �P 0�
represents the unknown images on the input edge that gener-
ated it. For our study, we use a double PR approach [14,33].
The first PR is in charge of retrieving the TM; the second car-
ries out the image reconstruction. Since Huang et al. [16] have
already studied the recovery performance of GS methods, we
decided to complement their work by using a double PR ap-
proach to assess the correct recovery of the transmission. Since
the second retrieval stage is strongly influenced by the first, we
study whether the protocol can recover images from the input
edge, monitoring the diagonality of the focusing operator cal-
culated using the recovered TM.

B. Experimental Measurements
In our study, we are interested in the characterization of a dis-
ordered device in a non-interferometric setup, which we
sketched in Fig. 1. A single-mode continuous-wave He–Ne la-
ser source (wavelength λ � 632.8 nm, vertically polarized) is
coupled to an SLM (pixel size 20 μm), which controls the field
that enters the disordered device. The beam is expanded 10×
with a two-lens telescope, covering a circular portion of the
SLM with a radius of 0.4 cm. The light modulated by the
SLM is demagnified 7.5× with a two-lens telescope and injected
into the input facet (I) of an MM fiber (1.08 m long step-index
fiber, 1 mm core diameter, numerical aperture NA � 0.39,
refractive indices ncore � 1.457, ncladd � 1.404) and undergoes
random scattering events during its propagation. We record the
propagated intensity field on the output facet (O) with a 3×
magnification objective, selecting the horizontal polarization.

Fig. 2. Scheme of the Gerchberg–Saxton phase retrieval protocols
used in our manuscript. The orange box indicates where the smoothing
operation takes place. Without this operation, the phase retrieval pro-
tocol is the same as described in Ref. [16].
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The polarized detection guarantees that the transmission prob-
lem is scalar, and, in the case of interest, one may want to repeat
the procedure for the vertical polarization also. We decided to
divide the illuminated SLM area impinging on the input edge
into 24 × 24 segments, consisting of 11 × 11 SLM pixels each,
and we analyze a squared window of 256 × 256 pixels within
the central core of the output edge of the MM fiber. The region
we use is delimited with a square box on the speckle pattern of
Fig. 2. Since we control N � 576 segments of the SLM, it is
convenient to define the sampling ratio as γ � M∕N , and we
are interested in evaluating how the algorithm behaves as a
function of γ. Then, we send a total of M tot � 10N patterns
for the characterization, and, consequently, we record the same
number of speckle realizations S. In this representation, γ � 1
means that the number of measurements matches the number
of pixels controlled at the SLM. These measurements, then, are
used to characterize the TM. Instead, for the imaging pro-
cedure, we send 400 letters randomly extracted from the
Greek alphabet. These images are structurally different from
the random images used for training and not used during
the characterization. We show a few examples in the bottom
row of Fig. 3; these are the objects we aim at reconstructing.

3. RESULTS

After acquiring the experimental measurements, we employ the
double PR method: the first is to reconstruct the TM of a
generic MM fiber, and the second is to recover the unknown
symbols transmitted through it. Here, we discuss the results
obtained with our protocol against the reconstructions pro-
vided by standard PRs described in the literature. The results
presented are experimental entirely, and we organize our study
as follows. To retrieve the TM, we make use of binary random
patterns only, and we run independent PRs using different sam-
pling ratios, γ, ranging from 0.5 to 10, increased in steps of 0.5.
Although not explicitly reported, the convergence of the TM
was monitored by looking at the unitarity of the focusing op-
erator, X†X. For the imaging procedure, we use only the
speckle patterns obtained by the propagation of the Greek let-
ters through the MM fiber. These symbols are used for the as-
sessment of the reconstruction quality as a function of the
number of iterations performed. The metric chosen to compare
the reconstructed images with the ground truth is the normal-
ized root-mean-square error (NRMSE). By definition NRMSE
ranges from 0 to 1, and a lower value corresponds to a better
reconstruction. If we call p 0�x, y� the reconstructed image and
p�x, y� the original object transmitted, we have the following:

NRMSE � 1 −
max jp 0�x, y� ⋆ p�x, y�j2P
x,y jp 0�x, y�j2

P
x,y jp�x, y�j2

: (3)

We begin our study by running independent double PRs
used for reconstructing the test images, varying the number
of calibration patterns in combination with a variable number
of iterations. For comparison, we make use of the standard GS
and improved GS2-1, proposed by Ref. [16], that we use as the
reference against our method. In Fig. 3, we report the image
reconstructions of a few symbols recovered after a single iter-
ation of the three GS methods. In this case, a single iteration
implies a single GS-step for both the TM reconstruction and

the imaging procedure, with a sampling ratio of γ � 4. The
two state-of-the-art GS methods return solutions that are
not yet formed, with poor contrast and a noisy background
(Fig. 3, rows 1 and 2). Our method (Fig. 3, third row), instead,
immediately achieves results much closer to the ground truth
solution (Fig. 3, fourth row). To enrich our analysis, we per-
formed a study by varying the number of the iterations over 3
orders of magnitude: 1, 10, 100, and 1000 steps. In Fig. 4, we
plot the different NRMSE obtained at the end of each
reconstruction run. The error bars are obtained from the
reconstruction statistics over all the symbols considered in each
experiment. First, we noticed that it is impossible to achieve
any good result for γ < 1, as further confirmed by the fact that
the focusing operator does not exhibit diagonality in any of the
methods used. This impossibility is due to the fact that, at this
sampling ratio, the P is hard to invert. For γ � 1, instead, the
optimal result is readily provided by all the methods.
Reconstructions at this regime exhibits a constant behavior
for any number of iterations. We point out that, only in this
particular case, the sampling matrix P is squared, and so, the
inverse is well-defined as P† � P−1. Ideally, by increasing the
samples used for the reconstruction, one would expect the re-
sults to get progressively better. Instead, the GS and GS2-1
exhibit a performance drop that does not improve by running
longer iterations for any γ ∈ �1,4�. In this regime, we note that
GS2-1 performs better than standard GS, as also reported by
Huang et al. [16], but none of them reconstruct a diagonal fo-
cusing operator. This fact implies that, in this sampling regime,
the matrix recovered by GS and GS2-1 cannot provide focusing
or imaging capabilities. For γ ≥ 4 and after 10 iterations, the
reconstruction quality improves (and the focusing operator

Fig. 3. Imaging results for five input symbols obtained after a single
iteration using γ � 4measurements. The first line shows the results of
the standard GS, the second shows the results of GS2-1, and the third
is our method. The last row is the ground truth image sent. We used a
diverging color map [34] to highlight the presence of wrong negative
pixel values (in red).
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becomes diagonal), though it progressively deteriorates when
increasing the number of iterations. This behavior makes select-
ing the correct iteration number crucial for the GS and GS2-1
methods.

With our method, instead, we obtain stable performances
regardless of the number of iterations. For any γ in Fig. 4(A),

it appears evident that the smoothed implementation of the GS
achieves the optimal imaging performance after just a single
iteration cycle. The result is maintained up to thousands of iter-
ations, showing excellent numerical stability. Remarkably, our
method always outperforms the state-of-the-art in the down-
sampled regime γ ∈ �1,4� (the four-phase method [6,35]
and the three-phase method [36]). The same conclusions apply
to the focusing operator, which constantly resulted in a diago-
nal shape and improved when we increased the sampling ratio,
enabling light delivery control even in undersampled scenarios.
To ease the analysis, we report the direct imaging performance
after 1 (top group) and 10 (bottom group) iterations in Fig. 5.
After a single iteration, SmoothGS turns out to be always better
than the other GSs, progressively increasing the reconstruction
quality for higher sampling ratios. After 10 iterations, the other
methods approach the same imaging quality obtained by our
implementation, exhibiting a visible discontinuity at γ � 3.5.

From the previous analysis of the plots in Fig. 5, we notice
that our method is robust and does not deteriorate when ex-
ceeding the iteration number. Furthermore, reconstructions
continuously improve as more data are used in training,
i.e., as γ increases. Indeed, not only the SmoothGS performs
better than recent GS-based algorithms at every γ value, but
it also displays no efficiency barrier in γ. Up to the state-of-
the-art, we can consider this to be the optimal result achievable
in imaging with GS-based solutions. Thus, we use our method
as a reference, and we compare the imaging NRMSE obtained
with GS2-1 by solving image reconstructions over 1 to 20 iter-
ations. The difference map between SmoothGS and GS2-1 is
reported in Fig. 6: the whiter the region, the closer the results
are between the two methods. After a single iteration, our
method is unbeaten for any sampling ratio considered. After
two iterations, both methods provide identical results only if

Fig. 4. Comparison of imaging performance of different GS algo-
rithms. (A) Results after a single iteration, (B) after 10 iterations,
(C) after 100 iterations, and (D) after 1000 iterations. The error
bar represents the standard deviation of the image reconstruction over
all the objects to be reconstructed.

Fig. 5. Comparative study on the reconstruction of images at progressively increasing sampling ratios. The block on the top shows the recon-
structions after a single iteration. The bottom block shows the same study after 10 iterations. For each block, the first row shows the reconstruction
results at various sampling ratios γ for the GS. The second row shows the results of GS2-1 and the third for our method. We present these results
using a modified gray scale color map, where pixels turn from white to red when reconstructing negative intensities, which are not present in the
original images.
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γ > 7; after three iterations, the sampling ratio can decrease to
γ > 5 with GS2-1. However, this trend rapidly saturates, and,
for γ ∈ �1,3�, no solutions provided by the current methods
can approach the image quality provided by ours.

To further assess the validity of our reconstruction protocol,
we perform another study as a function of the output size used
for the transmission recovery. We begin by reconstructing the
TM when reducing the number of pixels in the cropped win-
dow. The performance obtained at different γ is reported in
Fig. 7. As expected, reducing the number of observed modes
in the output has a negative effect on the overall reconstruction
quality. Our method, however, still provides the best solution
after a single iteration, even at γ < 4, where standard GS2-1
fails or needs more iterations to converge. It is important to
recall that we are not changing the average speckle size when
reducing the cropping window. To understand what happens
when we reduce the speckle size, we perform a similar study by
demagnifying the output observation. In this case, we assume
the smoothing rule is unchanged with σ � 2 pixels (Fig. 8). In
principle, keeping the same smoothing is a wrong assumption
because resizing the pattern reduces the average speckle size,
and we should reduce σ accordingly. In particular, magnifying
with a factor of 0.5 destroys the average correlation length in
the speckles, which now appears as wide as a single pixel.
Remarkably, our method still provides the best reconstructions
after a single iteration, even when local correlations are no
longer expected. We notice that the reconstruction perfor-
mances remain unchanged down to 0.5, after which they start
to degrade remaining, however, always better than GS2-1. The

physical meaning of the smoothing operation is lost in this case,
but the blurring operation still operates as a regularization term
for the inverse problem solution.

Fig. 6. Difference map for the NRMSE of GS and SmoothGS.
Here, we considered a variable number of iterations ∈�1,20�. In the
red region, our method always surpasses state-of-the-art phase retrieval
methods. The color fading to white indicates that the GS method con-
verged to the look-alike reconstruction provided with the single iter-
ation SmoothGS.

Fig. 7. Study of the reconstruction quality by changing the size of
the observation window at the output. Panel (A) shows the study for
γ � 2.5, and (B) for γ � 3.0. The situation is similar in both cases,
with SmoothGS being the only protocol able to reconstruct the image.
Panel (C) displays the results for γ � 3.5. Here, GS21 reaches a per-
formance similar to SmoothGS after 10 iterations. The same applies
for γ � 4.0 in panel (D). Reducing it, as expected, decreases the qual-
ity at any γ. However, our algorithm still outperforms current GS im-
plementations, converging in a single iteration and providing reliable
reconstructions even in the case of γ < 4.

Fig. 8. Reconstruction quality as a function of resized output. Panel
(A) γ � 2.5 and (B) γ � 3.0 report similar situations: SmoothGS is
the only protocol capable of reconstructing the image in this regime. In
panel (C) γ � 3.5, and in panel (D) γ � 4.0; GS21 reaches similar
reconstructions as in SmoothGS after 10 iterations and does not con-
verge in a single iteration. We notice how decreasing the magnification
of the output observation preserves reconstruction quality up to
around 0.4×. Down to this value, SmoothGS preserves its advantage
over standard GS implementations even when no local correlations are
expected.
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4. DISCUSSION AND PERSPECTIVES

In our article, we described how the introduction of a convo-
lution step in a PR GS implementation considerably improves
reconstruction results. Although a single iteration of our algo-
rithm takes a little longer than the single iteration in state-
of-the-art PR algorithms, in SmoothGS, one is enough to
get straight to the optimal reconstruction. A single cycle of
SmoothGS consists of five operations, whereas the GS and
GS2-1 discussed above consist of four. To compare the com-
putational cost, we decided to test the average computing time
of the three methods. We averaged 103 iterations comprising
the memory transfer between the CPU and GPU memory. We
report the average seconds per step in Fig. 9(A) and the time
variation against the simplest GS in the plot below. As expected,
GS and GS2-1 almost require the same time to carry out a sin-
gle iteration, with the second being only 3% slower. Our
method, instead, is 50% slower on a single cycle when smooth-
ing the output. This increased computational cost is uniquely
attributable to the convolution step, which needs to be done at
each of theM � γN recorded outputs. A clever choice, instead
(as discussed in Appendix E), is to apply the smoothing rule
directly to the TM because, contrarily to the output Y, its di-
mension does not change with γ. In both cases, the results are
identical, but the row-column multiplications to be carried out
are less when γ > 1. This trick permits us to keep the perfor-
mance very close to that of standard GS, in particular when
increasing the sampling ratio. Even in the worse case, however,
a single SmoothGS iteration is still less expensive than perform-
ing two GS iterations (and it could take tens of those to con-
verge to an effective reconstruction; see Fig. 5). This empirical
property guarantees that our method is always faster in converg-
ing than any competitor. SmoothGS readily provides the best
reconstruction achievable with the minimum temporal require-
ment. As a final remark, in our current implementation, the
acquisition speed reaches 4.5 frames per second, which implies
that to sample at γ � 2, the measurement lasts 256 s. Even if
we are close to the actual limit of our hardware, which is 5.5
frames per second, the main responsibility for this is the SLM
that needs 170 ms to refresh. This bottleneck makes the meas-
uring time much greater than the length of time that
SmoothGS takes to reconstruct the TM (less than 0.1 s, on
average and excluding camera/memory data transfer). On
the other hand, this implies that we could update a new esti-
mation of the TM in between two successive measurements,
giving room to follow the TM evolution in time. However,
we designed this study in such a way that it prescinds the actual
hardware used. Using a faster camera and a digital micromirror
device (DMD) in place of the SLM could dramatically decrease
the measuring time, leaving the setup design practically un-
changed. However, this depends on the technology level that
is currently available, not on the overall methodology em-
ployed. The same applies, of course, to computational hard-
ware. The next generation of GPUs will most likely beat
current performance in terms of pure computational time
[Fig. 9(A)] but will most probably have the same relative gain
[Fig. 9(B)]. In this spirit, we feel that a discussion about these
absolute numbers will not add much in terms of scientific con-
tent, and we leave this discussion to a more technical study.

At high γ, the fact that our algorithm converges in one cycle
to the same result provided by GS and GS2-1 can be qualita-
tively extrapolated by looking at the reconstructions in Fig. 5.
The bottom row clearly shows that all the methods reconstruct
the Λ object with a peculiar artifact (the black dot on the
upper right corner). In this sampling regime, it is not the
reconstruction that improves but rather the way we reach it.
Converging in one cycle eliminates the burden of determining
the number of iterations, which, in inverse problems, is a
parameter of the algorithm that needs to be determined. On
the other hand, the fact that a solution can also be achieved
in the low sampling regime γ � �1,4� is a clear sign of a phase
transition in the algorithm (Fig. 4). Additionally, we remark
that the transition strongly depends on the iteration number
in GS and GS2-1, whereas SmoothGS does not show appreci-
able differences. The regularization seems to have a decisive im-
pact more on the algorithm behavior than on its capability of
finding different solutions. We believe that further investiga-
tions are worthwhile to study this regularizing effect.

5. CONCLUSION

By smoothing the output of the GS, we introduced a model-
based regularizer controlled by the statistics of the speckles [23].
Our idea comes when noticing that current methods in TM
reconstruction typically neglect neighboring interactions.
The independence of the output pixels permits the separation
of the problem, so it requires less memory, and the computa-
tional workflow is easy to distribute. However, high memory
GPU solutions currently provide enough computational power
to carry out the whole task in a single graphic card. Since our
method computes neighboring interactions at the output plane,

Fig. 9. Temporal performance of the Gerchberg–Saxton phase
retrievals. In panel (A), the average time per iteration is measured
by running 103 cycles of the different GS implementations. In panel
(B), we report the computational single-iteration time variation in per-
cent against the GS implementation. If we call tGS the reference time,
the percent variation is calculated as �tmethod − tGS�∕tGS. We notice
how carrying out the smoothing step at the transmission matrix per-
mits us to keep the speed similar to that of standard GS approaches.
We discuss this in Appendix E.
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the whole dataset needs simultaneous processing. Fitting every-
thing in a single GPU avoids the bottleneck of CPU-GPU
memory transfer that would render our method unfeasible
in terms of computation time. In particular, the constant de-
velopment of convolutional neural network strategies makes it
easy to design numerical algorithms that implement depth-wise
convolutions in image processing [37] with PyTorch [38]. This
constant increase in computational performance is beneficial to
our implementation, permitting us to process images with a
high number of pixels.

Since TM can be used to engineer the focusing capability of
the system [39], we can ease its reconstruction when strong
non-local correlations are present. A relevant case is with amor-
phous speckles [40], which exhibit quasi-Bessel focusing [20]
that implies non-Gaussian kernels. In these cases, however, a
Gaussian fit is not a good choice anymore to recover the
smoothing kernel: one may need to invert the speckle auto-
correlation to find a good kernel candidate. Last but not least,
the ability to obtain meaningful reconstructions at a low sam-
pling ratio, γ < 4, is an interesting feature provided by our
method. The four-phase [6,35] and the three-phase methods
[36] set the minimum number of measurements as 4N and
3N , respectively, relying on dephased versions of the same
input patterns. Our method is more general, accepts random
sampling, and could work even with less than 3N measure-
ments. Furthermore, SmoothGS has proven robustness against
the wrong choice of iteration number and always converged
within one cycle. Lastly, it exhibited a predictable behavior
as a function of the sampling ratio with a little computational
burden compared to standard GS implementations. These
characteristics are crucial aspects for the scientific community
that aims to reduce the number of acquisitions, and we strongly
believe that it is worth investigating further. For example, con-
sidering the information about the polarization of the observed
output field could improve the reconstruction further [41], in
particular, when aiming at the temporal characterization of the
fiber. In fact, it is well known that the TM changes by bending
the fiber or varying its temperature [42]. In this context, the
ability to constantly correct the TM comes in hand with the
possibility of reconstruction using the fewest number of mea-
surements possible. In this context, a stochastic choice of the
training patterns may help GS algorithms to converge faster
[43]. The assumption on sparsity in the TM [11] and iterative
focusing via binary phase-only patterns [44] have already
shown a promising reduction in the number of measurements
needed. The development of fast TM reconstruction frame-
works is, indeed, of fundamental interest in biomedical imag-
ing, and PR algorithms are promising resources [45]. There is
an increasing interest in endoscopy using MM fibers. In our
case, after initial characterization, the role of the input/output
edges is reversed for imaging, as in Ref. [15]. This configuration
implies that the edge used to send the light in now has to be
used to gather the light from the sample we want to image.
With this work, then, we try to pave the road toward new
computational methods that are fast and measurement effi-
cient. In our current implementation, SmoothGS can recover
the TM in 0.1 s (at γ � 2), giving room for developing new
strategies for following its evolution over time. In this respect,

our contribution may assist the definition of clinical tools for
non-invasive and real-time optical measurement.

APPENDIX A: DESCRIPTION OF THE
EXPERIMENTAL SETUP

We used a spatial light modulator (SLM, Hamamatsu LCOS-
SLM x10488 series, pixel size 20 μm) to shape the wavefront of
a vertically polarized He–Ne continuous-wave laser (Melles
Griot 05-LHP-991, λ � 632.8 nm). The SLM is controlled
by a LabView routine and generates an image of 24 × 24 ran-
dom blocks of 11 × 11 pixels each. The laser beam was ex-
panded 10× using a two-lens telescope (50 mm × 500 mm
lenses) to a spot size with an approximated radius of 0.4 cm
and shined onto a portion of the SLM display. The first-order
diffraction from the SLM was collected by a lens and spatially
filtered from the other orders, and then focused onto the input
facet of the MM fiber. This is done with a two-lens 7.5× de-
magnifying telescope (750 mm × 100 mm lenses). The SLM
works, then, in the real plane. The MMF, is a 1.08 m long
step-index fiber with core diameter of 1 mm, numerical aper-
ture NA � 0.39, and refractive indices ncore � 1.457 and
ncladd � 1.404. Another 3× magnifying telescope is used for
light collection at the output edge (100 mm × 300 mm), where
the camera (WAT 902h3 supreme) images the output edge of
the MM fiber via a two-lens system and a polarizer. The MM
fiber was isolated thermally in a pipe filled with thermal foam.
The wavefront shaping by the SLM pattern was achieved by
superimposing a grating pattern to the binary phase input array.
In this way, the first-order diffraction is shaped into a squared
matrix, and we can turn on and off the light at every grid posi-
tion. Then, the pattern is sent to the fiber input. Another cam-
era at the entrance (coupled with a beam splitter) allows us to
set the position of the incoming pattern. After the propagation
through the fiber, the exit speckle pattern is collected at the
other facet by the other camera and saved.

APPENDIX B: IMAGE PROCESSING OF CAMERA
PICTURES

The fiber input was generated as a normalized random binary
pattern. On the other hand, the camera acquires the image of
the fiber facet that is circular due to its aperture. Thus, the re-
corded image is a dark background with a signal confined
within a circular region. From this image, we crop a squared
region of 256 pixels inscribed within the facet. Subsequently,
these cropped images were pre-processed by simple intensity
normalization. No further processing was applied to the
acquired images.

APPENDIX C: CONVOLUTION AND CROSS
CORRELATION

The discrete convolution that we use in the text is defined as

f � g �
X

x, y

f �x, y�g�i − x, j − y�: (C1)

The definition of the cross correlation is similar, but g has
inverted coordinates:
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f ⋆ g �
X

x, y
f �x, y�g�i � x, j� y�: (C2)

Using the previous formula, the auto-correlation can be de-
fined as the cross correlation of a function with itself,
χ � f ⋆ f .

APPENDIX D: SPECKLE STATISTICS AND THEIR
AUTO-CORRELATION

Our work is based on the assumption of neighboring coupling
of the pixels in the output image. To estimate the extent of this
interaction, we calculate the average auto-correlation of the
speckle pattern recorded by the camera. Since the intensity dis-
tribution in the output edge of the MM fiber could be inho-
mogeneous, we normalize the intensity speckles by dividing
them by their slowly varying envelope, as in Ref. [24]. This
flat-field normalization is not kept for the training dataset; it
is used only here to estimate the auto-correlation. We estimate
this envelope by blurring each camera detection with a
Gaussian kernel bigger than the average speckle size. In this
case, we used a standard deviation of σ 0 � 25 pixels. The nor-
malized patterns are auto-correlated, and their auto-correlations
are averaged through all the measurements. In this way, we de-
termine the auto-correlation of the average speckle size.

Successively, we fit the resulting average auto-correlation
with a bi-dimensional Gaussian profile, g�Σ�. We make this
approximation because the auto-correlation of a Gaussian func-
tion, with a given σ, is another Gaussian with twice the pre-
vious standard deviation, 2σ. In practice, if we take a Gaussian
function g�σ� and we compute its auto-correlation, we obtain
g�σ� ⋆ g�σ� � g�2σ� � g�Σ�. Because of this, our method as-
sumes that the PSF starts from half the value of the standard
deviation fitted.

APPENDIX E: SMOOTHING THE OUTPUT OR
SMOOTHING THE TRANSMISSION

It is possible to move the blurring rule from the output plane to
the TM to speed up the reconstruction time and keep the speed
comparable to standard GS. In this case, it is easy to verify that
the smoothing operator can act on the right and left sides inde-
pendently (associativity rule). In step 4 of SmoothGS, we apply
a convolution of the kernel K to the propagated output Ỹ i. If
we describe the kernel in a Toepliz representation, the convo-
lution can be expressed as a matrix multiplication, Ỹ 0

i � Ỹ iK.
However, if we apply the smoothing to the definition of the
output, we notice that

Ỹ 0
i � �PXT

i �K � P�XT
i K�: (E1)

The latter equation implies that we could directly smooth
the TM as in XT

i K to obtain a convolved output and then carry
out the product with the measurement pattern P. This oper-
ation is advantageous when γ > 1 because, if compared to com-
puting the product PXT

i and then blurring it withK, it requires
fewer row-column multiplications. When γ < 1 instead,
smoothing the output is faster. In practice, we have always
implicitly blurred the TM since this property does not compro-
mise the reconstruction ability.
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