Check for
Updates

Optimizing Resource Allocation in the Edge: A Minimum
Weighted Vertex Cover Approach

Antonios Makris*
Department of Informatics and
Telematics,

Harokopio University of Athens &
School of Electrical and Computer
Engineering,

National Technical University of
Athens
Greece
amakris@hua.gr

Theodoros Theodoropoulos
Department of Informatics and
Telematics,

Harokopio University of Athens &
School of Electrical and Computer
Engineering,

National Technical University of
Athens
Greece
ttheod@hua.gr

Matteo Mordacchini
Institute of Information Science and
Technologies, National Research
Council (CNR), Pisa
Italy
matteo.mordacchini@isti.cnr.it

Emmanouil Maragkoudakis
Department of Informatics and
Telematics,
Harokopio University of Athens
Greece
csi22304@hua.gr

Ioannis Korontanis
Department of Informatics and
Telematics,

Harokopio University of Athens &
School of Electrical and Computer
Engineering,

National Technical University of
Athens
Greece
gkorod@hua.gr

Patrizio Dazzi
Department of Computer Science,
University of Pisa
Italy
patrizio.dazzi@unipi.it

Ioannis Kontopoulos
Department of Informatics and
Telematics,

Harokopio University of Athens &
School of Electrical and Computer
Engineering,

National Technical University of
Athens
Greece
kontopoulos@hua.gr

Emanuele Carlini
Institute of Information Science and
Technologies, National Research
Council (CNR), Pisa
Italy
emanuele.carlini@isti.cnr.it

Theodora Varvarigou
School of Electrical and Computer
Engineering,

National Technical University of
Athens
Greece
dora@telecom.ntua.gr

ABSTRACT

The transition from Cloud Computing to a Cloud-Edge continuum
introduces novel opportunities and challenges for data-intensive
and interactive Next Generation applications. Strategies that were
effective in the Cloud environment now necessitate reconsidera-
tion to adapt to the Edge’s distributed, dynamic, and heterogeneous
ecosystem. Proactively planning the placement of application im-
ages becomes crucial to minimize image transfer time, align with
the dynamic nature of the system, and meet the strict demands of
applications. In this regard, this paper proposes an empirical exper-
imental analysis, by comparing the results of different placement

*Corresponding author.

This work is licensed under a Creative Commons Attribution International 4.0 License.

FRAME °24, June 3-7, 2024, Pisa, Italy

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0641-7/24/06
https://doi.org/10.1145/3659994.3660316

15

strategies and various network topologies. In particular, we model
the problem of proactive placement of application images as a Min-
imum Weighted Vertex Cover problem. Our results demonstrate
that the Greedy approach seems to offer the optimal tradeoff with
respect to the number of allocated images and execution time.

CCS CONCEPTS

« Computing methodologies — Simulation evaluation; » Com-
puter systems organization — Availability; « Theory of compu-
tation — Graph algorithms analysis; Approximation algorithms
analysis.

KEYWORDS

Edge Computing, Cloud Computing, Proactive Image Placement,
Application Placement, Optimization Problem

ACM Reference Format:

Antonios Makris, Emmanouil Maragkoudakis, Ioannis Kontopoulos, Theodoros
Theodoropoulos, Ioannis Korontanis, Emanuele Carlini, Matteo Mordac-
chini, Patrizio Dazzi, and Theodora Varvarigou. 2024. Optimizing Resource
Allocation in the Edge: A Minimum Weighted Vertex Cover Approach. In

https://orcid.org/0000-0003-0514-4292
https://orcid.org/0009-0005-6994-7854
https://orcid.org/0000-0001-9862-8944
https://orcid.org/0000−0002−4618−4891
https://orcid.org/0009-0005-4174-537X
https://orcid.org/0000-0003-3643-5404
https://orcid.org/0000-0002-1406-828X
https://orcid.org/0000-0001-8504-1503
https://orcid.org/
https://doi.org/10.1145/3659994.3660316
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3659994.3660316&domain=pdf&date_stamp=2024-07-29

FRAME ’24, June 3-7, 2024, Pisa, Italy

Workshop on Flexible Resource and Application Management on the Edge
(FRAME °24), June 3-7, 2024, Pisa, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3659994.3660316

1 INTRODUCTION

The proliferation of data-intensive applications and latency-sensitive
services, also referred to as NextGen applications, is driving the
adoption of edge computing architectures [17, 20, 36, 37]. NextGen
applications, encompassing data analytics, artificial intelligence,
augmented/virtual reality, and Internet of Things (IoT) platforms,
demand real-time processing and low latency for responsive and
immersive user experiences. However, centralized cloud computing
models face challenges in meeting these demands due to constraints
related to bandwidth, network latency, location-awareness, mobility
support, security, and privacy.

In response to these challenges, edge computing emerges as a
solution by facilitating computation and data storage at the network
edge, closer to end users and data sources [29]. Rather than sending
all data to distant cloud servers, edge computing allows localized
analysis and decision-making on resource-constrained edge devices
[21, 24, 38]. This allows latency-critical tasks to be executed within
milliseconds, addressing issues associated with high bandwidth
consumption, intermittent connectivity, and single points of failure
in cloud-only architectures [22, 23].

A prevalent design pattern for NextGen edge applications in-
volves microservice-based architectures, leveraging lightweight
and modular, independently deployable services [3, 25]. Decom-
posing applications into granular, loosely-coupled microservices
offers flexibility for rapid updates without disrupting other com-
ponents. This also enables services to be dynamically instantiated
on demand based on real-time user presence, workload shifts and
resource availability.

However, edge infrastructures pose unique challenges for de-
ploying and managing microservices at scale, given the limited
resources of edge nodes compared to data centers. Additionally,
the dynamic nature of edge workloads demands fast and adaptive
service provisioning. Naively downloading application images for
each service instance activation from centralized repositories fails
to meet these requirements, due to possible bandwidth costs and
transfer time.

This work focuses on addressing these challenges through a
distributed edge image management approach. In particular, we
model the problem of proactive image placement of application
images as a Minimum Weighted Vertex Cover (MWVC) which en-
ables a concise and precise representation, effectively reducing the
complexity of the problem formulation. The goal is to balance the
storage usage with the latency induced by image transfer. MWVC
has a well-established theoretical foundation in graph theory, with
a plethora of research and efficient algorithms tailored to discover
the minimum weighted vertex cover set in diverse graph topolo-
gies. By leveraging this rich body of knowledge, we can benefit
from proven techniques and algorithms to solve the placement
problem optimally or approximately. Additionally, MWVC-based
solutions offer resource optimization benefits. Selecting the min-
imum weighted vertex cover guarantees the involvement of the
fewest number of nodes required to cover all edges, resulting in

16

Makris et al.

efficient resource allocation. This choice minimizes the computa-
tional and memory overhead associated with the placement process,
ultimately enhancing the overall performance of the system.

We have considered two algorithmic implementations of the
problem, the Greedy and Genetic algorithm, aiming to determine
which approach exhibits superior performance. We run these imple-
mentations against different network topologies, simulating various
possible Edge Computing environments. The experimental results
demonstrate that the Greedy implementation offers the best trade-
off for the given problem with respect to the number of allocated
images and execution time.

The remaining of this paper is organized as follows. Section 2
serves as a literature review in the field of optimal image placement
in Edge computing environments. Section 3 defines the problem
formulation and the proposed approach for the set cover prob-
lem. Section 4 presents the experimental evaluation, the simulation
methodology, and discusses the experimental result. Finally, Sec-
tion 5 summarizes the merits of our work and highlights some
perspectives that require further attention in the future.

2 RELATED WORK

The effective placement of application images in the dynamic and
heterogeneous Cloud-Edge Continuum is a crucial concern [9, 16].
Addressing this challenge requires the application of diverse solu-
tion methodologies based on optimization techniques, including
Integer Programming [15, 26], Markov Decision Processes [30], and
stochastic optimization [27]. Various versions of the Integer Pro-
gramming paradigm are discussed in [15, 26, 33]. In [43], authors
delve into the use of Integer Nonlinear Programming in Fog Com-
puting, while [6] recommends Mixed Integer Linear Programming.
Another approach to formulating the image placement problem in-
volves the implementation of Constrained Optimization, as outlined
in [2]. Constrained Optimization involves methods for determining
optimal values for specific variables while adhering to specified con-
straints. Additionally, [1] suggests that Markov Decision Processes
[30], stochastic optimization [27], and general convex optimiza-
tion are potential solutions to effectively address the challenges of
formalizing the image placement problem.

Moreover, another crucial aspect observed in various research
studies within the scientific literature is the framing of the optimiza-
tion problem within the utilized metrics. In [19, 35, 41], the emphasis
was on minimizing service latency in the image placement process.
Low latency is considered essential for delay-sensitive applications,
directing the majority of scientific efforts towards utilizing latency
as the primary metric. Additionally, [32] explores Reinforcement
Learning techniques to extend Kubernetes, enabling the deploy-
ment and replication of delay-sensitive containerized services in
a geographically distributed system. Another proposed solution,
ICON, is introduced in [45], where autonomous containers col-
laborate to find the optimal allocation of their services in terms
of latency. Given the nature of Edge and Cloud infrastructures,
minimizing operational expenses emerges as a pivotal concern.
Therefore, it becomes evident that the cost associated with im-
age placement is another measure that should be considered, as
highlighted in [5]. Furthermore, resource utilization is identified
as another crucial metric explored within optimization strategies,

https://doi.org/10.1145/3659994.3660316

Optimizing Resource Allocation in the Edge: A Minimum Weighted Vertex Cover Approach

as evidenced in [34] and [28]. Lastly, the congestion rate is an ad-
ditional metric deserving exploration. Yu et al. [44] investigated
the congestion ratio, exploring its potential as the minimum ratio
between flow and link capacity to accommodate service placement.

Furthermore, prior efforts have emphasized reactive image place-
ment strategies activated in response to service requests within
Edge computing environments. However, given the intricate func-
tionalities and stringent Quality of Service (QoS) requirements asso-
ciated with contemporary services, this reactive paradigm appears
inadequate. Our focus is on implementing a proactive approach, a
relatively unexplored area within the scientific community. Only a
few exceptions, such as the work in [31] and [12], have explored
proactive image placement. For instance, in [31], a Reinforcement
Learning-based mechanism proactively deploys microservices on
edge servers, taking into consideration the structure of the mi-
croservice graph application. Similarly, in [12], efforts aimed at
establishing a service placement and migration model leveraging
mobility prediction in Mobile Edge Computing (MEC). However,
these studies primarily focus on specific solutions rather than con-
ducting a comprehensive analysis of the potential effects of various
algorithmic approaches or network topologies on proactive image
placement. In our recent work [39], we modeled the problem of
proactive application image placement as a Minimum Vertex Cover.
Recognizing the importance of considering weighted edges, in this
paper, we further extended our model to Minimum Weighted Vertex
Cover (MWVC).

3 PROBLEM FORMULATION

The Minimum Weighted Vertex Cover (MWVC) problem is a classi-
cal NP-hard optimization problem in graph theory. Given an undi-
rected weighted graph, the minimum weighted vertex cover prob-
lem is to find the vertex cover with the minimum sum of weights
of the constituent vertices. A slightly different formulation of the
problem and the introduction of certain constraints can transform
the proactive image placement problem into a set cover problem.
More specifically, the MWVC algorithm assigns weights to each
vertex in the graph based on two key factors:

o Average Latency (L(i)): The average latency of edges con-
nected to a vertex. Lower latency indicates a better choice
for inclusion in the vertex cover.

e Available Storage (S(i)): The available storage capacity of
the device associated with each vertex. A device with more
available storage is more likely to be included in the vertex
cover.

The weight w(i) assigned to each vertex i is calculated using the
following formula:
S(i
w(i) =c1-L(i) +c2- (1 - L)
maxStorage

where:

o w(i) represents the weight of vertex i

e L(i) represents the average latency of edges connected to
vertex i

e S(i) denotes the available storage capacity of the device
associated with vertex i

17

FRAME ’24, June 3-7, 2024, Pisa, Italy

e maxStorage is the maximum available storage among all
devices in the graph

e ¢; and ¢y are constant values representing the weights as-
signed to the latency and storage terms respectively. They
are used to adjust the contribution of each term to the overall
weight calculation.

S(i)
The term 1 — maxStorage

maximum storage capacity (maxStorage) across all nodes.
The objective of the optimization problem is to minimize the
total weighted sum of selected vertices in the vertex cover:

normalizes the available storage by the

Minimize Z w(i)x;
ieV
subject to the constraints that ensure at least one vertex incident
to each edge is included in the vertex cover:

V{u,0} €E: xy+x,2>1

Additionally, x; is a binary variable representing whether vertex
i is part of the vertex cover (1) or not (0).

This formula combines the factors of latency and available stor-
age to assign a weight to each vertex, considering both aspects
in the MWVC algorithm. Higher weights indicate a less favorable
choice for inclusion in the MWVC set.

4 EXPERIMENTAL EVALUATION
4.1 Simulation Methodology

To simulate different network topologies, as well as image place-
ment and image transfers among network nodes, Python scripts
were developed and utilized. More specifically, the NetworkX Python
package [13] was leveraged to generate diverse network topologies
with varying parameters. This package allows for the generation
of various network topologies and provides objects that streamline
the storage and manipulation of node and edge attributes.

The assessed algorithms’ performance, i.e., Greedy and Genetic
(Section 4.2) is evaluated across four different network graph topolo-
gies. These topologies are simulated at different scales, spanning
from 64 to 1024 vertices, including V' = [64, 128, 256,512, 1024].
Nevertheless, the number of edges in each graph exhibits signifi-
cant variation due to the unique characteristics, input parameters,
and connectivity properties inherent in each topology. This vari-
ability stems from the different number of vertices. The network
topologies employed in this research work are:

Full r-ary tree. A full r-ary tree is a hierarchical tree data struc-
ture where each internal node has exactly r children, except possibly
for the last internal node, which may have fewer children if the
total number of nodes is not a multiple of r. This structure ensures a
uniform distribution of nodes across levels, optimizing space utiliza-
tion and facilitating efficient traversal and search operations. The

total number of nodes in a full r-ary tree of height h is given by the

(h+1) _ . .
formula *—— L where r is the branching factor. These trees gener-

alize the concept of binary trees, offering a broader perspective on
hierarchical data structures and their algorithmic implications in
diverse computing domains [40]. This work considers two variants
of the full r-ary tree: r = 2 and r = 4.

FRAME ’24, June 3-7, 2024, Pisa, Italy

Erd6-Rényi random network. The concept of random graphs
introduced by Paul Erdés and Alfréd Rényi, who demonstrated
the effectiveness of probabilistic methods in solving graph theory
problems [10, 11]. Initially introduced in the 1950s, when computing
power was limited, much of the modeling focused on relatively
small “ordered” or “regular” networks, which are infrequent in real-
world scenarios [4]. An alternative definition of a random graph is
the binomial model, where the G(N, p) model begins with N nodes
and connects each distinct node pair with a probability p. This work
considers two variants of the Erdés-Rényi model based on edge
probability p: p = 0.2 and p = 0.5. As expected, the structure of
the graph generated by each probability varies significantly; as p
increases, the number of edges also increases.

The uncorrelated Erd6-Rényi random graph model assumes
equal and independent probabilities for every pair of vertices, treat-
ing the network as a collection of equivalent units. However, real
networks are inherently correlated systems, and their topology
often deviates from the uncorrelated random graph model. The
focus has shifted to developing more sophisticated graph models,
with an emphasis on “real-world” networks such as the Internet
and the World-Wide Web. To understand the general properties
of such networks, two prominent classes of models have emerged:
“small-world” and “scale-free”. Small-world networks aim to cap-
ture the clustering observed in real graphs and are inhomogeneous,
with relatively localized patterns of connectivity between nodes.
Scale-free networks exhibit inhomogeneity in the “degree” of nodes
(i.e., the number of connections a node has to other nodes) and
replicate the power-law degree distribution present in many real
networks.

Barabasi-Albert scale-free network. Barabasi and Albert [7]
introduced the concept of scale-free networks, capable of reproduc-
ing networks with “hubs”, where a few nodes have considerably
more connections than the average, a property known as scale-free.
Since numerous real-world networks exhibit degree distributions
similar to the Barabasi-Albert model, it continues to be one of
the most renowned and frequently employed network generation
methods. The algorithm that produces a Barabasi-Albert scale-free
network of size N, starts with a small number of nodes m, and
then N — m, nodes are introduced sequentially into the network,
where each node connects to/from m < m, existing nodes. There-
fore, the initial size of the network m, determines the maximum
mean degree of the network. This work considers two variants of
the Barabasi-Albert model: m = 1 and m = 3. As expected, the
graph structure generated by each m value varies significantly; as
m increases, the number of edges also increases.

Watts—Strogatz small-world network. Watts and Strogatz
[42] proposed what has become known as the archetypical small-
world network. The algorithm begins by constructing an undirected
ring lattice network, consisting of a ring of nodes with edges evenly
distributed between its k; nearest left and right neighbors. The
value kp denotes the degree of each node in the initial lattice. Sub-
sequently, a random rewiring process is applied, where each edge
has a probability p of being rewired. The algorithm only rewires
one end of each edge and traverses edges in a way that ensures
that each node loses at most half of its edges. It is important to
note that edges are only replaced, not added or removed, thus the

18

Makris et al.

total number of edges and the mean degree is unchanged. By vary-
ing the rewiring probability p, it can be demonstrated that only a
small number of rewires is required to produce a low average path
length while preserving a high clustering coefficient. Specifically,
for p = 0, the small-world model retains a regular graph, while for
p = 1, arandom graph is generated, differing only slightly from
the uncorrelated random graph. For intermediate values of p, the
Watts-Strogatz model produces a small-world network, which cap-
tures the high clustering properties of regular graphs and the small
characteristic path length of random graph models. Consequently,
our focus was exclusively on a single rewiring probability of p = 0.5,
exploring two distinct degree values: ki = 2 and k; = 4. As the
degree of a node represents the number of edges connecting it to
other nodes in the graph, the resulting graph structure exhibits
significant variations for each degree value; as k increases, the
number of edges also increases.

4.2 Algorithmic Approaches

4.2.1 Greedy. The Greedy algorithm is a powerful method for effec-
tively addressing various optimization problems. It works by always
selecting the option that appears best at the moment, attempting to
maximize the return based on local conditions, assuming that this
will lead to a globally optimal solution [8]. When applied to the
minimum weighted vertex cover problem, the Greedy algorithm
begins with an empty set of vertices, denoted as S. The algorithm
dynamically updates the weights during each iteration, with the
weight of a vertex being the sum of the weights of the edges it
covers. This weight update mechanism ensures that the algorithm
considers the cumulative impact of edge weights when selecting
vertices for inclusion in the vertex cover. It then proceeds by select-
ing an arbitrary edge, e, from the graph and adds both endpoints of
e to set S. Subsequently, the algorithm removes all edges covered
by the vertices in S from the graph. If the graph becomes empty, set
S is returned as the solution to the minimum weighted vertex cover.
However, if the graph is not empty, the process iterates by selecting
another arbitrary edge, e. At each iteration, the algorithm priori-
tizes the edge with the fewest number of uncovered vertices, adding
both endpoints to the vertex cover set. This strategy ensures the set
of vertices covers as many edges as possible while considering the
weights assigned to each vertex. While the Greedy algorithm may
not always yield an optimal solution, encountering local optima in
certain scenarios, it demonstrates favorable performance for the
minimum weighted vertex cover problem. Specifically, the Greedy
algorithm is known to produce a solution size at most twice that of
the optimal solution, establishing a 2-approximation guarantee.

4.2.2 Genetic. Genetic Algorithms (GAs) leverage evolutionary
principles such as natural selection, genetic variation, and the sur-
vival of the fittest observed in biological organisms to create heuris-
tic search algorithms [14]. Inspired by Darwinian evolution, GAs
employ concepts like crossover, mutation, and natural selection to
intelligently explore a defined search space and tackle complex prob-
lems [18]. In cases characterized by vast exploration spaces and the
availability of fitness evaluations for solutions, GAs prove highly
effective. Hence, GAs can be applied to solve the MWVC problem.
The evolutionary process initiates with the creation of a population

Optimizing Resource Allocation in the Edge: A Minimum Weighted Vertex Cover Approach

of chromosomes encoding potential solutions to the MWVC prob-
lem. These chromosomes are generated either randomly or using
heuristic methods. Parent chromosomes are then chosen based on
their fitness values, which reflect how effectively their correspond-
ing sets of vertices cover edges in the graph. Through stochastic
selection and modification employing crossover and mutation oper-
ators, new populations emerge, inheriting advantageous traits from
the fittest individuals of the preceding generation. This iterative
cycle persists until an optimal solution is attained or a predefined
termination condition is met. The optimization mechanism of a
genetic algorithm relies on pivotal elements such as the fitness func-
tion, encoding scheme, crossover, and mutation. Together, these
components drive the generation of increasingly fit solutions. The
output of the GA is the chromosome with the highest fitness value,
corresponding to a set of vertices constituting a minimum weighted
vertex cover.

The genetic algorithm was configured with the following pa-
rameters: a) Population Size, 100 individuals per generation, b)
Generations, 150, c) Selection Method, Roulette wheel selection
was utilized to choose individuals from the current population
as parents for generating offspring, d) Crossover Method, Order
Crossover (OX) was applied to combine genetic material from se-
lected parents and e) Mutation Rate, A mutation rate of 0.1 was set,
indicating a 10% chance of mutation for each gene in an individual
solution during each generation of the genetic algorithm.

4.3 Simulation Results

This section presents the simulation results for the different net-
work topologies obtained by the two algorithms examined. Two
performance metrics are employed to evaluate the efficacy of each
algorithm in handling the proactive application image placement
problem. The metrics considered include: i) execution time (ExT):
total duration each algorithm takes to produce a solution and ii)
vertex cover set (VCS): the size of vertices in it.

As discussed in subsection 4.1, different variants are considered
for each network topology, taking into account the input parameters
associated with each model. A single representative variation is
visually depicted for each network topology: r = 2 for full r-ary
tree, p = 0.2 for Erd6—-Rényi, m = 1 for Barabasi-Albert and k; = 2
for Watts—Strogatz. Detailed results for the remaining variants of
each model are provided in Table 1. In the table, the abbreviations
FR, ER, BA and WS correspond to Full r-ary tree, Erd6—Rényi,
Barabasi-Albert and Watts—Strogatz, respectively.

Execution time analysis. Figure 1 evaluates the execution time
of each algorithm for the different network topologies. As the re-
sults indicate, the execution time of both examined algorithms is
significantly higher for Erd6-Rényi graphs (Figure 1b) compared
to other network topologies, especially as the number of vertices
increases. As an illustration, when considering 1024 vertices, the
Genetic algorithm demonstrates an execution time of 99 seconds
for Erd6-Rényi graphs and 56 seconds (almost 2 times slower) for
Watts-Strogatz graphs, whereas for the Greedy algorithm, the exe-
cution times are 2.2 seconds and 0.5 seconds (almost 5 times slower),
respectively. Both algorithms exhibit the lowest execution times for
Barabasi-Albert graphs, however, the execution times are compara-
ble with Watts-Strogatz and full r-ary tree. As the results suggest,

19

FRAME ’24, June 3-7, 2024, Pisa, Italy

the Genetic algorithm demonstrates higher execution times com-
pared to the Greedy algorithm for all network topologies. Both
algorithms demonstrate a consistent pattern across the various net-
work topologies, with the execution time showing a linear growth
in tandem with the increase in the number of vertices. Generally,
as the number of vertices increases and additional nodes are incor-
porated into the vertex cover set, the execution time escalates, as
the generated graph becomes larger.

Vertex Cover Set size analysis. Figure 2 evaluates the vertex cover
set produced by each algorithm for the different network topologies.
As expected, the vertex cover set’s size increases in a linear fashion
with an increase in the number of vertices. As the results suggest,
compared to other network topologies, Greedy algorithm generates
a significantly smaller vertex cover set for Barabasi-Albert graphs.
As an illustration, when considering Barabasi-Albert graphs with
512 vertices, the Greedy algorithm generates a vertex cover set
size of 176 while for Erd6-Rényi, Watts-Strogatz and full r-ary
tree the sizes are 502, 328 and 256 respectively. As the results in-
dicate, the Greedy algorithm produce the largest vertex cover sets
for Erd6-Rényi graphs followed by Watts-Strogatz. The Genetic
algorithm produces vertex cover sets of nearly equivalent sizes
across the different network topologies, demonstrating minimal
fluctuations. The results demonstrate that the Greedy algorithm
yields smaller vertex cover sets compared to the Genetic algorithm
across all network topologies.

Discussion. A brief overview of the experimental simulation re-
sults and key findings is provided to summarize the performance
assessment of each algorithm. As the results suggested, the Genetic
algorithm demonstrates higher execution times compared to the
Greedy algorithm for all network topologies. This is due to the
fact that applications of Genetic algorithms in the optimizations of
complex problems can lead to a substantial computational effort,
given the iterative evaluation of the objective function(s) and the
population-based nature of the search process. As the size of the
problem and the population increases, the time required to generate
and evaluate each generation of candidate solutions also increases,
resulting in longer execution time. Regarding different graph topolo-
gies, the Greedy algorithm produces the smallest vertex cover set
sizes for Barabasi-Albert and full r-ary tree, while the largest sizes
are produced for Erd6-Rényi followed by Watts—Strogatz graphs.
In general, in terms of the size of the vertex cover set, the Genetic
algorithm generates larger results than the Greedy algorithm for all
network topologies. To summarize, the Greedy approach presents
superior results with respect to the number of allocated images
(vertex cover set size) and execution time.

5 CONCLUSION

The effective placement of Edge resources plays a pivotal role in
managing Edge Computing platforms, facilitating the deployment
of applications near the end-users. This placement is usually driven
by scheduling decisions aimed at optimizing various performance
indicators, including network performance, and ensuring data prox-
imity to its source. Implementing these scheduling decisions often
involves transferring and deploying potentially large application
images across numerous Edge resources. Hence, it is crucial to pro-
vide strategies that proactively transfer these images in a manner

FRAME ’24, June 3-7, 2024, Pisa, Italy

Full r-ary tree

Makris et al.

Erdo-Renyi Graph

] —— Greedy 10° 4 —— Greedy
Genetic Genetic
£ §
‘é / g 10° 4
& 10° 4 / g
/ 1074
260 460 660 8(‘]0 10‘00 260 460 660 860 10‘00
Number of Vertices Number of Vertices
(a) Full r-ary (b) Erd6-Rényi
Barabasi-Albert Graph Watts-Strogatz Graph
§ —— Greedy 1 —— Greedy
4 Genetic Genetic
g 'y z
:]
5 '3 E
%] g 10" q
1074 /
260 460 6(‘)0 860 10‘00 260 460 660 860 10‘00
Number of Vertices Number of Vertices
(c) Barabasi-Albert (d) Watts—Strogatz
Figure 1: Execution time of each algorithm for the different network topologies
Table 1: Detailed results for the remaining variant of each model
V Metrics
r=4 p=0.5 m=3 k=4
Greedy Genetic Greedy Genetic Greedy Genetic Greedy Genetic
ExT 0.28 0.32 0.34 0.4 0.058 0.078 0.059 0.37
64 VCS 16 62 58 62 10 62 33 61
128 ExT 0.92 0.98 0.98 1.17 0.069 1.01 0.062 0.19
VCS 32 126 116 127 21 125 71 125
256 ExT 3.01 3.03 4.1 4.5 0.12 3.36 0.10 1.18
VCS FR 64 254 ER 504 510 BA 52 253 WS 138 252
512 ExT 11.32 12.65 22.34 26.08 0.31 12.57 0.26 1.89
VCS 128 508 501 510 100 507 280 509
1024 ExT 46.43 56.43 138.21 165.32 1.16 56.23 0.93 2.34
VCS 256 1011 1018 1022 206 1022 570 1021

that minimizes the download time upon request while simultane-
ously reducing the overall number of transfers. In this paper, we

model the problem of proactive placement of application images as

20

Optimizing Resource Allocation in the Edge: A Minimum Weighted Vertex Cover Approach

FRAME ’24, June 3-7, 2024, Pisa, Italy

Full r-ary Erdo-Renyi Graph
1000 ™= Greedy === Greedy
Genetic 1000 Genetic
8004 800
o o
> >
£ £
8 6004 8 600
k] k]
g g
2 2
5 5
5 5
3 3
E 400+ E 400
z z
2004 2004
ol mm | oL M l
64 128 256 512 1024 64 128 256 512 1024
Number of Vertices Number of Vertices
(a) Full r-ary (b) Erd6-Rényi
Barabasi-Albert Graph Watts—Strogatz Graph
1000| == Greedy 1000| ™= Greedy
Genetic Genetic
8004 800 |
o o
> >
£ £
8 600 8 600
3 3
3 3
2 2
5 5
] I
£ £
£ 400 £ 400
z z
2004 2004
64 128 256 512 1024 64 128 256 512

Number of Vertices

(c) Barabasi-Albert

1024
Number of Vertices

(d) Watts—Strogatz

Figure 2: Vertex Cover set of each algorithm for the different network topologies

a Minimum Weighted Vertex Cover problem. Two placement strate-
gies, Greedy and Genetic, are compared against different network
topologies, simulating various possible Edge computing environ-
ments. The results indicate that the Greedy approach offers the
optimal tradeoff with respect to the number of allocated images and
execution time. As a future work, we intend to investigate other
methodologies for solving the MWVC problem and broaden the
scope of algorithmic approaches under consideration. Additionally,
we will expand the formulation assessment beyond conventional
factors such as latency and storage capacity, considering a multi-
dimensional spectrum, taking into account variables such as the
object’s volume, available link bandwidth, transfer time constraints
and placement cost.

ACKNOWLEDGMENTS

This project has received funding from the EU’s Horizon 2020
program under Grant agreement No 101016509 (CHARITY). This
paper reflects only the authors’ view and the Commission is not
responsible for any use that may be made of the information it
contains.

21

REFERENCES

[1] Farah Ait-Salaht, Frédéric Desprez, and Adrien Lebre. 2021. An Overview of
Service Placement Problem in Fog and Edge Computing. ACM Comput. Surv. 53,
3(2021), 65:1-65:35. https://doi.org/10.1145/3391196

Farah Ait-Salaht, Frédéric Desprez, Adrien Lebre, Charles Prud’homme, and
Mohamed Abderrahim. 2019. Service Placement in Fog Computing Using Con-
straint Programming. In 2019 IEEE International Conference on Services Comput-
ing, SCC 2019, Milan, Italy, July 8-13, 2019, Elisa Bertino, Carl K. Chang, Peter
Chen, Ernesto Damiani, Michael Goul, and Katsunori Oyama (Eds.). IEEE, 19-27.
https://doi.org/10.1109/SCC.2019.00017

Muhammad Alam, Joao Rufino, Joaquim Ferreira, Syed Hassan Ahmed, Nadir
Shah, and Yuanfang Chen. 2018. Orchestration of microservices for iot using
docker and edge computing. IEEE Communications Magazine 56, 9 (2018), 118—
123.

Réka Albert and Albert-Laszl6 Barabasi. 2002. Statistical mechanics of complex
networks. Reviews of modern physics 74, 1 (2002), 47.

Hamid Reza Arkian, Abolfazl Diyanat, and Atefe Pourkhalili. 2017. MIST: Fog-
based data analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications. J. Netw. Comput. Appl. 82 (2017), 152-165. https:
//doi.org/10.1016/J.JNCA.2017.01.012

Onur Ascigil, Truong Khoa Phan, Argyrios G. Tasiopoulos, Vasilis Sourlas, loannis
Psaras, and George Pavlou. 2017. On Uncoordinated Service Placement in Edge-
Clouds. In IEEE International Conference on Cloud Computing Technology and
Science, CloudCom 2017, Hong Kong, December 11-14, 2017. IEEE Computer Society,
41-48. https://doi.org/10.1109/CLOUDCOM.2017.46

Albert-Lasz]6 Barabasi and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509-512.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

[2]

(3]

https://doi.org/10.1145/3391196
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1016/J.JNCA.2017.01.012
https://doi.org/10.1016/J.JNCA.2017.01.012
https://doi.org/10.1109/CLOUDCOM.2017.46

FRAME ’24, June 3-7, 2024, Pisa, Italy

[9] Jad Darrous, Thomas Lambert, and Shadi Ibrahim. 2019. On the Importance
of Container Image Placement for Service Provisioning in the Edge. In 28th
International Conference on Computer Communication and Networks, ICCCN 2019,
Valencia, Spain, July 29 - August 1, 2019. IEEE, 1-9. https://doi.org/10.1109/
ICCCN.2019.8846920

[10] Paul Erdés and Alfréd Rényi. 1959. On random graphs Publ. Math. debrecen 6

(1959), 290-297.

Edgar N Gilbert. 1959. Random graphs. The Annals of Mathematical Statistics 30,

4(1959), 1141-1144.

Diogo Gongalves, Karima Velasquez, Marilia Curado, Luiz Fernando Bittencourt,

and Edmundo Roberto Mauro Madeira. 2018. Proactive Virtual Machine Migration

in Fog Environments. In 2018 IEEE Symposium on Computers and Communications,

ISCC 2018, Natal, Brazil, June 25-28, 2018. IEEE, 742-745. https://doi.org/10.1109/

ISCC.2018.8538655

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,

dynamics, and function using NetworkX. Technical Report. Los Alamos National

Lab.(LANL), Los Alamos, NM (United States).

John H Holland. 1992. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT press.

Hua-Jun Hong, Pei-Hsuan Tsai, and Cheng-Hsin Hsu. 2016. Dynamic module

deployment in a fog computing platform. In 18th Asia-Pacific Network Operations

and Management Symposium, APNOMS 2016, Kanazawa, Japan, October 5-7, 2016.

IEEE, 1-6. https://doi.org/10.1109/APNOMS.2016.7737202

Kiranpreet Kaur, Fabrice Guillemin, and Francoise Sailhan. 2022. Container

placement and migration strategies for cloud, fog, and edge data centers: A

survey. Int. J. Netw. Manag. 32, 6 (2022). https://doi.org/10.1002/NEM.2212

[17] Ioannis Korontanis, Konstantinos Tserpes, Maria Pateraki, Lorenzo Blasi, John

Violos, Ferran Diego, Eduard Marin, Nicolas Kourtellis, Massimo Coppola,

Emanuele Carlini, et al. 2020. Inter-operability and orchestration in hetero-

geneous cloud/edge resources: The ACCORDION vision. In Proceedings of the 1st

Workshop on Flexible Resource and Application Management on the Edge. 9-14.

Ketan Kotecha and Nilesh Gambhava. 2003. A Hybrid Genetic Algorithm for

Minimum Vertex Cover Problem.. In IICAIL 904-913.

Gilsoo Lee, Walid Saad, and Mehdi Bennis. 2017. An online secretary framework

for fog network formation with minimal latency. In IEEE International Conference

on Communications, ICC 2017, Paris, France, May 21-25, 2017. IEEE, 1-6. https:

//doi.org/10.1109/ICC.2017.7996574

Antonios Makris, Abderrahmane Boudi, Massimo Coppola, Luis Cordeiro, Mas-

similiano Corsini, Patrizio Dazzi, Ferran Diego Andilla, Yago Gonzalez Rozas,

Manos Kamarianakis, Maria Pateraki, et al. 2021. Cloud for holography and aug-

mented reality. In 2021 IEEE 10th International Conference on Cloud Networking

(CloudNet). IEEE, 118-126.

Antonios Makris, Ioannis Kontopoulos, Evangelos Psomakelis, Stylianos Nektar-

ios Xyalis, Theodoros Theodoropoulos, and Konstantinos Tserpes. 2022. Perfor-

mance Analysis of Storage Systems in Edge Computing Infrastructures. Applied

Sciences 12, 17 (2022), 8923.

Antonios Makris, Evangelos Psomakelis, Emanuele Carlini, Matteo Mordacchini,

Theodoros Theodoropoulos, Patrizio Dazzi, and Konstantinos Tserpes. 2024. Pro-

active component image placement in Edge computing environments. Future

Generation Computer Systems (2024).

[23] Antonios Makris, Evangelos Psomakelis, Ioannis Korontanis, Theodoros Theodor-

opoulos, Antonis Protopsaltis, Maria Pateraki, Zbyszek Ledwon, Christos Diou,

Dimosthenis Anagnostopoulos, and Konstantinos Tserpes. 2023. Streamlining

XR Application Deployment with a Localized Docker Registry at the Edge. In

European Conference on Service-Oriented and Cloud Computing. Springer, 188-202.

Antonios Makris, Evangelos Psomakelis, Theodoros Theodoropoulos, and Kon-

stantinos Tserpes. 2022. Towards a Distributed Storage Framework for Edge

Computing Infrastructures. In Proceedings of the 2nd Workshop on Flexible Re-

source and Application Management on the Edge. 9-14.

[25] Antonios Makris, Konstantinos Tserpes, and Theodora Varvarigou. 2022. Transi-
tion from monolithic to microservice-based applications. Challenges from the
developer perspective. Open Research Europe 2 (2022), 24.

[26] Mohammed Islam Naas, Philippe Raipin Parvédy, Jalil Boukhobza, and Lau-
rent Lemarchand. 2017. iFogStor: An IoT Data Placement Strategy for Fog
Infrastructure. In Ist IEEE International Conference on Fog and Edge Computing,
ICFEC 2017, Madrid, Spain, May 14-15, 2017. IEEE Computer Society, 97-104.
https://doi.org/10.1109/ICFEC.2017.15

[27] Michael J. Neely. 2010. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S00271ED1V01Y201006 CN'T007

[28] Charith Perera, Yongrui Qin, Jilio Cezar Estrella, Stephan Reiff-Marganiec, and

Athanasios V. Vasilakos. 2017. Fog Computing for Sustainable Smart Cities: A

Survey. ACM Comput. Surv. 50, 3 (2017), 32:1-32:43. https://doi.org/10.1145/

3057266

Evangelos Psomakelis, Antonios Makris, Konstantinos Tserpes, and Maria Pa-

teraki. 2023. A lightweight storage framework for edge computing infrastruc-

tures/EdgePersist. Software Impacts 17 (2023), 100549.

[11

[12

(13

[14

(15

[16

[18

[19

[20

[21

[22

[24

[29

22

[30

[31

[32

[33

&
=

[35

[36

™
=

[38

[39

[40

N
e

[42

[43]

[44

[45

Makris et al.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley. https://doi.org/10.1002/9780470316887

Kaustabha Ray, Ansuman Banerjee, and Nanjangud C. Narendra. 2020. Proac-
tive Microservice Placement and Migration for Mobile Edge Computing. In 5th
IEEE/ACM Symposium on Edge Computing, SEC 2020, San Jose, CA, USA, November
12-14, 2020. IEEE, 28-41. https://doi.org/10.1109/SEC50012.2020.00010

Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. 2020.
Geo-distributed efficient deployment of containers with Kubernetes. Comput.
Commun. 159 (2020), 161-174. https://doi.org/10.1016/J.COMCOM.2020.04.061
Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp
Leitner. 2017. Optimized IoT service placement in the fog. Serv. Oriented Comput.
Appl. 11, 4 (2017), 427-443. https://doi.org/10.1007/S11761-017-0219-8

Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. 2017.
Towards QoS-Aware Fog Service Placement. In 1st IEEE International Conference
on Fog and Edge Computing, ICFEC 2017, Madrid, Spain, May 14-15, 2017. IEEE
Computer Society, 89-96. https://doi.org/10.1109/ICFEC.2017.12

Mohit Taneja and Alan Davy. 2017. Resource aware placement of IoT application
modules in Fog-Cloud Computing Paradigm. In 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), Lisbon, Portugal, May 8-12, 2017.
IEEE, 1222-1228. https://doi.org/10.23919/INM.2017.7987464

Theodoros Theodoropoulos, Dimitrios Kafetzis, John Violos, Antonios Makris,
and Konstantinos Tserpes. 2023. Multi-Agent Deep Reinforcement Learning
for Weighted Multi-Path Routing. In Proceedings of the 3rd Workshop on Flexible
Resource and Application Management on the Edge. 7-11.

Theodoros Theodoropoulos, Antonios Makris, Abderrahmane Boudi, Tarik Taleb,
Uwe Herzog, Luis Rosa, Luis Cordeiro, Konstantinos Tserpes, Elena Spatafora,
Alessandro Romussi, et al. 2022. Cloud-based xr services: A survey on rele-
vant challenges and enabling technologies. Journal of Networking and Network
Applications 2, 1 (2022), 1-22.

Theodoros Theodoropoulos, Antonios Makris, Ioannis Kontopoulos, Angelos-
Christos Maroudis, and Konstantinos Tserpes. 2023. Multi-Service Demand
Forecasting Using Graph Neural Networks. In 2023 IEEE International Conference
on Service-Oriented System Engineering (SOSE). IEEE, 218-226.

Theodoros Theodoropoulos, Antonios Makris, Evangelos Psomakelis, Emanuele
Carlini, Matteo Mordacchini, Patrizio Dazzi, and Konstantinos Tserpes. 2023.
GNOSIS: Proactive Image Placement Using Graph Neural Networks & Deep
Reinforcement Learning. In 2023 IEEE 16th International Conference on Cloud
Computing (CLOUD). IEEE, 120-128.

Wanging Tu, Xing Jin, and Peter S Excell. 2009. Performance Analysis for Overlay
Multimedia Multicast on r-ary Tree and m-D Mesh Topologies. IEEE transactions
on multimedia 11, 4 (2009), 696-706.

Karima Velasquez, David Perez Abreu, Marilia Curado, and Edmundo Monteiro.
2017. Service placement for latency reduction in the internet of things. Ann. des
Télécommunications 72, 1-2 (2017), 105-115. https://doi.org/10.1007/512243-016-
0524-9

Duncan] Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440-442.

Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Inwoong Kim, Xi Wang,
Hakki C. Cankaya, Qiong Zhang, Weisheng Xie, and Jason P. Jue. 2019. FOG-
PLAN: A Lightweight QoS-Aware Dynamic Fog Service Provisioning Framework.
IEEE Internet Things . 6,3 (2019), 5080-5096. https://doi.org/10.1109/JI0T.2019.
2896311

Ruozhou Yu, Guoliang Xue, and Xiang Zhang. 2018. Application Provisioning
in FOG Computing-enabled Internet-of-Things: A Network Perspective. In 2018
IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA,
April 16-19, 2018. IEEE, 783-791. https://doi.org/10.1109/INFOCOM.2018.8486269
Aleksandr Zavodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong, and Jussi
Kangasharju. 2018. ICON: Intelligent Container Overlays. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks, HotNets 2018, Redmond, WA, USA,
November 15-16, 2018. ACM, 15-21. https://doi.org/10.1145/3286062.3286065

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1109/ICCCN.2019.8846920
https://doi.org/10.1109/ICCCN.2019.8846920
https://doi.org/10.1109/ISCC.2018.8538655
https://doi.org/10.1109/ISCC.2018.8538655
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1002/NEM.2212
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/ICFEC.2017.15
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.1145/3057266
https://doi.org/10.1145/3057266
https://doi.org/10.1002/9780470316887
https://doi.org/10.1109/SEC50012.2020.00010
https://doi.org/10.1016/J.COMCOM.2020.04.061
https://doi.org/10.1007/S11761-017-0219-8
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1007/S12243-016-0524-9
https://doi.org/10.1007/S12243-016-0524-9
https://doi.org/10.1109/JIOT.2019.2896311
https://doi.org/10.1109/JIOT.2019.2896311
https://doi.org/10.1109/INFOCOM.2018.8486269
https://doi.org/10.1145/3286062.3286065

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Experimental Evaluation
	4.1 Simulation Methodology
	4.2 Algorithmic Approaches
	4.3 Simulation Results

	5 Conclusion
	Acknowledgments
	References

