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Abstract

Computational approaches can provide highly detailed insight
into the molecular recognition processes that underlie drug
binding, the assembly of protein complexes, and the regulation
of biological functional processes. Classical simulation
methods can bridge a wide range of length- and time-scales
typically involved in such processes. Lately, automated
learning and artificial intelligence methods have shown the
potential to expand the reach of physics-based approaches,
ushering in the possibility to model and even design complex
protein architectures. The synergy between atomistic simula-
tions and AI methods is an emerging frontier with a huge po-
tential for advances in structural biology. Herein, we explore
various examples and frameworks for these approaches,
providing select instances and applications that illustrate their
impact on fundamental biomolecular problems.
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Introduction
Recent developments in the investigation of biological
mechanisms have substantially changed our view of how
www.sciencedirect.com
proteins work: the dominant model has gradually shifted

from the reductionist view in which one protein
sequence corresponds to one structure and one func-
tion, to a new view in which all proteins are dynamic
entities that sample distinct structural states and
engage in different complexes with other bio-
molecules [1e3].

The dynamic nature of proteins and their ability to
collaborate with different partners depending on the
specific environment or cell needs is what allows
context-specific function to emerge. Paradigmatic ex-

amples are the ribosome, the proteasome, or the chap-
erone machinery, in which the components select the
most-suitable conformational states for interactions
and assemble to achieve their functional goals. In this
context, there is growing evidence that the structural
forms of interacting proteins and the dynamics of
interconversion among them can be further fine-tuned
by the impact of post-translational modifications,
which may be different in health and disease.

Understanding how these variations influence context-

dependent functions, shedding light on the mecha-
nisms that underlie interactions, and developing
methods to (re)design complex assemblies can signifi-
cantly impact our understanding of chemical biology and
the way we use this knowledge to develop chemical
tools and therapeutics.

Dramatic advances in experimental approaches, ranging
from transcriptomics to proteomics and structural reso-
lution techniques, are providing an unprecedented level
of information on complex protein organizations [4]. At

the same time, novel ways to screen for biologically
active ligands and to develop protein-based interactors
(such as, for instance, therapeutic antibodies) are
expanding the arsenal of molecules that can be exploi-
ted for basic research and therapeutic purposes [5,6].

In parallel, new approaches based on integrative
modeling [7] have been gaining prominent momentum
over the last few years, providing a high resolution picture
of large and complex multiprotein assemblies. In this
context, Mosalaganti et al. [8] developed a model for the
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2 Biophysical Methods (2024)
structure and dynamics of the human nuclear pore
complex combining AI, cryo-electron tomography (Cryo-
ET) and coarse-grained MD simulations. Singh et al. [9]
reported the use of in-cell cryoeelectron tomography and
subtomogram analysis to investigate the cage-like nuclear
basket, a peripheral region of the nuclear pore complex
which shows significant variation among species. Using
integrative modeling, the authors computed a model of

the basket in yeast and mammals that revealed how a hub
of Nups in the nuclear ring binds to basket-forming Mlp/
Tpr proteins, forming a docking platform for mRNA
recognition and preprocessing before nucleocytoplasmic
transport. A notable example of the combination of
enhanced sampling molecular dynamics (MD) simula-
tions with adaptive Markov state modeling,
cryoeelectron microscopy (cryo-EM), small-angle x-ray
scattering, and hydrogenedeuterium exchange mass
spectrometry has been reported by Juyoux et al. [10] to
describe the structure and dynamics of mitogen activated

protein (MAP) kinase phosphorylation and their role in
the mechanisms of formations of functional complexes.
The Agard Lab combined cellular cryo-ET and Alpha-
Fold2 modeling to build a workflow to identify proteins
[11], track their localization, and determine their struc-
tures with the goal of understanding how mammalian
sperms are built in situ. Notably, their cellular cryo-ETand
subtomogram averaging provided 6.0 Å reconstructions of
axonemal microtubule structures. Tertiary structures
turned out to be well resolved at this resolution allowing
the authors to unbiasedly match sperm-specific densities

with 21,615 AlphaFold2-predicted protein models of the
mouse proteome. They identified novel microtubule-
associated proteins forming an extensive interaction
network, which led to suggest a role for them in deter-
mining the mechanical properties of the filaments.

Despite this sophistication, there is still no experi-
mental technique that can provide insight at an atomic
level into the dynamic processes underlying recogni-
tion in multiprotein assembly formation nor set the
stage for the definition of rules for the design of mol-
ecules able to modulate/perturb functional pathways.

To understand complex biology at an atomic level, we
have little choice but to turn to theoretical/computa-
tional approaches.

Here, we briefly review the main advances and appli-
cations in the study of the connections among structure-
dynamics-recognition and function in protein systems,
and discuss how this knowledge can be leveraged to
study and predict complex supramolecular structures,
and ultimately design assembly-specific interactors. In
this framework, we discuss advancements in the use of

classical molecular dynamics (MD) simulations and
then we extend our attention to advanced methods
based on machine and deep learning.
Current Opinion in Structural Biology 2024, 87:102835
The dynamics underlying protein molecular
recognition and function
Understanding the mechanisms of protein-drug and
protein-protein association is the first fundamental step
for the realistic description of biochemical phenomena.

Ayaz et al. [12] used extensive MD simulations to obtain
an atomic level description of the protein conforma-
tional changes that take place when small molecules
bind. Specifically, the authors set out to study imatinib
binding to Abl kinase. Through unguided long timescale
simulations, they showed the drug first selectively
binding the autoinhibitory conformation of the kinase.

After this step, imatinib induces a large conformational
change of the protein to reach a bound state comparable
to the published crystal structures. The reliability of
unbiased simulations in returning experimentally
consistent aspects of a complex binding pathway is only
one aspect of this paper. Indeed, the authors reveal an
unexpected local structural instability (cracking) in the
C-terminal lobe of Abl kinase, which emerges during the
binding process. The region corresponds to a substruc-
ture where mutations conferring drug resistance tend to
accumulate. The computational predictions are then

used to design mimics of resistant mutants. nuclear
magnetic resonance (NMR) spectra, hydrogene
deuterium exchange measurements, and thermosta-
bility measurements on the mutants suggest that these
mutations confer imatinib resistance indeed by exacer-
bating structural instability in the C-terminal lobe: the
end effect of mutations is to render the drug-bound
state energetically unfavorable (Figure 1).

Shedding light on the mechanisms of protein-protein
complex formation as well as predicting their kinetics

is a challenging task. To this end, microscopic modeling
of association and dissociation events is a requirement,
which has often been hampered by the lack of efficient
sampling methods. Noè et al. [13,14] combined high-
throughput adaptive molecular dynamics (MD) simu-
lations with Markov modeling to study the association
between ribonuclease barnase and its inhibitor barstar.
Notably, they showed the possibility to access experi-
mentally consistent intermediate structures, revealing
an ensemble of transient (mis-bound) states and a
funnel-shaped energy landscape driving the sampled

complexes to the native basin. Notably, the use of
Markov models allowed to obtain a quantitative profiling
of the kinetics on the microsecond to hours timescales
(Figure 2).

An important contribution to the study of molecular
encounters and mechanisms leading to the formation of
multiprotein complexes comes from Brownian Dy-
namics (BD) simulations. Key work in this area is
discussed in Ref. [15]. While BD has been used as a
www.sciencedirect.com
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Figure 1

The conformational changes from the apo form of Bcr-Abl kinase (yellow) to the bound state (pink) with the inhibitor Imatinib (above the arrow). In the
lower part of the figure is highlighted the movement of the activation loop in the apo and bound state (respectively in yellow and pink).

Figure 2

A representative scheme of the study on the ribonuclease barnase in a multiprotein complex with the barstar inhibitor. The combination of adaptive MD
simulation and Markov State Models analysis allows determining intermediate states from the bound complex to the isolated proteins.
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computational tool to investigate molecular diffusion,

the latest developments in methodologies and im-
provements in computing power are extending the
reach, scope and application ranges of this simulative
approach. Indeed, BD has been used successfully to
compute association rate constants and generate
possible structures complexes between binding partners
(protein-protein or protein-ligand interactions). In BD,
www.sciencedirect.com
a number of simulations is performed, and diffusional

and kinetic properties are calculated. In this scenario,
biomolecules are commonly simulated at atomistic res-
olution, although coarse-graining and multiscale repre-
sentations are increasingly being used. Furthermore,
mutants of involved partners can also be considered to
evaluate both their effects on the mechanisms of for-
mation and the structures of the resulting complexes.
Current Opinion in Structural Biology 2024, 87:102835
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Extensive simulations have also been recently used to
probe the dynamic mechanisms that control the selec-
tion of protein conformational states that are then
presented for interactions with partners depending on
the state of the cell, as well as the mechanisms of allo-
steric cross-talk between recognition sites [16,17]. In
this context, simulative approaches have been used to
model the impact of aberrant post-translational modifi-

cations on the activity and recognition mechanisms of a
central regulator of protein homeostasis, namely chap-
erone protein GRP94. Specifically, we rationalized the
impact of the pathologic N-glycosylation on Asn62
compared with the physiologic one, namely glycosyla-
tion at Asn217, to show that each post translational
modification (PTM) induces distinct states of GRP94,
which are selectively poised/preorganized to interact
with distinct pools of proteins (Figure 3) [18,19].

MD-based structural knowledge can further be lever-

aged to develop models of functional multiprotein as-
semblies. In this context, Mysore et al. [20] used MD-
generated models of K-Ras, a fundamental regulator of
MAPK pathways in cell growth implicated in many
cancers, to build atomistic models of multiple K-Ras
assemblies at the cell membrane, and shed light on its
interaction with Ras effector proteins. The starting
point was an asymmetric guanosine triphosphate-
mediated K-Ras dimer model. Adding further K-Ras
monomers to this initial nucleus in a head-to-tail fashion
Figure 3

A schematic representation of the chaperone heat shock protein Grp94 (in gr
glycan density represents different conformations sampled along the MD traje
protein in normal conditions, left panel, in disease conditions, and the right p
respectively (see Ref. [19]).
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led to a compact helical assembly. Importantly, the
model was validated using both electron microscopy and
cell-based experiments. Results indicate that K-Ras can
be stabilized in its active state, while at the same time
presenting the correct interfaces to recruit Raf. Using
experimentally based constraints, the authors posi-
tioned C-Raf, kinase MEK1, and Galectin-3 and 14-3-3s
on and around the helical assembly. The model is finally

shown to provide a structural basis to rationalize a large
body of data on MAPK signaling.

Hoff and Bonomi [21] exploited the description of pro-
tein conformational heterogeneity obtainable from MD
simulations to improve structural reconstruction from
Cryo-EM data. Importantly, in some cases the flexibility
of interacting regions results in low resolution, in aver-
aging out conformational details, and in an inability to
accurately determine local structures. The authors here
introduce a Bayesian inference approach to determine

structural ensembles of biological entities by combining
cryo-EM data with molecular dynamics (MD) simula-
tions. Their approach automatically detects and down-
weighs noisy experimental data, calculates accurate
structural ensembles of proteins and protein complexes
including any lipids, small molecules and ordered water
present in experimental maps. The method, called
EMMIvox is benchmarked against a number of known
cases, showing a clear improvement in resolution and
then applied to define the structural ensembles of the
ay surface) at different levels of glycosylation (glycans in blue sticks). The
ctory simulations. The two schemes depict the different behaviors of the
anel, in determining the assembly of short- vs. long- lived assemblies,

www.sciencedirect.com
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type 1a tau filament (1.9 Å) and the SPP1 bacteriophage
(4 Å) in detail. Importantly, EMMIVox is made available
through the free PLUMED library.

Synergizing AI and MD to enhance the
reach of simulations
The examples reported above show that it is now
possible to garner high resolution insights into complex
mechanisms and improve the quality of experimental
models of large assemblies using atomistic simulations.
However, these studies are still somewhat limited by
the necessity to run a large number of simulations and to
analyze them with methods suitable for the specific
scientific questions at hand.

In this context, the use of AI to learn functional prop-
erties of complex systems from simulations in an auto-

mated fashion can potentially transform the use and
impact of computational biology [22].

Amaro et al. [23,24] demonstrated the feasibility of
exploiting generalizable AI-driven workflows to extract
information from simulation data that originate from
heterogeneous high performance computing (HPC)
Figure 4

A scheme of the combination of weighted ensemble MD simulations with an art
CoV-2 spike protein. In the right image it highlighted the opening of the recepto
to the open state (yellow).

www.sciencedirect.com
resources. In their studies, AI-based workflows are used
to explore the time-dependent dynamics and the
mechanisms of infectivity of the SARS-CoV-2 spike
protein, enabling efficient investigation of spike motions
in several complex environments. Notably, these include
a complete SARS-CoV-2 viral envelope simulation, which
entails calculations on a system of 305 million atoms. AI
techniques are integrated with the weighted ensemble

method [25], a splitting strategy that replicates prom-
ising MD trajectories to increase the sampling efficiency
of complex and rare events. In this framework, unsu-
pervised linear and non-linear dimensionality reduction
identify collective reaction coordinates from high-
dimensional systems, which advantageously guide a
system (e.g. the fully glycosylated spike protein) through
conformational transitions (e.g. from the closed to open
states). Interestingly, the authors show the capacity of
these AI approaches to automatically classify and stratify
reaction coordinates (Figure 4).

Significant progress in using AI in MD simulations
comes from initiatives aimed at learning effective
interaction potentials via machine or deep learning.
This entails developing (deep) neural networks to
ificial intelligence-based approach to investigate the flexibility of the SARS-
r binding domain (RBD) domain switching from the closed state (light blue)

Current Opinion in Structural Biology 2024, 87:102835
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predict quantum mechanical energies and forces, to
generate coarse-grained representations for the simu-
lation of large systems, or to sample equilibrium
structures while computing thermodynamic properties
at the same time [26]. An interesting example focused
on sampling diverse conformations and the dynamics of
complex mechanisms in the context of the protein
folding problem is represented by the work of Majewski

et al. [27]. The authors train neural networks using
data from unbiased all-atom MD simulations of twelve
distinct systems (about 9 ms of sampling overall): the
training set spans differential secondary structure
arrangements, a number of folding-unfolding transi-
tions, as well as an extensive sampling of native and
misfolded states. The neural network potential learned
from this data set shows the ability to accelerate the
dynamics by more than three orders of magnitude,
while preserving the thermodynamics of the systems.
markov state model (MSM) analysis of the coarse-

grained trajectories showed that all the protein
models were able to recover the respective experi-
mental native structure of the corresponding target,
also predicting the evolution of secondary and tertiary
structures. Importantly, a single coarse-grained poten-
tial can integrate all twelve proteins and recapitulate
experimental structural features of mutated proteins.

Tiwary et al. [28] combined AlphaFold2 and MD simu-
lations potentiated with AI-driven enhanced sampling to
generate Boltzmann-weighted conformational ensembles

from sequence. The method is called AlphaFold2-RAVE.
Their protocol first uses a reduced multiple sequence
alignment to induce AlphaFold2 to generate many
possible conformations as the starting structure for sub-
sequent enhanced sampling. The method is based on
learning appropriate reaction coordinates for correctly
sampling conformational states. The authors demon-
strate that the method returns a Boltzmann-weighted
ensemble of protein conformations. As a key applicative
example, AlphaFold2-RAVE [29] is applied to charac-
terize the conformational landscape, the Asp-Phe-Gly
(DFG) loop of kinase (DDR1). In this framework, we

note that AlphaFold2 can proficiently be used to sample
different, physically meaningful conformations using a
subsampling of the initial MSA [30]. This subsampling
approach is shown to be particularly useful to predict the
impact of mutations on the conformational landscape and
well-populated states of proteins.

Wellawatte et al. [31] compared neural network (NN)-
based coarse-grained force fields to traditional coarse-
grained force fields. The authors interestingly show
that NN force fields are able to extrapolate to unseen

regions of the free energy surface upon training with
limited data sets, supporting the generalized applica-
bility of these kinds of methods.
Current Opinion in Structural Biology 2024, 87:102835
While promising, the possibility for AI-based approaches
to recover conformational ensembles with the correct
Boltzmann weights still present a number of limitations
and critical points. Some of these may also reflect the
known limitations of underlying MD simulations in
efficiently sampling complex landscapes. For an in-
depth discussion of these issues, we refer the readers
to this interesting review by Mchaourab et al. [32].

When simulating high-dimensional phenomena, iden-
tifying a reduced set of collective variables that reca-
pitulate their key physical determinants can be critical
for two reasons: on the one hand, it may help gain a
better understanding of atomistic simulations, while on
the other hand it may favor accelerating simulations
through integration with enhanced sampling tech-
niques. The Parrinello et al. developed a series of
theoretical and computational tools to learn these var-
iables directly from atomistic data [33e35]. The

learning processes entail deep targeted discriminant
analysis of data from short unbiased simulations and
transition path ensembles, dimensionality reduction
and classification of metastable states [35], or identi-
fication of slow modes [33].

Finally, we note here that the combination of MD
methods can be combined with AI to streamline drug
design and make it more efficient, in particular, the
screening of large small-molecule databases [36]. In this
context, free energy calculations can be used in the so-

called active-learning free energy perturbation ap-
proaches [37]. Here, predictions on one central refer-
ence compound from a random subset are used to train a
machine learning (ML) model. The resulting model is
used to score the remaining compounds in the library.
From the obtained ML scores, the next set of com-
pounds is selected for a round of FEP profiling, and an
improved ML model is trained based on the cumulative
predictions. This cycle is then iteratively implemented
until all promising compounds have been retrieved from
the library. These approaches are actually being show-
cased for the rapid exploration of large chemical spaces

aimed, and in lead optimization [38].

As an example of integration of MD and ML, Goben
et al. identified ligand candidates with novel chemo-
types while preserving antagonistic potential and affin-
ity in the nanomolar to target G protein-coupled
receptors (GPCRs) [39]. Their approach integrates
structural data with a random forest agonist/antagonist
classifier and a signal-transduction kinetic model.

In the context of drug discovery, MD/AI approaches can

be used to identify cryptic pockets, not immediately
evident from the static 3D structures of target pro-
teins [40].
www.sciencedirect.com
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Learning the structures of assemblies
The progress described in the previous paragraphs pro-

vides a glimpse into the opportunities generated by the
integration of multiple computational methods for un-
derstanding complex mechanisms in biology. The
advent of AlphaFold2 [41] (AF2) has clearly revolu-
tionized the field of structural studies. Further progress
of AF2 into AlphaFold Multimer [42] and Alpha-
Missense [43] is now allowing pushing the structural
detail into the description of complexes involved in
signaling pathways (Figure 5).

The discrimination of correct (or functional) models in

predicted complexes, a large number of which can now
be generated by ML/DL combined with Docking
methods, is a key issue for the actual usability of
computational predictions. In this context, DeepRank-
GNN [44] is an interesting application that, starting
from the conversion of 3D structural information on
protein-protein interfaces into graphs, is able to learn
specific interaction patterns. DeepRank-GNN proves
efficient in scoring docking poses and in discriminating
biological and crystal interfaces.

Bryant et al. [45] applied the AF2 protocol with an
optimized multiple sequence alignment (MSA) strat-
egy to generate high quality models of heterodimers.
From the predicted interfaces, the authors evolve a
simple function to predict the acceptable vs. incorrect
models as well as interacting with non-
interacting proteins.
Figure 5

A simplified representation of the use of AlphaFold2 Multimer to predict the s
ments (MSAs) to structure of the single components.

www.sciencedirect.com
Skolnick [46] et al. introduced a significant improve-
ment over AF-Multimer, called AF2Complex. This uses
the same neural network models as AF2 in single-chain
prediction, adapted for multimeric complexes. Signifi-
cantly, the authors show the possibility to do this
without retraining. The authors also devise metrics to
predict the probabilities of protein-protein interactions
across diverse protein pairs. Following through valida-

tion on the E. Coli proteome, they were able to build up
high confidence models of three complexes, made up of
8 partners, involved in system I for electron transfer
and respiration.

Finally, Jandova et al. [47] demonstrated the validity of
a simple protocol based on short MD simulations
combined with ML (the random forest classifier) to
correctly assign native complexes from a number of
HADDOCK-generated solutions. Interestingly, native
models showed higher stability in almost every

measured property, including the key ones used for
scoring in the Critical Assessment of Predicted Inter-
action competition.

Bryant and Noe [48] recently introduced a multistep
method that allows decreasing the computational time
and storage needs required to build a full PPI network.
First, they use a reduced MSA creation procedure and
then they pair MSA using species information preser-
ving the single chain data through block diagonalization.
Afterward, AlphaFold2 is used for structure prediction,

and the predictions undergo evaluation using a scoring
tructure of a multiprotein complex, starting from multiple sequence align-

Current Opinion in Structural Biology 2024, 87:102835
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scheme. To speed up the processing, they employed a
combination of CPU and GPUs, making this procedure
parallelizable, as well as freely available.

Overall, these examples demonstrate the possibility
of expanding the use of AF2 well beyond the do-
mains and datasets on which it has been based
and trained.
Perspectives and conclusions
Recent technological advances are flooding the com-
munity with an unprecedented amount of data on
protein structures, dynamics, interactions, and func-
tions at different levels of resolution. Accessible data
range from the 3D structures of single proteins and
protein complexes, to binding affinity and kinetic
characterizations, to the definition of signaling path-
ways and interacting networks at the whole proteome

level and in different cellular states. This wealth of
data is making it possible to use learning (machine or
deep learning) algorithms to extract useful information
on complex systems, while developing approaches that
can generalize tasks on which they had not specifically
been trained on. One key development in this realm is
the possibility to learn (or automatically develop) mo-
lecular design rules for the generation of proteins with
desired functions.

Examples of such endeavors are starting to appear in

literature: Language models trained on the protein
sequence space have shown the ability to generate de
novo protein sequences that are distantly related to
natural ones and whose properties mirror them in terms
of globularity and amount of disorder [49], when
characterized experimentally with structural analyses.
Wang et al. [50] describe two deep-learning methods to
design proteins and enzymes by scaffolding specific
binding/active sites required for a certain function
using a 3D-structure obtained without the need to
prespecify a certain fold or secondary structure. In the

first approach, they identify sequences predicted to
fold into 3D structures that host the functional site. In
the second approach, which they call “inpainting,” the
design starts from the functional site and adds in the
sequence and structure of a prospectively viable pro-
tein scaffold using a retrained RoseTTAFold network.
The variety of the designs and functions strongly sup-
ports the applicability of these methods to develop
biomolecules with new (non-natural) functions as
biological drugs, novel catalysts, scaffolds. Finally,
Watson et al. [51] developed a generative model of

protein backbones to design protein monomers,
binders, and symmetric oligomers. This method, called
RoseTTAFold diffusion (RFdiffusion), is validated
experimentally on a number of designed proteins,
whose actual 3D structures are demonstrated to be
highly similar to the computed ones.
Current Opinion in Structural Biology 2024, 87:102835
Results indicate that state-of-the-art learning approaches
have reached levels of success that were to some degree
unexpected or at least not fully predictable.

However, ML methods can still be ameliorated and
improved to generate predictions outside their domain
of input data. In this context, physics- and chemistry-
based simulative approaches can be integrated into the

training and development processes to generate realistic
information on interaction propensities, structural sta-
bilities, to predict affinities, or to access parts of the
conformational space of a protein that can be important
for function, but are not immediately evident from
available structural data.

It is important to point out here that there is still plenty
of room for directly using physical chemistry-based
simulation methods to investigate biological structures
and functions, even those generated byML. Indeed, MD

can provide direct access to information on functionally-
oriented dynamic properties, on the structural charac-
teristics of transition state ensembles, and even on the
relevance of specific post-translational modifications.

Furthermore, many phenomena in biology require the use
of quantum mechanics or mixed quantum mechanics/
molecular mechanics approaches to access realistic
mechanistic information [52]. These phenomena
include, among others, enzyme catalysis, electron-
transfer mechanisms, recognition, and transport phe-

nomena where charge transfer or charge correlations are
key [53,54], in particular where metal ions are involved.
The advent of the massively parallel supercomputers is
ushering computational biology and chemistry into the
exascale era. This new dimension and the opportunities
it generates for massive calculations are promising to give
an incredible boost to the use of quantum-based tech-
niques for instance in the field of drug design [55]. On
the one hand, these additional capabilities will permit to
accurately model highly complex systems at multiple and
larger scales [14]. On the other hand, they will expect-
edly generate massive amounts of data of high quality

useful for the training of novel ML/AI algorithms to find
patterns in complex reactive mechanisms, predict po-
tential reaction pathways, intermediates, transition
states, and sample conformational and other transitions
between distinct states in large and biologically realistic
assemblies [54].

All of these cases exemplify that while in some instances
simulations can unveil knowledge that is still out of
reach for most ML/DL-based strategies, the possibil-
ities to merge these worlds are starting to become more

and more evident.

In this frame of thought, it is evident that there exists a
wide space for exploring and training new methods on a
broader spectrum of functional propensities, PPIs, and
www.sciencedirect.com
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Simulations and AI for functional protein studies Frasnetti et al. 9
information on biologically relevant assemblies, which
remain key features to understand and rationalize the
exact functioning of complex molecular organizations.
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