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Abstract—Trip matching algorithms used in ride-sharing and
carpooling systems share the common goal of optimizing the
number of used vehicles to satisfy a set of trips according
to their temporal and spatial constraints, in order to better
allocate resources and reduce traffic and congestion. However,
each matching algorithm could be designed to pursue a different
objective like, for instance, reducing users’ waiting time for
quality of service, reducing the total amount of traveled distance
within the system to reduce carbon footprint, or maximizing the
time two trips are shared to favor user interaction. Changing the
final system objective could significantly change the performance
of the system itself. In this paper, we compare the performance of
matching algorithms with different objectives and show whether
potential tradeoffs exist in pursuing these objectives, taking
into consideration all the actors in play in a mobility sharing
application. In particular, by applying the matching algorithms
to two sets of daily trips performed in the cities of Pisa, Italy, and
Cambridge, USA, our analysis shows that there is a matching
algorithm among the ones we tested able to provide a good
compromise between different optimization objectives.

I. INTRODUCTION

Mobility sharing systems such as ride-sharing (e.g., Uber-
POOL and Lyft Shared) and carpooling (e.g., WazeCarpool
and Scoop) have expanded transportation options in cities
around the world. By encouraging the sharing of vehicles
and/or trips, these systems hold promise for improving the ef-
ficiency of transportation and optimizing resources utilization.
These systems, provided through web or smartphone apps,
have proven to be disruptive technologies with the potential to
redefine transportation. If properly deployed, they can reduce
traffic and congestion, leading to positive environmental and
public health outcomes [1]. However, in mobility sharing
applications, the algorithms used to match the trips (and
consequently the users) could significantly change based on
the goal of the system, which could be determined by company
interests, users specific needs, or requirements imposed by the
city/country the system is operating in. Changing the overall
goal of the mobility sharing application could significantly
impact the performance the system achieves.

Usually the goal of mobility sharing applications is to
reduce the number of utilized vehicles by matching as many
users and sharing as many trips as possible, reducing as well
the environmental impact of shared trips. Another way to
reduce vehicle miles traveled could be to properly design the
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trip matching algorithm so to minimize the distance traveled
by the shared trips. Besides these two classical transportation
approaches for the design of a trip sharing system, users’
needs could be taken into consideration, like, for instance, the
discomfort they could experience in sharing the trips.
Similarly, traditional transport-based metrics to evaluate
trip-sharing methodologies include the evaluation of matched
trips or mileage reduction. Other potential metrics worth
investigating could be represented by the physical proximity
of shared trips, somehow allowing users to potentially know
the person they are sharing the trip with [2], and the amount of
time users share on the same vehicle. In this paper, we report a
thorough comparison of trip matching algorithms utilizing dif-
ferent performance metrics, by taking into consideration all the
actors in play in a ride-sharing system, namely the providers,
the authorities/cities, the users, both in the algorithms’ design
and in their evaluation. To the best of our knowledge, this is
the first paper providing such a comparison and on two real
datasets, one derived from an Italian city-wide mobility survey,
the other from a campus-wide commuting survey in the US.

II. RELATED WORK

Even though ride-sharing and car-pooling problems are
widely studied [3], [4], there are not many works related to
the comparative evaluation of different metrics of ride-sharing
matching algorithms. In [5] the authors provide the comparison
among trip-matching algorithms, focusing on their potential
to favor social integration and the evaluation of transportation
efficiency when social benefits are pursued. A similar study
has been presented in [6].

Similarly to our work, different objective functions have
been taken under consideration in [7], but the algorithms are
only based on trips’ spatial attributes. Furthermore, differently
from this paper, the authors only consider carpooling services
where the users have preassigned roles (as driver or passen-
gers). The concept of trips proximity has been exploited in
several ways: one common way to compute proximity is by
checking the similarity of the paths from origins to destina-
tions, as in [8], [9], [10], typically by comparing trajectories
coming from GPS. In here, we consider two trips to be close
only if their origins and destinations are within a certain radius
SO to guarantee users a more accessible service.



In [11] the authors present some analytical results on the
performance of ride-sharing algorithms with respect to some
measures expressed as functions of the detour time, which is
taken as an indicator of quality of service: the matching prob-
abilities, the expected vehicle-kilometers traveled savings of
ride matching, and the expected passenger-kilometers traveled.

To design and implement trip matching algorithms, we use
the Shareability Network model [3], proven to be so efficient to
be run online, in an on-demand, real-time fashion as required
by ride-sharing applications, even when the constraints to
be taken into consideration considerably increase. Differently
from other approaches (see [4], [12]), increasing the number of
parameters and/or constraints does not impact the complexity
of the problem nor the efficiency in finding the optimal
matching solution.

III. MODEL AND ALGORITHMS

Santi et Al firstly introduced the notion of shareability
network to model the taxi-sharing problem in Manhattan [3].
In their model, a trip is represented by a node in a graph, and
the link between two nodes represents the sharing opportunity
between the corresponding trips. The set of nodes (trips) and
links (sharing opportunities) is called a shareability network.
As in [3], we only consider sharing trips in pairs, which leads
to nearly reduce by half the circulating vehicles. Given a trip
1, the following notations are defined:

- S(i) is the starting location;

- D(3) is the destination location;

- st(7) is the starting time;

- dap is the distance between location A and location B;

- Tap is the time required to travel from A to B;

- tt(7) is the flexibility the user has on the trip starting
time. This value, together with st(¢), identifies a time
interval [st(i) — tt(i), st(i) + tt(i)] representing the time
window within which the traveler is willing to start the
trip. Consequently, we set St (1) = st(i) — tt(i) and
StMAX (Z) = 3t(l> + tt(i).

Sharing trips comes with some discomfort for the users,
namely the detour time required to pick up (and drop off)
the passenger; this sharing delay time is called A. Given the
above trip modeling and a specific A, two trips 77 and T5
are shareable, with the user corresponding to trip 7% being the
passenger, if the following three conditions hold:

1) Tsys@) + Ts@)p@) T Tpe)p) < Tsyp) A
2) stmin(2) — stmax(1) < 7sayse) < stmax(2) —
Stmin(l)

3) dsyp(1) > ds@)s2) + dpe)p)

The first condition states that the required extra time for
the driver to pick up and drop off the passenger is below the
detour time A, providing the users with a certain level of
Quality of Service. The second condition states the temporal
compatibility of the two trips, guaranteeing that the two start-
ing time windows are properly overlapped. The third condition
is related to the trips spatial compatibility, to guarantee that
the distance traveled by sharing the two trips is shorter than

the sum of the two individual trips distances. Note that, in the
case of carpooling, one of the two users is identified as the
driver while the other is the passenger. This could happen only
if the trip of the passenger is entirely included in the trip of
the driver, but the allowed detour.

The reason why we adopt the shareability network model
for comparing trip matching algorithms is that it is a very
efficient model, enough to allow us to run the algorithms
several times with different parameter settings. The amount
of constraints and parameters setting does not affect the
algorithms’ complexity. The shareability network-based trip
matching algorithms are scalable, being able to provide real-
time solution even in presence of thousands of trips [3].

Once the shareability network on a given set of trips is built,
a matching algorithm could be applied to find the optimal
set of trips pairs to be shared in order to maximize the goal
of the system. Thanks to the shareability networks model, it
is possible to define weights on the graph’s links and use
them to maximize a desired metric. The weight could be, for
instance, the travel time, or the travel distance, or the trips
distance. Changing the weight on the links will generate a
new matching algorithm and a completely different optimal
set of matched trips. In the following, we describe some of
the matching algorithms we implemented by applying different
types of weights to the links of the shareability network. This
is only a limited example of the different possible options that
could be implemented using the shareability network model.

From the ride-sharing system point of view a good optimiza-
tion goal could be to maximize the number of matched trips,
so to reduce the number of utilized vehicles. We implemented
this algorithm by simply assigning a weight equal to 1 to
all the links in the shareability network, and called it the
Cardinality Matching algorithm (CM). Even if this algorithm
intuitively seems to be more efficient to reduce the overall
system carbon footprint, it has been proved it does not [5].
From the environment point of view it would be better to
maximize the overall saved distance by maximizing users
shared kilometers. For this reason, we also implemented the
Saved Distance Matching algorithm (DM), where each link
is assigned with a weight equal to the distance that could
be saved if the trips associated to the connected nodes are
matched.

Another objective could be to favor users’ interaction while
sharing the trips. To pursue this goal, we implemented the Time
Matching algorithm (TM), where the weight of each link is
set to the time the users would spend together by sharing the
corresponding trips.

There is one more player that we have not taken into
consideration so far: the user and their satisfaction. Users could
be keener to use a ride-sharing system if the trips to be shared
would be more convenient, not only in terms of required extra
time (expressed by the detour time A), but also in terms of
required extra distance, that could be expressed in terms of the
proximity of the starting location and/or the destination of the
two trips. In fact, proximity intended as convenience is another
way to see ride sharing as “more accessible”. Furthermore,



since users hardly trust to travel with strangers [2], physical
proximity of the trips could lead to know the potential person
with whom they are going to share the trip. To account for
this, we also implemented the Proximity Matching algorithm
(PM), where, given a radius r > 0, the weight on the links is
set to the distance between the two trips starting locations, if
this is smaller than 7, to a very large value otherwise (we used
the sum of all the distances over the shareability network).

IV. PERFORMANCE EVALUATION
A. Datasets

For our simulations we used two different mobility datasets:
one collected in Pisa, Italy, the other one in Cambridge, US.
The former is related to an anonymous mobility survey issued
in 2016 to citizens who live or work in Pisa; the latter one
derives from a commuting survey issued to MIT employees
in 2018. From both surveys, we extracted the answers of
respondents who declared to use the car as a primary transport
mode to reach their workplace. We obtained 1,966 complete
and valid answers for Pisa, and 1,368 for Cambridge.

Both surveys were fed to the correspondent community
of commuters to understand current mobility patterns and
habits, and identify potential future development to lighten
daily commuting traffic and congestion. Nevertheless, data
has been collected in a slightly different way; in particular,
in Pisa dataset the provided addresses are exact, while for
MIT home addresses are expressed as census block group
numbers. Thus, for each MIT answer, we randomly generated
a position within the census block group and use it as the
trip starting location; furthermore, while trip starting times and
user flexibility in starting their trips have been exactly reported
in the Pisa survey, MIT employees were allowed to select a
time interval for the departure time (30° for peak hours, two
or more hours otherwise), while there was no explicit mention
of how much flexibility users had. For this reason, for the
MIT dataset, for each data point, we first ran 20 instances by
randomly generating a departure time within the time interval,
then we averaged the results. Moreover, we set four different
flexibility times: 0, 5, 15, and 30 minutes. The main difference
between the two datasets is, however, that in the MIT survey
all answers share the workplace (the MIT campus), while in
the survey issued in Pisa the users do not share the destination
location, even though there are three main major workplaces.

B. Simulations

Given the above four defined matching algorithms, CM,
DM, TM, and PM, to evaluate efficiency differences and
identify potential tradeoffs, we first build the shareability
network related to the two datasets. Since a specific maximum
allowed detour time is a required input to guarantee a certain
level of quality of service to the users, we use different values
of detour time A, namely A € [0,1,2,...,15] minutes. Each
value of A changes the set of potentially shareable trips,
thus generates a different shareability network. For the PM
algorithm, we also define different values of proximity radius
r, within which we identify the set of potential matches for

a trip and then select the best one. In our simulations we set
r€[1,2,3,4,5] km.

To compare the performance of the proposed matching
algorithms, we evaluate four different metrics, computed as
a function of the detour time A:

1) the percentage of matched trips;

2) the percentage of saved distance;

3) the average percentage of users’ shared time per trip;
4) the percentage of close matched users.

We compute the normalized saved distance by summing
up the distance saved in all shared trips and by dividing the
result by the sum of the traveled distance required to do all
the trips without sharing. For each shared trip s, obtained by
matching trips a and b, its saved distance sd is given by:
Sd(S) = dS(a)D(a) - dS(a)S(b) - dD(b)D(a)~ The normalized
saved distance of a matching set M is:

ZSEM Sd(s)
> aev(c) 4s(a)D(a)

nsd(M) =

where V(G) is the set of nodes in the shareability network.
The normalized shared time is computed by summing up
the time the users spend together in the shared trips and
by dividing the results by the number of shared trips. More
precisely, given a shared trip s, the shared time is the time
the passenger is on the trip, namely 75(;)p(s)- Then we could
compute the normalized shared time of a matching set M as:

ZSEM Ts

#(M) -

Since for the MIT survey the departure times were expressed
as time intervals, and people were only asked if they have or
not flexibility in leaving to go to work, without providing a
precise value or time interval, in the MIT data set we are
missing some level of details with respect to the Pisa one.
For this reason, we ran 20 instances of different settings and
we averaged the results. This is the reason why the results
for MIT reported in Figures 2 and 1 are expressed as an
average. In particular, for each trip ¢, we randomly pick a
starting time st(¢) within the user selected time interval and
we use four different values for flexibility ¢(i), namely O,
5, 15, and 30 minutes. Here, for space sake, we only show
results for ¢¢(i) = 15 for all i, representing a good average
value for time flexibility. Furthermore, the average flexibility
value provided in the Pisa survey is 18 minutes.

When running the proximity matching (PM) algorithm over
the trips in Pisa, we apply the proximity radius on both trips
origins and destinations, while for the trips in Cambridge we
apply proximity radius only on the origins, since all the trips
have the same destination, i.e. the MIT Campus.

nst(M) =

C. Results

In the following, we show the outcomes of the simulations
we executed on the two datasets. For each algorithm and
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Fig. 1: Normalized saved distance metric (nsd) computed over the resulting matchings of the algorithms, with PM applied by varying the radius in 1-5 km.
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Fig. 2: Matched trips metric computed over the resulting matchings of the four algorithms, with PM applied by varying the radius from 1 to 5 km.

for each detour time A, we find the best matching over
the correspondent shareability network and compute the four
metrics listed above.

a) Matched Trips: Maximizing the number of matched
trips so to reduce the number of utilized vehicles is usually
the main objective of a trip-sharing system. Figure 2 reports
the percentage of matched trips for the two datasets by
applying the designed algorithms. As expected and shown in
the graphs, CM, built to maximize the number of matched
trips, outperforms the other algorithms. Nevertheless, when
A > 5, almost all the algorithms (except for PM when applied
with lower r values) achieve at least 80% of matched trips.
This means that by slightly decreasing the quality of service
provided to the users, here represented by the detour time A,
it is possible to maximize the number of matched trips.

b) Saved Distance: When pursuing a more sustainable
ride-sharing system goal, the matching algorithm should be
able to reduce the overall traveled distance. In this scenario,
DM clearly outperforms the other algorithms (Figure 1),
especially for higher A values. The TM algorithm achieves
similar results for low values of detour time, but as the detour
time increases, in TM prevails the goal of maximizing the time
the users spend together along the shared trip, thus generating
more traveled mileage (even if within the distance constraints
provided by the third condition for two trips to be shareable).
CM and PM (especially PM with radius set to 1 km) are
those achieving worse results. The overall behavior of all the

algorithms is quite similar, with an initial increasing trend of
nsd as A increases, followed by a stabilization and, for most
algorithms, decline. These graphs clearly show that if the ride-
sharing system objective is to achieve higher environmental
benefits while providing shareable trips, other goals could
be detrimental towards this objective. In particular, trying to
match as much users as possible to reduce vehicles or close-by
users, is not the best strategy to adopt. In the MIT dataset, we
also observe relatively higher distance savings when compared
to Pisa results; this is likely due to the larger geographical
footprint of the considered area. A potential implication is
that ride-sharing mechanisms could be especially effective in
large cities to reduce their carbon footprint.

c) Users’ Shared Time: In Figure 3 we report the results
achieved by all the algorithms in terms of the users’ shared
time metric. TM, the algorithm designed to maximize users’
shared travel time per trip, is the best, closely followed by DM.
For PM, the higher is the proximity radius, the higher is the
chance that users could share more time along a shared trip.
This implies that in a ride-sharing system designed to favor
users interaction, users should give up on convenience in terms
of service accessibility. For Pisa dataset, a A value between
2 and 5 minutes does not result in a substantial differences
between the algorithms (including the five PM variations).

d) Users’ Position Proximity: In our model, A represents
a certain level of quality of service provided to the user by
bounding the detour time needed to share a trip. Another
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level of quality of service we want to analyze is based on
the other dimension of shareable trips, i.e., their distance. In
Figure 4 we report, for each of the four algorithms and for
each of the five radii considered, the resulting percentage of
matched and unmatched users. Within the matched users, we
also report the percentage of close (within the radius) and far
(farther than the radius) matched users. PM is obviously the
algorithm achieving better results in terms of close matched
users, being the one built to optimize this metric, but it is also
the one with higher percentage of unmatched users, meaning
that the corresponding trips could not be shared. Among the
algorithms not properly designed to maximize matched trips

physical proximity, DM is the best and CM is the worse, while
the opposite holds if we look at the percentage of unmatched
trips (much clearer in the Pisa dataset graph).

e) Overall: In Figure 5 we report the performance
achieved by the four algorithms applied to the two datasets,
Pisa (a) and MIT (b), in terms of the four metrics we are
evaluating (percentage of matched users, percentage of close
users, normalized saved distance, normalized shared time).
Here, for space sake, we only show the results obtained with a
proximity radius of 1 km, and the shareability networks built
considering a 5 minutes detour time A, being the other results
quite similar. In these graphs a larger area indicate higher



performance. By analyzing this Figure, it seems DM could
provide a good tradeoff among the tested algorithms, being its
performance a good compromise for the considered metrics.

V. CONCLUSION

In this paper we provide a comprehensive comparison of
different ride matching algorithms, each pursuing a specific
goal, applied to two datasets related to mobility surveys
performed in Italy and US. In particular: CM algorithm has
been designed to minimize the number of utilized vehicles by
maximizing the number of matched trips; DM maximizes the
amount of saved traveled distance within the overall system;
PM provides the users with a more convenient service, by
matching trips with close origins and destinations; and TM
favors users’ integration by maximizing the time users share
in the vehicle. All the algorithms have been developed so to
contain the traveled mileage and limit the sharing detour time
within the threshold.

The performance results provide useful and meaningful
insights. With no surprise, each algorithm outperforms the
others when the corresponding metric is evaluated. But there is
one algorithm, DM, showing promising average results in all
the metrics (see Figure 5), suggesting that a potential tradeoff
between different objectives exists. This insight could and
shall be addressed not only in developing the system, but also
at policy and regulatory level. In fact, if the authorities aim
at a more sustainable transportation, they could require ride-
sharing systems to reduce carbon footprint. This way it could
also be possible to partially meet the other goals, potentially
achieving good results not only for the environment (and the
society, in the end), but also for the operators (trough vehicles
reduction) and for users (in terms of convenience).

For the future, we would like to develop new algo-
rithms tackling different scenarios. For instance, to cope with
COVID-19 and similar future threats, transportation policies
have to be changed (as highlighted in [13], [14], [15] and
references therein), since the main issue could be users’
unwillingness to choose public transport or share a trip with
strangers. From the point of view of shared mobility, such as
car-pooling or ride-sharing, a new healthy aspect should be
considered, favoring, for instance, trip matchings among users
belonging to a pod or bubble, to limit contacts and virus’s
spread.

The set of algorithms and metrics presented here is only a
small sample of what is achievable by adopting the shareability
networks model for sharing trips. We also plan to evaluate a
combination of these algorithms, in order to increase the bene-
fits provided by each one while still maintaining a sustainable
overall objective.
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