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Abstract: Reconfigurable Transportation Systems (RTS) rely upon modular transportation units, standard mechatronic interfaces and 

distributed control solutions so that modules can be plugged and automatically configured. The RTS topology and functional settings’ 

reconfigurability makes the adoption of highly reactive production management solutions mandatory for dynamically governing both the 

products’ flows and resources’ utilization. This work presents an algorithm and its software infrastructure for the on-line dispatching-

routing of parts and RTS modules’ coordination by inferring on logic controllers in real-time. The benefits of the proposed methodology 

are tested on a reconfigurable transportation system installed in a factory for the remanufacturing of PCBs. 
Keywords: Reconfigurable Transportation Systems, Part Dispatching, Part Routing, PCB Remanufacturing.  

 

1. Introduction and paper motivation 

Reconfigurable Transportation Systems – RTS play an 

instrumental role in empowering manufacturing systems with the 

capability to adapt their architecture and functionalities to match 

evolving production environments undergoing frequent changes 

of product features, demand and technologies [1]. The major 

features of RTS are mostly related to the possibility to change the 

transportation layout and functionalities with no need for 

integrating new equipment or reprogramming the transportation 

control set-points [2,3]. RTSs are enabled by the utilization of 

modular transportation units equipped with standard mechatronic 

interfaces and distributed control solutions [4]. In the most recent 

advanced architectures, RTSs result in a composition of modules 

embedding the related control function blocks that can be 

plugged one to another and automatically configured when 

connected together. 

The advantages resulting from the adoption of RTSs 

especially in terms of the agility of the mechanical and 

automation aspects comes with several scientific and technical 

challenges as well. Transportation modules need to be conceived 

as smart mechatronic components capable of embedding 

distributed control algorithms and sensing/telecommunication 

systems supporting the recognition of any device they are 

connected to. The standard interfaces allow a more efficient 

connection process with various equipment typologies so that a 

number of possible integration of new equipment and/or 

modification of the system architecture can be realized without 

any complex overhaul of the mechanics and electronics. The 

efficiency of the RTS reconfigurability is also related to the 

SCADA (Supervision Control and Data Acquisition) system that 

is expected to capture any change occurring in the line 

architecture and functionalities consequently adapting the 

supervision and monitoring logics. Similarly, the production 

management software incorporated in the MES (Manufacturing 

Execution System) requires a radical change in the way it is 

normally conceived and implemented [5]. Any reconfiguration of 

the transportation system asks for the consequent and immediate 

adaptation of the part (and fixturing) dispatching and routing 

policies. Besides, the management of smart mechatronic 

equipment, such as the transportation modules, has the 

instrumental capability to accommodate dispatching logics 

operating in line as a result of the equipment intelligence (along 

with the traditional modifications which can be implemented at 

coordination level). As the ability of parts to reach a specific 

machine in a certain time in order to execute the requested 

operations is function of the current transportation system layout 

and status, the production management tools need to be coupled 

with the automation layers and SCADA systems, thus 

dynamically adapting the management policies to the RTS 

architecture. This also requires operating in a decision time 

horizon extremely lower if compared to traditional tools [6]. 

The current work addresses the management problem for 

RTSs with a specific focus on the dynamic dispatching and 

routing policies. The basic idea is to generate a dispatching and 

routing approach structured in an algorithm and a set of recovery 

strategies nested in a software infrastructure that communicates 

with the RTS controllers. The rest of the paper is structured as 

follows: Section 2 outlines the proposed dispatching approach; 

Sections 3 and 4 describe the approach analytical formulation and 

validation tool; Section 5 briefly introduces the industrial pilot 

system and the results of the experimental campaign; Section 6 

deals with the paper conclusions and future works. 

2. RTS dispatching approach 

The proposed dispatching and routing approach, illustrated 

in Figure 1, is structured in two major components, the algorithm 

and the validation environments, nested in a Software in the Loop 

SiL architecture, enabling the generation and testing in real-time 
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of the dispatching solutions. The software infrastructure is in turn 

physically binded (Hardware in the Loop HiL) via TCP/IP 

communication protocol to the control platform running the 

mechatronic equipment. The dispatching commands (validated in 

SiL) are passed to the RTS controllers that realize the RTS 

module movements and feed back the new status of the line. The 

need to exchange a considerable cluster of information over time 

and across multiple software, requires the entities considered in 

the production environment to be modelled in a systemized way. 

Entities incorporated in the software architecture are clustered in 

three categories: products, processes and industrial equipment 

[7]. The last category is additionally organized in 

machines/robots, transportation modules and (un)loading 

stations. The various entities are nested by logic and physical 

connections as well as a number of rules determining their 

relationships and their behaviour over time. The logic description 

of the system entities’ behaviour is realized by FSM – Finite 

State Machines in order to formalize the rules describing the 

entities interactions across multiple production scenarios. During 

the dispatching decision process, the information modelled and 

collected in the infrastructure is partly nominal (such as system 

layout between two reconfigurations) and partly related to a 

specific status (such as the idle transportation modules in a 

specific time step). 
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Fig. 1. Dispatching and routing approach. 

3. Dispatching and routing algorithm 

The analytical formulation of the dispatching approach for 

RTSs consists in 6 major steps (Figure 2). Based on the system 

features, the first step is executed for any RTS (re)configuration 

and concerns the definition of an abstract model of the system 

layout whose abstract classes are populated with nominal 

information and the associated logic descriptions (FSM 

diagrams). The system layout is represented by graph diagram 

(reachability graph) whose nodes are the entities and the arches 

are the physical connections between entities. For any PLC cycle 

time, this system abstract model is consequently enriched in Step 

2 with actual data about the current status of the system so to 

frame the shop-floor operating resources in a specific time stage. 

These data are available from the shop-floor SCADA system (or 

similarly shop-floor simulation environment). Once the shop-

floor environment is comprehensively described, Step 3 launches 

the SP - Shortest Path Algorithm [8] whose goal is to select the 

path that each part should realize in order to reach the resources 

with the minimum number of steps based on a certain layout (the 

starting and ending point of the path are assigned). In a specific 

time step, for each part circulating on the RTS, the outcome of 

Step 3 is a list of shortest paths ranked by growing number of 

RTS modules to be visited to reach the end point of the path. The 

generated shortest paths for each part are the nominal ones, i.e. it 

is assumed the transportation system is completely free of other 

parts while identifying the modules to be visited step by step. 

This preliminary assumption makes the computational effort 

requested to generate the SPs extremely low compared to the 

execution of the SP enriched with actual data on the line status 

availability [8]. However, these nominal solutions are adjusted in 

Step 4 by integrating a number of heuristic rules nested in the 

algorithm. These rules check the actual availability and the status 

(equipment performance) of the transportation modules, thus 

enabling the elimination of not viable paths generated by Step 3. 

The developed heuristic approach is executed by visiting 

horizontally the array of transportation modules (the single path), 

node by node, and vertically the list of array, SP by SP 

(alternative paths), ranked by increasing transportation times. The 

choice to adopt this approach is to drastically reduce the time to 

generate the solution as the approach is concurrently executed for 

all the parts circulating the transportation system, thus reaching a 

high parallel computational effort. At the time step T, the result 

of Step 4 is a vector listing the transportation modules to be 

visited for all the parts at step (T+1). The structure of such an 

algorithm enables a computational feasibility so that both Step 3 

and Step 4 are executed for every time step [T; T+1] which in our 

case is set as the PLCs cycle times (up to 150 ms). At this point, 

the set of dispatching commands is verified by the validation tool 

(Step 5) where it is possible to consider additional data about the 

shop-floor status and dynamics that is extremely complex to 

model analytically. This validation tool - either a SCADA system 

or a simulation environment - checks the viability of the solution 

having a more comprehensive knowledge of the system. Once 

validated, the set of dispatching commands is passed to the PLCs 

in Step 6 and executed on the physical equipment. The correct 

execution of the dispatching commands for (T+1) is 

acknowledged back to the software, leading the algorithm to 

generate the next step solution (Step 2). 
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Fig. 2. Dispatching algorithm steps. 

3.1. Analytical formulation 

The preliminary assumptions for the analytical formulation 

are listed in the following: 1) Perfect reliable resources (machine 

and transportation modules); 2) Discreet behaviour of the system; 

3) Each transportation module can host only one part mounted on 

a pallet; 4) the RTS modules manage the pallet transportation 

both in the case they load a part and when they are empty 

(interoperational buffer). Any transportation module, named unit 

(ui), has a number of neighbours (other four units) univocally 

determined. For example unit u1 has {uup, udown, uleft, uright}1 as 

neighbours. Each unit moves in one or two directions coherently 

with the reachability graph. If there is a link between the two 

units, the part can flow from one place to another. Machines, 



pallet and transportation units are associated to the binary 

variable availability (ava_m, ava_p and ava_u) whose value is 1 

if in a specific time step no parts are present on the machine/unit 

while it is 0 if they are busy. Each part that is present in the 

system is associated to an ID and it is linked to the pallet ID. 

Both parts and pallets are connected to the process plan ID that 

must be executed. Starting from an initial production schedule 

(array “schedule” listing the machine sequence), the variable 

to_do keeps trace of the operation progress, i.e. the operations to 

be executed and resources to be visited coherently with the 

process plan. The conceptual steps are synthetically formulated in 

the following pseudo code extract: 
 

For every time step t, Pallet, Part, unit, 

Switch(event) 

CASE Part_ON==1 //pallet loading a part 

read Part_ID and set NextStep(Part_ID)==1 

read PP(Part_ID)[schedule;to_do]; //PP is the part program 

Build the machine list M_list; // machines whose to_do==1 

Select the first entity of the list M_list[m]; //M is attached 

to a specific transportation unit  

In SP{ui; uj} set ui==current_location and uj==um[m] //set 

starting and ending points of the SP algo  

select SP(s==1) //select the first path of the SP list 

Build trasp_unit(s) //the transportation unit list 

Select the first element trasp_unit //first step of the path 

If AVA(trasp_unit(i))=1 

then move to trasp_unit(i) 

else select the SP(s+1)[where uk!= ui, for all k] 

Store in schedule_memory[1]==M_list[1]; 

Store in Path(t)[time_step, Pallet, Part_ID(j), trasp_unit(i)] 

Break; 

CASE Part_ON==0 // pallet not loading a part 

From current_location, select the SP(n){curr_loc; 

M_list[1]}//the empty pallets need always to be close to M1 in 

order receive a new part 

select SP(s==1) 

Build the transportation unit list trasp_unit(s) 

Select the first element of the list trasp_unit 

If AVA(trasp_unit(i))=1 

then move to trasp_unit(i) 

else select the SP(s+1)[where uk!= ui, for all k] 

Store in Path(t)[time_step, Pallet, trasp_unit(i)] 

Break. 

4. Dispatching and routing simulation tool 

The dispatching software infrastructure is designed with a 

SiL architecture where the analytical tool is directly implemented 

in C language into a discrete simulation environment. Entities 

operating in the shop floor are modelled in this environment as 

objects with a number of attributes and logic connections with 

the other entities (coherently with the vocabulary and syntax 

briefly introduced in Section2). Parts and pallets are modelled as 

dynamic entities whose attributes (operations to be executed and 

machines to be visited) evolve over time. Machines and 

transportation units are represented by nodes and, coherently 

with the reachability graph, the links between nodes imply a 

feasible connection (Figure 3).  

 
Fig. 3. Simulation Tool of the dispatching software infrastructure. 

These connections are nominal but the actual passage from 

one node to another is enabled by additional weights. As the 

gates of a seawall or an electrical circuit, dependently on the 

weight value, the passage is activated or not. The value of these 

weights is set on the basis of the dispatching commands, meaning 

that the array of units to be visited by each part at a specific time 

step is commuted in a number of values to be assigned at the 

weights in the simulation environment. As anticipated in Section 

2, this simulation tool embeds a number of additional logics and 

rules which would be extremely complex to model analytically. 

They are mostly related to the actual behaviour characterization 

of entities, herein modelled as not-perfectly reliable resources 

whose reliability statistical curve is enriched by the actual data 

gathered from the field over time. This is ensured by the physical 

connection of the simulation tool to the RTS controllers; it 

enables the knowledge acquiring about resources actual 

behaviour, including any mechanical and electrical aspects. As a 

result, when the dispatching commands are executed in the 

simulation environment, it is possible to evaluate in real-time if 

all the involved entities are available and perfectly working. In 

the case, a unit would not be available for any reasons, the 

simulation environment would adjust the status of the entity and 

feed back the information to the analytical, leading to the 

generation of a new solution. Together with the resource failure 

modelling, the simulation tool also incorporates logics for 

deadlock avoidance: parts executing the same routing more than 

once without any progress of the production process are stopped 

until the first units to be visited in according to the shortest paths 

come back available. This represents a simple rule to reduce the 

risk of infinite threads of parts in the system. The deadlock check 

of the part position over time is possible thanks to the variables 

position_history and position_tracker included in the simulation 

tool. The first one stores the positions of any part starting from 

the very first moment the part enters the system; the second 

variable compares the actual position at time T with the 

precedent ones [(T-n) with n=1,..., N] and search for any 

replicates of the part paths in the close past. The simulation tool, 

after the validation, produces at time T the set of commands for 

the RTS controllers to be executed at (T+1). During the 

execution in the physical system, the software infrastructure 

generates the new set of commands which is released as soon as 

the RTS controllers produce the done alert. 

5. Industrial Pilot Case 

The industrial case consists in a production system developed 

for the remanufacturing of PCBs – Printed Circuit Boards. The 

remanufacturing process includes the PCB repairing and/or 

upgrading actions. All PCBs are mounted on a fixturing system 

(pallet). The process is structured in the following list of 

operations: PCB identification a disassembly from the case; 

mounting the PCB on the pallet; PCB in circuit testing; PCB 

(dis)assembly by substituting or integrating new components; 

PCB final testing; PCB unloading from pallet; PCB shredding in 

the case the part still does not work. Dependently from the part 

type, the remanufacturing process can be realized by machines 

(PCBs with SMT Surface Mount-Technology) or human 

operators (PCBs with PTH Plated Through-Hole components). 

The system layout is illustrated in Figure 4. It is composed by the 

following entities: Robotic cell where PCB are disassembled 

from the case, sequenced, stored and handled (M1); (Un)loading 

station for PCB on/from pallet (S1); two manual stations (M2 and 

M5); unloading station (S2) and shredding station (M3); 

automatic machine for in-circuit test (M4); automatic machine 

for (dis)assembly (M6); RTS Reconfigurable Transportation 

System consists in a set of 15 independent modules each one 



composed of three units. As illustrated in Figure 5 reporting a 

RTS abstract representation, the transportation units are capable 

of opposite moving ways on a single direction (blue arrow) 

thanks to unit inverters. Some of the transportation units can also 

move orthogonally to the main direction, thus enabling the pallet 

shifting from one transportation module to another one (red 

arrow). The RTS units concurrently play the transport and 

buffering tasks as they hosts pallets mounting parts and empty 

pallets. The logics characterizing the process flow and the 

interactions between resources are represented by the reachability 

graphs and FSMs.  
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Fig. 4. Shop-floor layout. Fig. 5. RTS abstract model. 

5.1. Experimental campaign 

The referred production case is characterized by 7 part types. 

The experimental evaluation refers to three major production 

scenarios. The first one refers to a production context where a 

greedy dispatching policy is adopted: parts undertake a random 

path in the RTS and only the part collision avoidance is ensured. 

Any module makes an availability check before transferring the 

part to another module; if check fails, the part stays indefinitely 

in stand-by mode until the availability check results positive and 

the pallet is transferred. The second scenario deals with a 

dispatching policy based on nominal fixed paths associated to the 

specific part programs to be realized. Once the part program is 

identified the machines are visited by following a routing decided 

a-priori. The third scenario relies on the dispatching algorithms 

proposed in the current paper. 

For the three scenarios, the experimentation focuses on a 

variable range of part inter-arrival time on the RTSs (from 300 to 

400 sec). The lower bound of the inter-arrival time is constrained 

by the processing time of M4 that is responsible for the part 

functional testing and, consequently, for the identification of the 

part program to be executed (depending on the PCB anomaly). 

Thus, this machine is concurrently the process key node of the 

line as well as the system bottleneck considering its processing 

time. Preliminary analyses related to the system throughput 

evaluation address that - by only focusing on the system perfectly 

reliable behaviour - the first scenario produces an average 

throughput of 3.33 parts/hour mostly caused by the very high 

amount of parts in deadlock status. Under the same assumptions, 

the second scenario enables the achievement of an average 

throughput value of 5.9 parts/hour where the deadlocks are 

drastically reduced but the idle times of the machines is still very 

high. The third scenario based on the proposed dispatching 

algorithm leads to a throughput close to 11 parts/hour where both 

deadlocks, machine idles and parts’ lead times are severely 

constrained. These results are partially outlined by Figure 6 

where an example of the production volume curves are plotted 

for the first 12 working hours after a RTS reconfiguration across 

several inter-arrival times. For the sake of clarity, the figure only 

comprises the curves resulting from the scenarios 1 and 3.  

This pattern is even more stressed in the presence of failures and 

anomalies (time delays) affecting the RTS modules. A temporary 

unavailability of the equipment represents a severe damage for 

the throughput rate in scenarios 1 and 2 because of the absence of 

recovery actions, whereas it is easily managed in scenario 3 by 

generating alternative SPs and routings. These considerations can 

be extended also to the case of RTS reconfigurations which 

cannot be dynamically considered in scenarios 1 and 2 that 

require the generation of new abstract models of the system. 

Conversely, the proposed approach enables the automatic 

adaptation of the reachability graph based on the new RTS 

configurations along with the management of new dispatching 

strategies. 
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Fig. 6. RTS processed volumes plot. 

5. Conclusions and future remarks 

The present paper addresses a structured approach for the 

part dispatching and routing in RTSs consisting of an analytical 

model nested in a simulation tool. Compared to greedy and fixed 

path dispatching policies, this approach leads to an average 

improvement of throughput of 43% even in system degraded 

operation modes. Future work will refer to more 

comprehensively experimental analyses addressing the complete 

family of failures along with the software tool robustness 

evaluation in terms of times and quality of the generated 

dispatching policies.  

References 
[1] Koren Y., Heisel U., Jovane F., Moriwaki T., Pritschow G., Ulsoy G., 

Van Brussel H., 1999, Reconfigurable Manufacturing Systems. CIRP Annals 
- Manufacturing Technology, 48/2: 527-540. 

[2] To T., Ho J., 2002, A Genetic Algorithm for Configuring Reconfigurable 

Conveyor Components in a Flexible Assembly Line System. Proc. of 
Manufacturing Complexity Network Conference, Cambridge, UK. 

[3] Kuruvilla S., Gokhale S., Sastry S., 2008, Reliability evaluation of 

reconfigurable conveyor systems. Proc. of IEEE Int. Conference on 
Automation Science and Engineering, Arlington, USA. 

[4] Valente A., Carpanzano E., 2011, Development of multi-level adaptive 

control and scheduling solutions for shop-floor automation in Reconfigurable 
Manufacturing Systems, CIRP Annals - Manufacturing Technology. 

60(1):449-452. 

[5] Van Brussel H., 1990, Planning and Scheduling of Assembly Systems  
CIRP Annals - Manufacturing Technology, 39(2):637-644. 

[6] Duffie N., Kaltjob P., 1998, Dynamics of Real-Time Distributed 

Scheduling in Multiple-Machine Heterarchical Manufacturing Systems. CIRP 
Annals - Manufacturing Technology, 47/1: 415-418. 

[7] Valente, A., Carpanzano, E., Nassehi, A., Newman, S. T., 2010, A STEP 

compliant knowledge based schema to support shop-floor adaptive 
automation in dynamic manufacturing environments. CIRP Annals -

Manufacturing Technology, 59/1: 441-444. 

[8] Heineman G., Pollice G., Selkow S., 2008, Graph Algorithms, Ch 6 in 
Algorithms in a Nutshell. Pp.136-171. O'Reilly. 


