

A dynamic algorithm for real-time dispatching and routing operations in

Reconfigurable Transportation Systems – RTSs.

A.Valente A.

 a
, A.Cataldo

a
 , E.Carpanzano

a
 (2)

a
 2MaCS, ITIA-CNR, via Bassini 15, Milan 20133, Italy

Abstract: Reconfigurable Transportation Systems (RTS) rely upon modular transportation units, standard mechatronic interfaces and

distributed control solutions so that modules can be plugged and automatically configured. The RTS topology and functional settings’

reconfigurability makes the adoption of highly reactive production management solutions mandatory for dynamically governing both the

products’ flows and resources’ utilization. This work presents an algorithm and its software infrastructure for the on-line dispatching-

routing of parts and RTS modules’ coordination by inferring on logic controllers in real-time. The benefits of the proposed methodology

are tested on a reconfigurable transportation system installed in a factory for the remanufacturing of PCBs.
Keywords: Reconfigurable Transportation Systems, Part Dispatching, Part Routing, PCB Remanufacturing.

1. Introduction and paper motivation

Reconfigurable Transportation Systems – RTS play an

instrumental role in empowering manufacturing systems with the

capability to adapt their architecture and functionalities to match

evolving production environments undergoing frequent changes

of product features, demand and technologies [1]. The major

features of RTS are mostly related to the possibility to change the

transportation layout and functionalities with no need for

integrating new equipment or reprogramming the transportation

control set-points [2,3]. RTSs are enabled by the utilization of

modular transportation units equipped with standard mechatronic

interfaces and distributed control solutions [4]. In the most recent

advanced architectures, RTSs result in a composition of modules

embedding the related control function blocks that can be

plugged one to another and automatically configured when

connected together.

The advantages resulting from the adoption of RTSs

especially in terms of the agility of the mechanical and

automation aspects comes with several scientific and technical

challenges as well. Transportation modules need to be conceived

as smart mechatronic components capable of embedding

distributed control algorithms and sensing/telecommunication

systems supporting the recognition of any device they are

connected to. The standard interfaces allow a more efficient

connection process with various equipment typologies so that a

number of possible integration of new equipment and/or

modification of the system architecture can be realized without

any complex overhaul of the mechanics and electronics. The

efficiency of the RTS reconfigurability is also related to the

SCADA (Supervision Control and Data Acquisition) system that

is expected to capture any change occurring in the line

architecture and functionalities consequently adapting the

supervision and monitoring logics. Similarly, the production

management software incorporated in the MES (Manufacturing

Execution System) requires a radical change in the way it is

normally conceived and implemented [5]. Any reconfiguration of

the transportation system asks for the consequent and immediate

adaptation of the part (and fixturing) dispatching and routing

policies. Besides, the management of smart mechatronic

equipment, such as the transportation modules, has the

instrumental capability to accommodate dispatching logics

operating in line as a result of the equipment intelligence (along

with the traditional modifications which can be implemented at

coordination level). As the ability of parts to reach a specific

machine in a certain time in order to execute the requested

operations is function of the current transportation system layout

and status, the production management tools need to be coupled

with the automation layers and SCADA systems, thus

dynamically adapting the management policies to the RTS

architecture. This also requires operating in a decision time

horizon extremely lower if compared to traditional tools [6].

The current work addresses the management problem for

RTSs with a specific focus on the dynamic dispatching and

routing policies. The basic idea is to generate a dispatching and

routing approach structured in an algorithm and a set of recovery

strategies nested in a software infrastructure that communicates

with the RTS controllers. The rest of the paper is structured as

follows: Section 2 outlines the proposed dispatching approach;

Sections 3 and 4 describe the approach analytical formulation and

validation tool; Section 5 briefly introduces the industrial pilot

system and the results of the experimental campaign; Section 6

deals with the paper conclusions and future works.

2. RTS dispatching approach

The proposed dispatching and routing approach, illustrated

in Figure 1, is structured in two major components, the algorithm

and the validation environments, nested in a Software in the Loop

SiL architecture, enabling the generation and testing in real-time

Contents lists available at ScienceDirect

CIRP Annals
Manufacturing Technology

Journal homepage: www.elsevier.com/locate/cirp

http://www.sciencedirect.com/science/journal/00078506
http://www.elsevier.com/locate/cirp

of the dispatching solutions. The software infrastructure is in turn

physically binded (Hardware in the Loop HiL) via TCP/IP

communication protocol to the control platform running the

mechatronic equipment. The dispatching commands (validated in

SiL) are passed to the RTS controllers that realize the RTS

module movements and feed back the new status of the line. The

need to exchange a considerable cluster of information over time

and across multiple software, requires the entities considered in

the production environment to be modelled in a systemized way.

Entities incorporated in the software architecture are clustered in

three categories: products, processes and industrial equipment

[7]. The last category is additionally organized in

machines/robots, transportation modules and (un)loading

stations. The various entities are nested by logic and physical

connections as well as a number of rules determining their

relationships and their behaviour over time. The logic description

of the system entities’ behaviour is realized by FSM – Finite

State Machines in order to formalize the rules describing the

entities interactions across multiple production scenarios. During

the dispatching decision process, the information modelled and

collected in the infrastructure is partly nominal (such as system

layout between two reconfigurations) and partly related to a

specific status (such as the idle transportation modules in a

specific time step).

P
R

O
D

U
C

T
P

R
O

C
E

S
S

E
Q

U
IP

M
E

N
T

P
IC

K
IN

G

P
A

R
T

 I
D

-1

L
O

A
D

IN
G

P
A

R
T

 I
D

-1

O
N

 P
A

L
L

E
T

G
O

 T
O

 M
4

G
O

 T
O

 M
6

G
O

 T
O

 M
2

G
O

 T
O

 M
5

G
O

 T
O

 M
6

G
O

 T
O

 M
4

IF S
C

E
N

A
R

IO
=

=
W

P
a

)

G
O

 T
O

 S
1

G
O

 T
O

 S
1

G
O

 T
O

 S
1

G
O

 T
O

 S
2

G
O

 T
O

 M
4

G
O

 T
O

 S
1

U
45

U
44

U
43

U
3

U
2

U
1

U
42

U
41

U
40

U
39

U
38

U
37

U
6

U
5

U
4

U
36

U
35

U
34

U
7

U
8U
9

U
28

U
29U
30

U
31

U
32U
33

U
10

U
11U
12

U
22

U
23U
24

U
25

U
26U
27

U
13

U
14U
15

U
16

U
17U
18

U
19

U
20U
21

S
H

O
P

-F
LO

O
R

 D
A

TA

IN
F

R
A

S
T

R
U

C
T

U
R

E

ANALYTHICAL TOOL VALIDATION TOOL

SOFTWARE IN THE LOOP

HARDWARE IN THE LOOP

SHOP FLOOR

Fig. 1. Dispatching and routing approach.

3. Dispatching and routing algorithm

The analytical formulation of the dispatching approach for

RTSs consists in 6 major steps (Figure 2). Based on the system

features, the first step is executed for any RTS (re)configuration

and concerns the definition of an abstract model of the system

layout whose abstract classes are populated with nominal

information and the associated logic descriptions (FSM

diagrams). The system layout is represented by graph diagram

(reachability graph) whose nodes are the entities and the arches

are the physical connections between entities. For any PLC cycle

time, this system abstract model is consequently enriched in Step

2 with actual data about the current status of the system so to

frame the shop-floor operating resources in a specific time stage.

These data are available from the shop-floor SCADA system (or

similarly shop-floor simulation environment). Once the shop-

floor environment is comprehensively described, Step 3 launches

the SP - Shortest Path Algorithm [8] whose goal is to select the

path that each part should realize in order to reach the resources

with the minimum number of steps based on a certain layout (the

starting and ending point of the path are assigned). In a specific

time step, for each part circulating on the RTS, the outcome of

Step 3 is a list of shortest paths ranked by growing number of

RTS modules to be visited to reach the end point of the path. The

generated shortest paths for each part are the nominal ones, i.e. it

is assumed the transportation system is completely free of other

parts while identifying the modules to be visited step by step.

This preliminary assumption makes the computational effort

requested to generate the SPs extremely low compared to the

execution of the SP enriched with actual data on the line status

availability [8]. However, these nominal solutions are adjusted in

Step 4 by integrating a number of heuristic rules nested in the

algorithm. These rules check the actual availability and the status

(equipment performance) of the transportation modules, thus

enabling the elimination of not viable paths generated by Step 3.

The developed heuristic approach is executed by visiting

horizontally the array of transportation modules (the single path),

node by node, and vertically the list of array, SP by SP

(alternative paths), ranked by increasing transportation times. The

choice to adopt this approach is to drastically reduce the time to

generate the solution as the approach is concurrently executed for

all the parts circulating the transportation system, thus reaching a

high parallel computational effort. At the time step T, the result

of Step 4 is a vector listing the transportation modules to be

visited for all the parts at step (T+1). The structure of such an

algorithm enables a computational feasibility so that both Step 3

and Step 4 are executed for every time step [T; T+1] which in our

case is set as the PLCs cycle times (up to 150 ms). At this point,

the set of dispatching commands is verified by the validation tool

(Step 5) where it is possible to consider additional data about the

shop-floor status and dynamics that is extremely complex to

model analytically. This validation tool - either a SCADA system

or a simulation environment - checks the viability of the solution

having a more comprehensive knowledge of the system. Once

validated, the set of dispatching commands is passed to the PLCs

in Step 6 and executed on the physical equipment. The correct

execution of the dispatching commands for (T+1) is

acknowledged back to the software, leading the algorithm to

generate the next step solution (Step 2).

1. SHOP-FLOOR

ABSTRACT MODEL

2. DATA ENRICHMENT

3. RUNNING OF SP

4. ADJUSTMENT OF

SP BY HEURISTICS

6. DEPLOYMENT ON CTRL

ALGO STEPS

SHOP-FLOOR

5. VALIDATION TOOL

SIMULATION TOOL

DONE

Every RTS reconfiguration

Every PLC cycle timeNominal status

Current status

COMMANDS

N
E

X
T

 S
T

E
P

Fig. 2. Dispatching algorithm steps.

3.1. Analytical formulation

The preliminary assumptions for the analytical formulation

are listed in the following: 1) Perfect reliable resources (machine

and transportation modules); 2) Discreet behaviour of the system;

3) Each transportation module can host only one part mounted on

a pallet; 4) the RTS modules manage the pallet transportation

both in the case they load a part and when they are empty

(interoperational buffer). Any transportation module, named unit

(ui), has a number of neighbours (other four units) univocally

determined. For example unit u1 has {uup, udown, uleft, uright}1 as

neighbours. Each unit moves in one or two directions coherently

with the reachability graph. If there is a link between the two

units, the part can flow from one place to another. Machines,

pallet and transportation units are associated to the binary

variable availability (ava_m, ava_p and ava_u) whose value is 1

if in a specific time step no parts are present on the machine/unit

while it is 0 if they are busy. Each part that is present in the

system is associated to an ID and it is linked to the pallet ID.

Both parts and pallets are connected to the process plan ID that

must be executed. Starting from an initial production schedule

(array “schedule” listing the machine sequence), the variable

to_do keeps trace of the operation progress, i.e. the operations to

be executed and resources to be visited coherently with the

process plan. The conceptual steps are synthetically formulated in

the following pseudo code extract:

For every time step t, Pallet, Part, unit,

Switch(event)

CASE Part_ON==1 //pallet loading a part

read Part_ID and set NextStep(Part_ID)==1

read PP(Part_ID)[schedule;to_do]; //PP is the part program

Build the machine list M_list; // machines whose to_do==1

Select the first entity of the list M_list[m]; //M is attached

to a specific transportation unit

In SP{ui; uj} set ui==current_location and uj==um[m] //set

starting and ending points of the SP algo

select SP(s==1) //select the first path of the SP list

Build trasp_unit(s) //the transportation unit list

Select the first element trasp_unit //first step of the path

If AVA(trasp_unit(i))=1

then move to trasp_unit(i)

else select the SP(s+1)[where uk!= ui, for all k]

Store in schedule_memory[1]==M_list[1];

Store in Path(t)[time_step, Pallet, Part_ID(j), trasp_unit(i)]

Break;

CASE Part_ON==0 // pallet not loading a part

From current_location, select the SP(n){curr_loc;

M_list[1]}//the empty pallets need always to be close to M1 in

order receive a new part

select SP(s==1)

Build the transportation unit list trasp_unit(s)

Select the first element of the list trasp_unit

If AVA(trasp_unit(i))=1

then move to trasp_unit(i)

else select the SP(s+1)[where uk!= ui, for all k]

Store in Path(t)[time_step, Pallet, trasp_unit(i)]

Break.

4. Dispatching and routing simulation tool

The dispatching software infrastructure is designed with a

SiL architecture where the analytical tool is directly implemented

in C language into a discrete simulation environment. Entities

operating in the shop floor are modelled in this environment as

objects with a number of attributes and logic connections with

the other entities (coherently with the vocabulary and syntax

briefly introduced in Section2). Parts and pallets are modelled as

dynamic entities whose attributes (operations to be executed and

machines to be visited) evolve over time. Machines and

transportation units are represented by nodes and, coherently

with the reachability graph, the links between nodes imply a

feasible connection (Figure 3).

Fig. 3. Simulation Tool of the dispatching software infrastructure.

These connections are nominal but the actual passage from

one node to another is enabled by additional weights. As the

gates of a seawall or an electrical circuit, dependently on the

weight value, the passage is activated or not. The value of these

weights is set on the basis of the dispatching commands, meaning

that the array of units to be visited by each part at a specific time

step is commuted in a number of values to be assigned at the

weights in the simulation environment. As anticipated in Section

2, this simulation tool embeds a number of additional logics and

rules which would be extremely complex to model analytically.

They are mostly related to the actual behaviour characterization

of entities, herein modelled as not-perfectly reliable resources

whose reliability statistical curve is enriched by the actual data

gathered from the field over time. This is ensured by the physical

connection of the simulation tool to the RTS controllers; it

enables the knowledge acquiring about resources actual

behaviour, including any mechanical and electrical aspects. As a

result, when the dispatching commands are executed in the

simulation environment, it is possible to evaluate in real-time if

all the involved entities are available and perfectly working. In

the case, a unit would not be available for any reasons, the

simulation environment would adjust the status of the entity and

feed back the information to the analytical, leading to the

generation of a new solution. Together with the resource failure

modelling, the simulation tool also incorporates logics for

deadlock avoidance: parts executing the same routing more than

once without any progress of the production process are stopped

until the first units to be visited in according to the shortest paths

come back available. This represents a simple rule to reduce the

risk of infinite threads of parts in the system. The deadlock check

of the part position over time is possible thanks to the variables

position_history and position_tracker included in the simulation

tool. The first one stores the positions of any part starting from

the very first moment the part enters the system; the second

variable compares the actual position at time T with the

precedent ones [(T-n) with n=1,..., N] and search for any

replicates of the part paths in the close past. The simulation tool,

after the validation, produces at time T the set of commands for

the RTS controllers to be executed at (T+1). During the

execution in the physical system, the software infrastructure

generates the new set of commands which is released as soon as

the RTS controllers produce the done alert.

5. Industrial Pilot Case

The industrial case consists in a production system developed

for the remanufacturing of PCBs – Printed Circuit Boards. The

remanufacturing process includes the PCB repairing and/or

upgrading actions. All PCBs are mounted on a fixturing system

(pallet). The process is structured in the following list of

operations: PCB identification a disassembly from the case;

mounting the PCB on the pallet; PCB in circuit testing; PCB

(dis)assembly by substituting or integrating new components;

PCB final testing; PCB unloading from pallet; PCB shredding in

the case the part still does not work. Dependently from the part

type, the remanufacturing process can be realized by machines

(PCBs with SMT Surface Mount-Technology) or human

operators (PCBs with PTH Plated Through-Hole components).

The system layout is illustrated in Figure 4. It is composed by the

following entities: Robotic cell where PCB are disassembled

from the case, sequenced, stored and handled (M1); (Un)loading

station for PCB on/from pallet (S1); two manual stations (M2 and

M5); unloading station (S2) and shredding station (M3);

automatic machine for in-circuit test (M4); automatic machine

for (dis)assembly (M6); RTS Reconfigurable Transportation

System consists in a set of 15 independent modules each one

composed of three units. As illustrated in Figure 5 reporting a

RTS abstract representation, the transportation units are capable

of opposite moving ways on a single direction (blue arrow)

thanks to unit inverters. Some of the transportation units can also

move orthogonally to the main direction, thus enabling the pallet

shifting from one transportation module to another one (red

arrow). The RTS units concurrently play the transport and

buffering tasks as they hosts pallets mounting parts and empty

pallets. The logics characterizing the process flow and the

interactions between resources are represented by the reachability

graphs and FSMs.

M1

M
2

M
5

M
6

M
7

M
4

S1

M2

S2

M3
M5

M6

M4

U45 U44 U43U3 U2 U1

U42 U41 U40U39 U38 U37

U6 U5 U4

U36 U35 U34U7

U8

U9

U28

U29

U30

U31

U32

U33

U10

U11

U12

U22

U23

U24

U25

U26

U27

U13

U14

U15

U16

U17

U18

U19

U20

U21

Fig. 4. Shop-floor layout. Fig. 5. RTS abstract model.

5.1. Experimental campaign

The referred production case is characterized by 7 part types.

The experimental evaluation refers to three major production

scenarios. The first one refers to a production context where a

greedy dispatching policy is adopted: parts undertake a random

path in the RTS and only the part collision avoidance is ensured.

Any module makes an availability check before transferring the

part to another module; if check fails, the part stays indefinitely

in stand-by mode until the availability check results positive and

the pallet is transferred. The second scenario deals with a

dispatching policy based on nominal fixed paths associated to the

specific part programs to be realized. Once the part program is

identified the machines are visited by following a routing decided

a-priori. The third scenario relies on the dispatching algorithms

proposed in the current paper.

For the three scenarios, the experimentation focuses on a

variable range of part inter-arrival time on the RTSs (from 300 to

400 sec). The lower bound of the inter-arrival time is constrained

by the processing time of M4 that is responsible for the part

functional testing and, consequently, for the identification of the

part program to be executed (depending on the PCB anomaly).

Thus, this machine is concurrently the process key node of the

line as well as the system bottleneck considering its processing

time. Preliminary analyses related to the system throughput

evaluation address that - by only focusing on the system perfectly

reliable behaviour - the first scenario produces an average

throughput of 3.33 parts/hour mostly caused by the very high

amount of parts in deadlock status. Under the same assumptions,

the second scenario enables the achievement of an average

throughput value of 5.9 parts/hour where the deadlocks are

drastically reduced but the idle times of the machines is still very

high. The third scenario based on the proposed dispatching

algorithm leads to a throughput close to 11 parts/hour where both

deadlocks, machine idles and parts’ lead times are severely

constrained. These results are partially outlined by Figure 6

where an example of the production volume curves are plotted

for the first 12 working hours after a RTS reconfiguration across

several inter-arrival times. For the sake of clarity, the figure only

comprises the curves resulting from the scenarios 1 and 3.

This pattern is even more stressed in the presence of failures and

anomalies (time delays) affecting the RTS modules. A temporary

unavailability of the equipment represents a severe damage for

the throughput rate in scenarios 1 and 2 because of the absence of

recovery actions, whereas it is easily managed in scenario 3 by

generating alternative SPs and routings. These considerations can

be extended also to the case of RTS reconfigurations which

cannot be dynamically considered in scenarios 1 and 2 that

require the generation of new abstract models of the system.

Conversely, the proposed approach enables the automatic

adaptation of the reachability graph based on the new RTS

configurations along with the management of new dispatching

strategies.

310 No Algo

300 No Algo

320 No Algo

300 Algo

320 Algo

310 Algo

7

6

38

131

135

13230

60

90

120

320 No Algo

310 No Algo

300 No Algo

300Algo

320 Algo

310 Algo

Time [12h]
9

0
6 123

Part processed

Fig. 6. RTS processed volumes plot.

5. Conclusions and future remarks

The present paper addresses a structured approach for the

part dispatching and routing in RTSs consisting of an analytical

model nested in a simulation tool. Compared to greedy and fixed

path dispatching policies, this approach leads to an average

improvement of throughput of 43% even in system degraded

operation modes. Future work will refer to more

comprehensively experimental analyses addressing the complete

family of failures along with the software tool robustness

evaluation in terms of times and quality of the generated

dispatching policies.

References
[1] Koren Y., Heisel U., Jovane F., Moriwaki T., Pritschow G., Ulsoy G.,

Van Brussel H., 1999, Reconfigurable Manufacturing Systems. CIRP Annals
- Manufacturing Technology, 48/2: 527-540.

[2] To T., Ho J., 2002, A Genetic Algorithm for Configuring Reconfigurable

Conveyor Components in a Flexible Assembly Line System. Proc. of
Manufacturing Complexity Network Conference, Cambridge, UK.

[3] Kuruvilla S., Gokhale S., Sastry S., 2008, Reliability evaluation of

reconfigurable conveyor systems. Proc. of IEEE Int. Conference on
Automation Science and Engineering, Arlington, USA.

[4] Valente A., Carpanzano E., 2011, Development of multi-level adaptive

control and scheduling solutions for shop-floor automation in Reconfigurable
Manufacturing Systems, CIRP Annals - Manufacturing Technology.

60(1):449-452.

[5] Van Brussel H., 1990, Planning and Scheduling of Assembly Systems
CIRP Annals - Manufacturing Technology, 39(2):637-644.

[6] Duffie N., Kaltjob P., 1998, Dynamics of Real-Time Distributed

Scheduling in Multiple-Machine Heterarchical Manufacturing Systems. CIRP
Annals - Manufacturing Technology, 47/1: 415-418.

[7] Valente, A., Carpanzano, E., Nassehi, A., Newman, S. T., 2010, A STEP

compliant knowledge based schema to support shop-floor adaptive
automation in dynamic manufacturing environments. CIRP Annals -

Manufacturing Technology, 59/1: 441-444.

[8] Heineman G., Pollice G., Selkow S., 2008, Graph Algorithms, Ch 6 in
Algorithms in a Nutshell. Pp.136-171. O'Reilly.

