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Abstract

Structure-from-Motion (SfM) using the frames of a video sequence
can be a challenging task because there is a lot of redundant informa-
tion, the computational time increases quadratically with the number
of frames, there would be low-quality images (e.g., blurred frames) that
can decrease the final quality of the reconstruction, etc. To overcome
all these issues, we present a novel deep-learning architecture that is
meant for speeding up SfM by selecting frames using predicted sub-
sampling frequency. This architecture is general and can learn/distill
the knowledge of any algorithm for selecting frames from a video for
generating high-quality reconstructions. One key advantage is that
we can run our architecture in real-time saving computations while
keeping high-quality results.
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1 Introduction

The last decade has seen an outburst of methods and software (both free
and commercial) for computing 3D reconstructions from sets of images us-
ing the so-called Structure-from-Motion or SfM [25] paradigm. Since video
sequences became easier to acquire, a straightforward pipeline consists of
simply feeding all the frames of a video to the SfM algorithms. However,
SfM software is specialized to produce high-quality results for a collection
of sparse images, and it turns out it performs poorly when videos are em-
ployed. There are two reasons for this. One is simply that computational
memory and time requirements grow quadratically with the number of im-
ages. The second reason is that frames from a video make a poorly condi-
tioned dataset for SfM reconstruction. By design, these methods need a set



of images that overlap enough so that every point of the scene is seen by
three or more images and that there is enough parallax among these images
so that the computation of the position of the point in 3D can be accurate.
If we selected all the frames from a video, we would generally have a highly
redundant dataset where the overlap is too much and the parallax between
images with matching features is too little. One effective approach is to
take a subset of those frames and run SfM over it. The challenge consists in
choosing an optimal subset, a task that an experienced practitioner could
do reasonably well, provided that enough time is given.

We observed that there is not a specific optimal subset of frames as
much as many possible equivalent choices of subsets. For example, if we
consider a video shot from a camera moving at a constant speed, the set of
even frames (0, 2,4, ...) and the set of odd frames (1, 3,5, ...) would produce
essentially the same final result. Therefore, we looked for ways to encode
the notion of a set of subsets and choose to do it in terms of local frequency,
that is, the sampling factor to use for selecting frames from a given segment
of the video. We designed a deep-based framework that takes as input a
video and calculates, for each segment of the video, how many frames to
regularly sample from that segment in the reconstruction algorithm. In the
training phase, we fed the network with a large number of possible subsets of
frames of videos. For each subset, we ran an SfM reconstruction, computing
the loss function in terms of accuracy of the reconstruction w.r.t to the
ground truth. In the online phase, given the input video to the network, the
network returns, for each consecutive segment of frames, the sampling factor
to use to form the set to input to the SfM reconstruction. To summarize,
our contribution is: (i) a novel architecture for distilling any algorithm for
selecting high-quality sets of frames for 3D reconstruction; (ii) the evaluation
of this architecture using a greedy method; and (iii) a dataset of videos for
3D reconstruction using SfM pipelines.

2 Related Work

Related Work on SfM using DL. Our work is related to the works on ex-
ploiting the deep learning techniques to improve the accuracy and the speed
of the structure-from-motion (SfM) pipeline. The SfM task [7, 24] aims at
reconstructing the 3D structure of the scene or objects from multiple 2D
images. There are two key aspects for solving the SfM problem, camera
motion extraction, and structure estimation. To improve the whole SfM
performance, the traditional SfM works have explored well on improving
both the camera motion and structure estimation and the connection be-
tween the camera motion and the structure estimation. For example, some
works [4] focus on improving the robustness and the effectiveness of the low-
level feature extraction and matching to improve both the camera motion



and structure estimation performance. Some other works [24, 1, 6] pay more
attention to optimizing the camera motion and the structure estimation at
the same time, by exploiting the connection between the motion and struc-
ture. The traditional SfM methods have already made great progress in
the past decades and proven the effectiveness for the real applications on
different tasks such as the scene reconstruction [1, 9, 17, 18, 30], and the
3D object modeling [20]. However, there still exist problems that need to
be further solved such as time efficiency. Recently, deep learning techniques
have made a great impact in the field of computer vision and show an advan-
tage in accuracy and efficiency[16].More recently, more and more works are
exploring to exploit the deep learning techniques to help improve the SfM
task [27, 14, 28] performance on efficiency and accuracy. When applied to
the SfM task, the advantage of the deep learning-based techniques is proven
on the efficiency [28], compared with the traditional SfM methods. However,
the disadvantage is also found out for the low robustness and accuracy under
varying environment [29], due to the high reliability of deep learning on the
image data distribution which makes the deep model hard to be generalized
to different settings. To take the advantage of the deep-based techniques
on the efficiency and the advantage of the traditional SfM techniques on
robustness and accuracy, our work exploits the deep learning-based mod-
ule to preprocess the video frames to select well-conditioned sets of frames
w.r.t. to feed to the traditional SfM pipeline to speed up the reconstruction
preserving the accuracy.

Related Work on Frame Selection for SfM. Our work is related to
the works on frame selection for SfM works. One important aspect, which
limits the time efficiency and accuracy for the traditional SfM pipeline, is
the redundant and low-quality frames feed into the pipeline [22]. To im-
prove the efficiency and accuracy of the traditional SfM pipeline, more and
more works explore to select the keyframes from the input videos, to reduce
the noise for the optimization and reduce the computational load. Some
works [26, 23] select the keyframes in the process of the optimization such
as the bundle adjustment to remove the noise for the matrix decomposition.
However, these works still need to process all the frames during the feature
extraction and matching stage, which still cost much time on the redundant
and low-quality frames. Besides, some works [22, 21| propose to preprocess
the input videos and select the keyframes according to the quality of the
frame, which is more time-efficient. However, these works can only remove
the low-quality frames according to prior knowledge but still cannot reduce
the redundancy. Our work also follows the keyframe selection for prepro-
cessing the input video. However, different from the previous works, our
module learns to sample the keyframes from the video segments adaptively
and automatically, to only sample the frames which are essential for the final
reconstruction to highly reduce the redundancy and improve the efficiency.



Related Work on Distilling Knowledge. Our work is also related to
works on knowledge distillation. Knowledge distillation is an important
topic in deep learning [10, 12]; it enables to have more efficient networks
while transferring knowledge from a teacher network to a smaller student
one; which is typically a simplified model. This approach can be applied to
computationally cumbersome algorithms such as perceptual metrics [2, 3].
We share a similar philosophy with these works on knowledge transferring
and distillation. However, our work does not transfer and distill knowledge
between the different teacher and student networks. More specifically, we
want to distill the frames which are key for the final 3D reconstruction, to
reduce the redundancy and improve time efficiency. To our knowledge, this
work is the first one to propose a general framework for distilling any frame
selection algorithm into a generic deep learning-based architecture.

3 Method

Our goal is to estimate the frequency, f, for sampling frames to generate
high-quality 3D models from videos without manual intervention to deter-
mine the frames to be selecting. This sets users free from inspecting thou-
sands of frames during the 3D reconstruction step.
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Figure 1: Our architecture for predicting the sampling frequency of frames for
SfM.

As for the model architecture, we combined a convolutional neural net-
work (CNN) [15] with a long-short term memory (LSTM) network [11] (see
Fig. 1). Donahue et al. [5] showed that this strategy is successful for video
recognition and description. The former network projects each frame of a
sequence into a latent space obtaining an array of features. From such an



array, we can predict the frequency value by feeding them into the latter
network. An LSTM is typically a natural choice for modeling time-series
data such as the temporal evaluation of the extracted features as in this
case. We used an LSTM with 2 hidden layers and 128 hidden nodes; we
determined these hyper-parameters during early experimentation.

As CNN, we adopted a ResNet [8] because such a model has provided
high-quality results in image classification and was successfully used in other
techniques involving computer vision/imaging tasks. Since we have to pro-
cess many frames, we employed ResNet-18, which has a good trade-off be-
tween quality and speed. This is extremely important when evaluating video
sequences with a lot of frames; see Section 4.3. Since we are not interested
in classification, we removed the last layers and we replaced them with three
dense layers with 512 neurons each outputting a feature vector of 300 values;
a value found out during pilot experiments.

3.1 Dataset

Acquisition. We acquired videos from different devices (e.g., drones, smart-
phones, etc.) at full HD resolution (1920 x 1080), following the classic pho-
togrammetry guidelines. In total, we captured 11 videos for training and
validation that we divided into 1,356 segments of 30-frame each; we chose
this length for fitting into the video memory during training. For testing, we
acquired other 7 videos that we divided into 403 segments of 30-frame each,
and these videos were completely separated from the training and evaluation
datasets. Note that the camera speed is not constant but varies along the
video sequences and also within the same video sequence. In addition, the
frame rate of these sequences was either at 30fps or 60fps.

Ground Truth. From these videos, we computed the ground-truth fre-
quency of frames to be selected. To achieve this, we used a greedy approach.
We created 3D reconstructions of each video at different regular sampling
rates, selecting the sampling rate that was maximizing the number of gen-
erated sparse 3D points. To have manageable computations (i.e., under
2-hour per subsequence), we divided each video into 60-frame subsequences
and we applied our greedy algorithm to each. For 3D reconstructions, we
used OpenMVG [19]; a popular open-source package for SfM. Note that
blurred frames and static frames were removed [22] before running 3D re-
constructions.

Augmentation. We performed data augmented to enlarge this initial
dataset. We applied three types of rotations (90°, 180°, and 270°) and
horizontal flipping (also applied to each rotated image). We thus apply a
total of six transformations for each video, obtaining 7,112 videos (including
the original ones). This means a total of 213,360 frames to be processed.



3.2 Frames Encoding

During early experiments, we noted that the performance of our architec-
ture depends on the content of the video, and this is undesirable. We as-
sessed this problem by testing videos without motion (both camera and
people/objects). We create a motionless video using a single frame of a
segment that had a high-frequency ground-truth value. Since this video
is motionless, we would expect to have a zero or close to zero frequency.
However, the model was predicting a high frequency for sampling frames.
This means that only the visual content of the frame itself was used by
the network for the frequency prediction and not the motion. To overcome
this issue, we decided to encode segments differently to force the model to
extract motion-related features. In this encoding, we convert a sequence n
frames long (in our case, n = 30) into a n — 1 sequence in which the new
frames of this encoding, fy, are computed as

fa(i) = f(i+1) = f(0), (1)

where f(7) is the i-th frame. We call this encoding for our segments differ-
ential encoding.

4 Results

We trained our model on a Linux machine (Ubuntu 18.04) equipped with
an Intel CPU Core i7-7800X (3.50 GHz) with 64 GB of memory and an
NVIDIA GeForce GTX 1080 GPU with 8 GB of memory. We used PyTorch
1.3.1 as the deep-learning framework for implementing our architecture.

We trained the network using mini-batch stochastic gradient descent and
the Adam optimizer [13] with the learning rate set to 5 - 1075. We left the
rest of the parameters set to their default values; i.e., 51 = 0.9, 82 = 0.999,
and € = 1078, Since we were estimating a quantity; i.e., the subsampling
frequency, we defined the loss function to be the Mean Square Error (MSE)
between the predicted frequency and the ground-truth. We employed a
pre-trained ResNet-18 available in PyTorch, and we kept the weights of
the convolutional part frozen. We set the batch size of our network to 8,
which is the largest value that can be set with the GPU memory available.
The training set is shuffled whenever an epoch is completed to diminish the
impact of order-based biases during training. We set the maximum number
of epochs to 600 for an approximate training of 7 days and 8 hours.

4.1 Ablation Study

We trained our architecture with and without our differential encoding. Fig-
ure 3 displays the training curves; i.e., the evolution of the loss as evaluated



on the training and validation. When we train our model using the differ-
ential encoding, the model reaches the converge faster than without it. In
addition, as can be noticed from the plots.

4.2 Quality of Learning

In order to assess the quality of learning; i.e., estimating how-well the net-
work distilled the ground-truth algorithm, we decided to plot the error (in
frames) between the ground-truth and the values estimated by the network
for the test dataset. Figure 2 plots the histograms of errors for the test data
with respect to the classic encoding (a) and the differential one (b).
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Figure 2: The histograms of the error distribution of under/overestimated frames
for 30-frame sequences for standard encoding (a) and differential encoding (b).

The predictions our model produces are particularly accurate using the
differential encoding; see Figure 2(b), as witnessed by a narrower distri-
bution of test errors around 0 and a lower presence of outliers than using
the classic encoding; see Figure 2(a). In addition, the differential encoding
has the advantage to detect static scenes because there is no change in the
temporal derivative.

4.3 Timings

Network Performance. Regarding the timings of our architecture, we
measure its performance running all segments in the training set. On av-
erage, the computational time required by our network for estimating the
frequency for 30 frames is about 122ms. This means we need only 7.32 sec-
onds to process one minute of video.

3D Reconstruction. As a further step to show the advantage of our
architecture, we applied it to the test videos in our dataset. Then, we used
the selected frames as input images for COLMAP [24]. Note that COLMAP
is not the same SfM software used in the training (i.e., OpenMVG). This



is done on purpose to test and show the robustness of our approach. For
comparison, we ran COLMAP using all frames of the input video; Table 1
shows the results of this comparison.

Time Full | Time Our V| V] Reproj. Err. | Reproj. Err.
Video (min.) (min.) Full Our Full Our
Streetl 8 51(s.) 14,096 6,409 0.781 0.724
Street2 178 18 109,747 | 68,939 0.934 0.826
Valp.2 571 68 316,897 | 202,134 0.740 0.663
River 999 64 84,900 | 59,287 0.853 0.781
Fountain 1,046 14 68,715 | 28,623 1.272 1.151
Square 2,145 18 310,659 | 158,766 0.782 0.713
Apulia 2,175 2 63,923 | 16,811 0.844 0.629

Table 1: A comparison of computational time, number of generated vertices (|V]),
and reprojection error (point-to-point) between using all frames of a videos (full)
and frames selected using our architecture (our). Our solution can deliver a 3D
model in a fraction of time compared to all frames with less reprojection error.

From this table, we can notice that the use of our architecture can save
a lot of computational time compared to the use of all frames of an input
video. For example, we can achieve on average two orders of magnitude
speed up with a peak of three orders. Regarding the numbers of generated
vertices, |V|, our approach can have on overage a 49% reduction in the
number of points with a peak of 73%. Although this seems to be a large
reduction, our methodology has the advantage to provide to the users results
in a matter of minutes or a few hours instead of days without the need to
inspect and select manually thousands of frames. Finally, Table 1 elicits
that our method has a lower reprojection error than using all frames; i.e.,
less than 11% on average.
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Figure 3: A comparison between the training plots of our architecture with and
without differential encoding; see Section 3.2.



5 Conclusions and Future Works

In this work, we have presented a novel architecture for transferring the
knowledge of an algorithm for selecting high-quality frames for SfM recon-
struction. This architecture mimics the original frame selection algorithm,
and it has the great advantage that it works in real-time and can be plugged
into deep-learning-based pipelines for SfM. We have shown that 3D recon-
structions using our method can reduce greatly their computational costs
while keeping high-quality reconstructions. Another advantage is that the
proposed method is independent of the track length since we worked at the
frame-segments level of constant size.

The main limitation of our architecture is that it underestimates frames,
as shown in Fig. 2. While overestimation is not an issue because it does
not affect the final reconstruction quality, missing frames may reduce the
number of generated vertices in the final point-cloud due to a too large base-
line. In future work, we would like to solve this underestimation of frames
to maintain a high vertices throughput.
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