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that its dynamics be perfectly periodic and dispersionless.

© 2019 Elsevier Inc. All rights reserved.

* Corresponding author at: Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via 
Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.

E-mail addresses: ruggero.vaia@cnr.it (R. Vaia), lidia.spadini@stud.unifi.it (L. Spadini).
https://doi.org/10.1016/j.laa.2019.10.002
0024-3795/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2019.10.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:ruggero.vaia@cnr.it
mailto:lidia.spadini@stud.unifi.it
https://doi.org/10.1016/j.laa.2019.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2019.10.002&domain=pdf


R. Vaia, L. Spadini / Linear Algebra and its Applications 585 (2020) 164–177 165
1. Introduction

The task of finding the matrix elements of a tridiagonal bisymmetric (i.e., symmetric 
and persymmetric) matrix of order n starting from the requirement that it have a given 
spectrum {λk}n−1

k=0 is a well-posed ‘inverse problem’. In particular, the number of inde-
pendent matrix elements to be determined is equal to its dimension n and hence to the 
number of given eigenvalues. A very efficient algorithm, aimed at a numerical approach, 
was developed by de Boor and Golub [1]: it is based on a sequence of n + 1 monic poly-
nomials {χi(λ)}ni=0 of degree i, corresponding to the characteristic polynomials of the 
matrix A and of its submatrices, which are orthogonal under a suitable internal product 
defined in terms of the given eigenvalues; thanks to orthogonality the polynomials can be 
constructed sequentially, starting from χ0(λ) = 1, at the same time yielding the matrix 
elements.

Even though the usefulness of the de Boor-Golub algorithm is almost confined to the 
numerical side [2], it may happen that the internal product can be dealt with analytically. 
This is the case, for instance, when the eigenvalues are the sequence of the first n integers, 
λk ∝ k. Here it is shown that the case λk ∝ k2 can be also managed, yielding to analytic 
expressions for the first few matrix elements, as shown in Appendix A. Even though 
this analytic approach cannot be pursued to obtain all matrix entries, it provided hints 
leading to guess analytic expressions for the matrix elements, valid for any dimension n, 
whose proof is the main result provided here.

Knowing a matrix with eigenvalues λk ∝ k2 is relevant because of its connection 
with the mass-spring chain model [3], constituted by a sequence of n massive bod-
ies pairwise connected by ideal springs with given elastic constants. Such a prototype 
model has a wide generality in Physics and Engineering. Thanks to the results pre-
sented here, it is possible to design the sequence of masses and elastic constants in 
such a way that the chain dynamics be exactly periodic. Indeed, the square roots 
of the eigenvalues of the relevant dynamical matrix coincide with the normal-mode 
frequencies, ωk =

√
λk ∝ k: since these are equally spaced, the dynamics does not 

show dispersion. Moreover, if the chain’s dynamical matrix is bisymmetric, i.e., the 
chain is persymmetric, it is able to transfer pulses between its ends with 100% ef-
ficiency, making it a ‘perfect’ transmission channel. Such a result was reported in 
Ref. [4] for n = 3, 4, 5 (the proof in the last case being too lengthy to be re-
ported): here analytic expressions for the perfect-chain parameters are given for arbi-
trary n.

In Section 2 the formalism is introduced, the main theorem is stated, and its proof is 
given. Section 3 is devoted to the application of the theorem to the mass-spring chain, 
yielding the proper sizing of masses and elastic constants that make the chain dynamics 
periodic and perfectly transmitting. In Section 4 the main outcomes of this paper are 
summarized and some perspective applications are mentioned. The analytical approach 
to the de Boor-Golub algorithm is reported in Appendix A.



166 R. Vaia, L. Spadini / Linear Algebra and its Applications 585 (2020) 164–177
2. Main result

A Jacobi matrix of order n is a symmetric tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 −b1 0 · · · 0

−b1 a2 −b2
...

0 −b2 a3
. . . 0

...
. . . . . . −bn−1

0 · · · 0 −bn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

with nonzero off-diagonal entries {bi}. One can assume bi > 0, as the sign of any of 
these entries can be changed by a similarity transformation: indeed, the diagonal matrix 
Sm = {δij sign (m − j)}, where sign(j) = ±1 for j ≥ 0 or j < 0, respectively, produces a 
matrix S−1

m ASm identical to A, but for the sign of bm.
The matrix A is further assumed to be persymmetric, i.e., symmetric with respect to 

its antidiagonal,

ai = an+1−i , bi = bn−i . (2)

The main result of this paper is the determination of the n independent matrix el-
ements of A such that its given eigenvalues {λk}n−1

k=0 are proportional to the sequence 
of the squares of n successive integers, starting from zero. With the above assumptions, 
this inverse problem is known to have one unique solution [5,6]. Analogous results are 
known for eigenvalues in a linear sequence [7,8], λk ∝ k, a case relevant to the study of 
quantum-state transfer [9], as well as in other cases [10–12].

Theorem 1. Let A be the n×n bisymmetric matrix (1) with entries

ai = n− 1 + 4(i− 1)(n− i) , i = 1, ..., n ,

bi =
√

i (2i− 1) (n− i) (2n− 2i− 1) , i = 1, ..., n− 1 .
(3)

Then A has the eigenvalues

λk = 2 k2 , k = 0, ..., n− 1 . (4)

Proof. This result can be proven by induction on n, so for clarity an explicit argument is 
used here for the matrix dimension. For n =1 the statement is trivially true, as A(1) =[
0 
]

has the eigenvalue λ0 = 0. Assuming the statement to hold true for dimension n, one 
has to show that A(n + 1) has the n eigenvalues of A(n) plus the eigenvalue λn = 2n2. 
From Eq. (3) one has the entries of A(n + 1),

ai = n + 4(i− 1)(n + 1 − i) , i = 1, ..., n + 1 ,

b =
√
i (2i− 1) (n + 1 − i) (2n− 2i + 1) , i = 1, ..., n .

(5)

i
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Consider the tridiagonal matrix C(n + 1) := 2n2I −A(n + 1),

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 b1 0 · · · 0

b1 c2 b2
...

0 b2 c3
. . . 0

...
. . . . . . bn

0 · · · 0 bn cn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6)

whose diagonal elements, from Eq. (5), are

ci = 2n2 − ai = n(n− 1) + (n + 2 − 2i)2 , i = 1, ..., n + 1 . (7)

One can factorize

C = HHT , (8)

where the matrix H is lower bidiagonal,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1 0 0 · · · 0

r1 h2 0
...

0 r2 h3
. . .

...
...

. . . . . . 0
0 · · · 0 rN hn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9)

its elements being given by

hi =
√

(n + 1 − i)(2n− 2i + 1) , i = 1, ..., n + 1 ,

ri =
√

i (2i− 1) , i = 1, ..., n .
(10)

The matrix A(n + 1) = 2n2I −HHT has the same spectrum of the matrix

2n2I −HTH =

⎡
⎢⎢⎣

0

A(n)
...
0

0 · · · 0 2n2

⎤
⎥⎥⎦ . (11)

The tensor-product structure of this matrix entails that A(n + 1) has the same n eigen-
values of A(n), plus the eigenvalue λn = 2n2. �

The matrix entries (3) are seen to be O(n) at the matrix borders and increasing up 
to O(n2) towards the matrix center, with an almost parabolic shape.
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Fig. 1. A mirror-symmetric mass-spring chain with n = 5 masses (M1, M2, M3, M2, M1) connected by 4 
springs (K1, K2, K2, K1).

3. Mass-spring chain model

One simple system where a Jacobi matrix comes into play is a mass-spring chain, 
see Fig. 1, consisting in a sequence of n masses {Mi}ni=1 pairwise connected by n − 1
ideal springs with elastic constants {Ki}n−1

i=1 ; the neighboring masses Mi and Mi+1 being 
coupled through the Ki spring. This is quite a general model, as several different systems 
can be mapped onto it, such as electric LC circuits, ion chains, multilayered structures, 
and so on. Applications of the related dynamics can involve the study of energy transport 
in ion chains [13] or synthesized nanostructures [14,15].

An intersting issue is the capability of the chain to transmit a pulse between the ends. 
It is well-known that a uniform chain, i.e., made of identical masses and springs, is a 
bad pulse transmitter, the worse the larger n: an initial pulse would undergo dispersion 
giving rise to a seemingly chaotic dynamics. In Ref. [3], using a result for quasi-uniform 
tridiagonal matrices [16], it is shown how the transmission efficiency can be increased 
up to 98.7% for any n, by properly tuning two extremal masses and their spring at 
both ends; it is indeed crucial to preserve the persymmetry of the dynamical matrix, 
equivalent to the chain’s mirror-symmetry. In the following it is shown that using the 
matrix defined in Theorem 1 one can design a mirror-symmetric mass-spring chain with 
100% transmission efficiency.

The mass-spring chain is characterized by a diagonal ‘mass’ matrix and a tridiagonal 
‘spring’ matrix,

M =

⎡
⎢⎢⎢⎣

M1 0 · · · 0

0 M2
...

...
. . . 0

0 · · · 0 Mn

⎤
⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎢⎢⎣

K1 −K1 0 · · ·
−K1 K1 + K2 −K2 · · ·

0 −K2 K2 + K3

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

; (12)

the eigenvalues of its dynamical matrix M−1/2KM−1/2 are just the squares of the 
normal-mode frequencies of the chain, 

{
ωk

}n−1
k=0 . Therefore, Theorem 1 has an immediate 

physical implication: by designing the chain such that

M−1/2KM−1/2 = ω2

2 A , (13)

then it turns out to have commensurate frequencies
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ωk = ω k , k = 0, ..., n− 1 , (14)

namely, integer multiples of a fixed frequency spacing ω. Therefore, a perfectly periodic 
behavior with period 2π/ω is determined, whatever the initial configuration. Moreover, as 
the chain is persymmetric (Mi = Mn+1−i, and Ki = Kn−i), the dynamical configuration 
after half a period t∗ = π/ω becomes the mirror image of the initial one. This follows 
from the fact that the eigenvectors v(k)

i of A show alternate persymmetry [17],

v
(k)
N+1−i = (−)k v(k)

i ; (15)

hence, denoting by qi(t) the displacement of the i-th mass at time t, the dynamics gives 
indeed1

qi(t∗) =
n−1∑
k=0

v
(k)
i cos(ωkt∗)

n∑
j=1

v
(k)
j qj(0) = qN+1−i(0) (16)

as cos(ωkt∗) = cos(kπ) = (−)k. For example, an elongation of the first mass is perfectly 
reproduced in the last mass after the time t∗, so the chain works as a perfect channel 
for, say, energy transmission.

The matrix equality (13) can be made explicit as a relation between the entries of A
given in Eq. (3) and the chain parameters (assuming K0 = Kn = 0),

ω2

2 ai = Ki + Ki−1

Mi
, i = 1, ..., n ,

ω2

2 bi = Ki√
MiMi+1

, i = 1, ..., n− 1 .

(17)

Theorem 2. The elements of the matrices M and K can be reconstructed from the rela-
tion (13), with the entries of A given by Eqs. (3), to yield

Mi+1 = Mi
2i− 1

i

n− i

2n− 2i− 1 , Ki = Miω
2

2 (2i− 1)(n− i) ; (18)

the solution is unique once the value of M1 is chosen.

Proof. The proof that the solution exists and is unique is provided in Ref. [18]. Setting 
for simplicity ω2 = 2, from Eqs. (17) one has Ki =

√
MiMi+1 bi, and hence

Miai = Ki + Ki−1 =
√

MiMi+1 bi +
√
MiMi−1 bi−1 . (19)

1 The physical displacements are 
{
qi(t)/

√
Mi

}
, while {qi(t)} are the so-called ‘mass-weighted’ displace-

ments, see, e.g., Ref. [3].
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Table 1
Perfectly transmitting chain: the ‘magic’ sequences of integer masses {Mi}n

i=1 and elastic constants {Ki}n−1
i=1

for different chain lengths n. The second row reports the square of the corresponding frequency spacing ω.
n 3 4 5 6 7 8 9 10
ω2 1/3 2/3 1/10 2/15 1/21 2/7 1/36 2/15
i Mi Ki Mi Ki Mi Ki Mi Ki Mi Ki Mi Ki Mi Ki Mi Ki

1 3 1 5 5 35 7 63 21 231 33 429 429 6435 715 12155 2431
2 2 1 3 6 20 9 35 28 126 45 231 594 3432 1001 6435 3432
3 3 3 5 18 9 30 30 105 50 189 675 2772 1155 5148 4004
4 5 20 7 30 28 100 50 175 700 2520 1225 4620 4312
5 35 35 21 105 45 175 675 2450 1225 4410 4410
6 63 126 33 189 594 2520 1155 4410 4312
7 231 231 429 2772 1001 4620 4004
8 429 3432 715 5148 3432
9 6435 6435 2431
10 12155

Defining the auxiliary variable

xi := bi

√
Mi+1

Mi
= Ki

Mi
(20)

the above identity can be rearranged as a recursion for xi,

xi = ai −
b2i−1
xi−1

, (21)

starting with x1 = a1 = n − 1; it is easy to check that the general solution is xi =
(2i − 1)(n − i), which directly gives the second of Eqs. (18), while the first one follows 
taking (xi/bi)2, according to Eq. (20). �

Eqs. (18) can be converted into closed expressions in terms of binomial coefficients,

Mi = M1

(
n− 1
i− 1

)2 (
2n− 2
2i− 2

)−1

, Ki = M1ω
2(n−1)2

(
n− 2
i− 1

)2 (
2n− 2
2i− 1

)−1

. (22)

The property of persymmetry, Mi = Mn+1−i and Ki = Kn−i, is immediately verified. 
Clearly, a proportional scaling of masses and elastic constants does not affect the fre-
quencies: this is reflected in the arbitrary choice of the first mass M1. Since the above 
expressions are rational numbers, by a proper choice of the parameters M1 and ω the 
sequence of masses and elastic constants can be turned into positive ‘magic’ coprime 
integers: these are reported in Table 1 for n ≤ 10. From the expressions (22) it appears 
that for i + 1 < n/2 it is

Mi+1

Mi
=

1 − 1
2i

1 − 1
2(n−i)

< 1 ,
Ki+1

Ki
=

1 + 1
2i

1 + 1
2(n−i−1)

> 1 , (23)

Therefore, the masses Mi decrease and the elastic constants Ki increase while moving 
towards the chain middle, where one finds the smallest mass(es) M�n/2� and the largest 
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spring(s) K�n/2�. By a Stirling approximation of the binomial coefficients for large n
one finds M�n/2�/M1 � 2/

√
πn and K�n/2�/K1 �

√
n/π, so that the ‘imbalance’ of the 

elements in the mass and spring matrices, M and K, is much smaller than in the matrix 
A, for which the ratio between largest and smallest entries is � n.

A physically sound assumption is that the transmission time, t∗ = π/ω, scale linearly 
with the chain ‘length’, n −1: without loss of generality one can choose the time unit such 
that t∗ = n − 1, i.e., ω = π/(n − 1). With this choice, the behavior of the matrix entries 
and of the corresponding masses and elastic constants is shown, for different values of 
n, in Fig. 2. From Eqs. (3) the large-n shapes are described, in terms of the variable 
x = (i − 1)/(n − 1), by parabolas,

ãi := ω2

2 ai −→ 2π2 x (1 − x) , b̃i := ω2

2 bi −→ π2 x (1 − x) , (24)

as confirmed by Fig. 3; of course, the large-n limit cannot account for the discrete values 
at the extrema.

As remarked above, once the chain parameters are tuned as in Eqs. (22) the dynamics 
becomes perfectly periodic and dispersionless, as one can verify in Figs. 4 and 5, where 
snapshots of the dynamics of chains with 51 and 201 masses are shown from t = 0 until 
the half period t = t∗. Initially the chains are static, with the only first mass displaced 
from its equilibrium position, then a wider and wider traveling pulse is generated, involv-
ing simultaneous displacements of several masses; eventually, at t∗ = n −1 it recomposes 
to a displacement of the only last mass, mirroring the initial shape. The subsequent 
evolution leads again to the initial configuration, and so on, periodically.

4. Conclusions

In this paper a persymmetric Jacobi matrix of order n has been analytically con-
structed, such that its eigenvalues are proportional to the squares of the first n integers, 
λk = ω2 k2, (k = 0, ..., n − 1). Besides the usefulness for testing numerical algorithms 
devoted to solve inverse problems, such that introduced by de Boor and Golub [1], the 
matrix has a practical interest as it enables one to design arbitrarily long perfectly pe-
riodic mass-spring chains. Indeed, the system frequencies are the square-roots of the 
eigenvalues, ωk = ω k, (k = 0, ..., n − 1), which are thus multiples of the frequency 
spacing ω; hence, the dynamics returns to the initial configuration after a period 2π/ω. 
Moreover, thanks to mirror symmetry, at the time t∗ = π/ω the configuration becomes 
the mirror image of the initial one, e.g., a deviation of the first mass is transferred to the 
last one with no dispersion. A basic application can be the realization of a toy behaving 
as a perfect Newton cradle, obtained by adding a pair of hanging masses hitting the ends 
of the chain (see Ref. [3]): it would work also for a long chain, with the curious feature 
of the long duration of subsequent bounces. A more interesting application regards the 
transfer of energy pulses between the chain ends with perfect response, an effect that 
could lead, say, to efficient systems for heath or sound transmission. As the mass-spring 
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Fig. 2. Parameters of the matrix A (circles), see Eq. (24), and of the mass-spring chain (squares) for n = 10, 
30, and 100. The frequency spacing and the first mass are chosen as ω = π/(n − 1) and M1 =

√
(n − 1)/π. 

For a better visualization the bi and Ki (open symbols), that regard the interaction between the sites i and 
i + 1, are put at the intermediate abscissa i + 1

2 . Dotted lines are a guide for the eye.
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Fig. 3. Parameters of the matrix A, see Eq. (24), and of the mass-spring chain for n = 11 (triangles), 21 
(circles), and 51 (bullets). The frequency spacing and the first mass are chosen as ω = π/(n − 1) and 
M1 =

√
(n − 1)/π, entailing M�n/2� → 2/π and K�n/2� → π/2. The continuous lines report the parabolic 

shapes (24) for the limit n → ∞.

Fig. 4. Snapshots of the dynamics of a perfect chain with n = 51 masses from time t = 0 to t∗ = 50 at 
equal time intervals of 5 units. The abscissa labels the masses along the chain, while their displacements 
are represented as ordinates. It appears that the initial pulse spreads during its travel, become widest 
in the chain middle, then it shrinks and it perfectly recombines at t∗ to the mirror image of the initial 
configuration.
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Fig. 5. Snapshots of the dynamics of a perfect chain with n = 201 masses from time t = 0 to t∗ = 200 at 
equal time intervals of 20 units.

model is an ubiquitous prototype for different, macroscopic and microscopic, systems 
studied in Physics, Engineering, Biology, and so on, the results presented in this paper 
are expected to be of potentially wide interest.

Declaration of competing interest

The authors declare that there is no potential competing interest.

Acknowledgements

R.V. thanks L. Banchi, T. J. G. Apollaro, A. Cuccoli, and P. Verrucchi for sharing 
precious comments.

Appendix A. Analytical approach to the de Boor-Golub algorithm

The de Boor-Golub algorithm [1] is based on a sequence of n + 1 monic polynomials 
{χi(λ)} of degree i, for i = 0, ..., n, corresponding to the characteristic polynomial χn(λ)
of the matrix A and those of its left principal submatrices of order i = 0, ..., n −1. These 
polynomials are orthogonal under the internal product defined as
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〈
χ, χ̃

〉
:=

n−1∑
k=0

wk χ(λk) χ̃(λk) , (A.1)

with weights given, if A is persymmetric, in terms of the eigenvalues as

wk = w
n−1∏
q=0
q �=k

1∣∣λk − λq

∣∣ , (A.2)

where w is a nonzero constant. Then the polynomials can be sequentially constructed 
starting from χ0(λ) = 1,

χi+1(λ) = (λ− ai+1)χi(λ) − b2iχi−1(λ) , (A.3)

where it is assumed b0 = 0 and the coefficients

ai+1 =
〈
λχi, χi

〉
〈
χi, χi

〉 , b2i =
〈
χi, χi

〉
〈
χi−1, χi−1

〉 (A.4)

correspond to the unique elements of the matrix (1). Note that w can be arbitrarily 
chosen, as the above expressions do not depend on it. The solution procedure, which turns 
out to be numerically very stable, starts by calculating and storing the weights (A.2)
and proceeds in a simple manner by iterating Eqs. (A.3) and (A.4).

Looking for a Jacobi matrix A having the eigenvalues (4), the weights (A.2) are given 
by (setting m = n− 1 for convenience)

w

wk
=

m∏
q=0
q �=k

∣∣k2 − q2∣∣ =
k−1∏
q=0

(k − q)
m∏

q=k+1

(q − k)
m∏
q=0
q �=k

(k + q)

= k! (m− k)! (m + k)!
(k − 1)!

1
2k = 1

2 (m− k)! (m + k)! .

(A.5)

Choosing w = 2m!/22m−1 the weights take a compact expression in terms of a binomial 
coefficient,

wk = 1
22m

(
2m

m + k

)
, (A.6)

this result holding for k �= 0, because in (A.5) the exclusion of the q=k term is accounted 
for by the denominator; the correct zeroth weight is directly given by

w

w0
=

m∏
q2 = (m!)2 , (A.7)
q=1
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so w0 is half as that given by Eqs. (A.5) and (A.6): this can be accounted for by extending 
the summations to negative values of k = −m, ..., m, with w−k = wk according to 
Eq. (A.6). Since

m∑
k=−m

wk = 1
22m

m∑
k=−m

(
2m

m + k

)
= 1

22m

2m∑
k=0

(
2m
k

)
= 1 , (A.8)

the weights 
{
wk

}m

k=−m
constitute a discrete probability distribution; denoting the aver-

ages with a double bracket, its characteristic function is

〈〈
exk

〉〉
:=

m∑
k=−m

wk e
xk = cosh2m x

2 , (A.9)

and by Taylor expansion one finds the moments

〈〈
k2�〉〉 =

(
d

dx

)2�

cosh2m x

2

∣∣∣∣
x=0

. (A.10)

Consider now the recursive algorithm of Eqs. (A.3) and (A.4) and define the quantities

si :=
〈
χi, χi

〉
=

〈〈
χ2
i (2k2)

〉〉
, ti :=

〈
λχi, χi

〉
=

〈〈
2k2 χ2

i (2k2)
〉〉

, (A.11)

such that

ai+1 = ti
si

, b2i = si
si−1

. (A.12)

Being χ0 = 1 one immediately finds that s0 = 1 and

a1 = t0 =
〈〈

2k2〉〉 = 2 d2

dx2 cosh2m x

2

∣∣∣∣
x=0

= m = n− 1 , (A.13)

which agrees with (3); then, as χ1 = λ − 1, it follows that s1 = 4
〈〈
k4〉〉 − 4

〈〈
k2〉〉2 and 

using Eq. (A.10) one can find

b21 = s1 = m (2m− 1) = (n− 1)(2n− 3) . (A.14)

With little effort one further obtains t1 = m (2m − 1) (5m − 4), yielding a2 = m +
4(m − 1) = n − 1 + 4(n − 2); the analytical calculation of higher terms is increasingly 
cumbersome, but it soon leads to guessing Eqs. (3), eventually proven in Section 2.
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