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Abstract. Estimation of physical quantities is at the core of most scientific research, and the use of quantum
devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources
are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the
estimation process, all the available resources. However, this framework relies on the precise knowledge of the
system model, retrieved with a fine calibration, with results that are often computationally and experimentally
demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic
Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori
knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to
learn the multiparameter Bayesian update. Then the system is set at its optimal working point through
feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment
heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher
estimation performances than standard methods, demonstrating the strength of the combination of these
two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward
fully artificial intelligence-based quantum metrology.

Keywords: quantum sensing; integrated photonics; machine learning for metrology.

Received Sep. 27, 2022; revised manuscript received Dec. 12, 2022; accepted for publication Dec. 27, 2022; published online
Feb. 6, 2023.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.5.1.016005]

1 Introduction
Multiple parameter estimation is an essential task for both fun-
damental science and applications. For this reason, developing
strategies and devices able to perform measurements with the
smallest uncertainty has become a research branch of particular
interest for various fields. It is known that the achievement of the
ultimate precision bounds is possible only by exploiting quan-
tum resources.1 Indeed, nowadays, quantum sensors2,3 represent
one of the most promising applications of quantum-enhanced
technologies, and they are already employed for different appli-
cations, from imaging4 and biological sensing5 to gravitational
wave detection.6,7 The highest measurement precision achiev-
able depends on the available resources; therefore, the main
focus of most quantum metrology investigations relies on the

optimization of such probe states and, successively, of the per-
formed measurements to attain such limits.8,9 However, in a real
scenario, the number of quantum resources is always limited
and not all the desired probe states can be prepared. It follows
that, in a limited-resource regime, operating the device at its
optimal working point and employing optimized control
strategies10–12 for achieving the highest estimation precision be-
comes crucial. The identification of such optimal feedbacks is
far from being trivial in particular for quantum systems of
increasing complexity and dimensions and for multiparameter
estimation problems. Usually, the employed optimization algo-
rithms are extremely time-consuming, since they have to be
computed after each measurement outcome and, more impor-
tantly, they rely on the knowledge of the device’s physical
model. One of the most employed methods, which assures
the convergence to the ultimate precision bound, is to update
the knowledge on the parameter posterior distribution through*Address all correspondence to Fabio Sciarrino, fabio.sciarrino@uniroma1.it
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the Bayes rule after the use of each resource.13–17 Therefore,
adaptive methods generally require a precise characterization
of the operation of the employed system in order to update prop-
erly the knowledge on the investigated parameters at each step
of the protocol. Such requirement is still the bottleneck for the
application of optimal adaptive protocols in most quantum sens-
ing applications. A practical model-free alternative to Bayesian
update combined with a computationally feasible optimization
algorithm for the identification of optimal feedback is thus
desirable.

In this work, we simultaneously overcome these fundamental
challenges by developing a deep reinforcement learning (RL)
protocol, which combines an RL agent with a deep neural net-
work (NN), in an actual noisy multiparameter estimation experi-
ment, where the control feedback is efficiently chosen by an
intelligent agent that does not rely on any explicit hardware
model. All the NN training is performed on experimental data;
therefore, no additional information besides the one extracted
directly from the accessible measurements is required. With this
approach, we first demonstrate the convergence to the ultimate
precision bound in the single-parameter estimation scenario, and
then we experimentally prove to outperform standard calibration
strategies, exploiting quantum resources in the limited data
regime, for the simultaneous estimation of three optical phases
in a state-of-the-art integrated photonic quantum sensor. The
achievement of such good estimation performance is granted
by the choice of the control feedback performed by a learning
agent, whose reward depends on the updated knowledge of the
parameters after each step of the estimation protocol. Crucially,
in our work, the Bayesian update is obtained by a previously
trained deep NN; therefore, it is not required at any step of
the system model. With this approach, we are able to experimen-
tally prove the validity of a model-free optimization for param-
eter estimation problems, opening the way to fully artificial
intelligence-based quantum metrology.

To prove the validity of our approach, we start investigating
the performance of a single-parameter estimation on a test-
bed system, extending the protocol developed in Ref. 18 to
the adaptive framework, training an NN for Bayesian update.
We then generalize such an algorithm for multiparameter
estimation problems using a sequential Monte Carlo (SMC)
technique for the computation of the Bayesian probabilities
and we combine it with an RL agent necessary to achieve good
estimation precision in more complex systems. Finally, we
prove experimentally the effectiveness of the combination of
a deep NN for Bayesian update with an RL agent that chooses
the optimal controls on an actual multiparameter photonic quan-
tum sensor.

The demonstrated methodology and platform will arguably
have a beneficial impact over several research areas where
the development of integrated photonics in the quantum regime
represents a fundamental tool. An example is biosensing
performed at the quantum level.19–22 Other promising directions
are quantum communication and computation tasks (in this
field, integrated quantum photonics is also expanding23), where
the compensation of errors, the synchronization of networks,
or algorithm subroutine can be performed with adaptive phase
estimation protocols. In general, our work will be of impor-
tance for all those integrated photonic tasks where fully auto-
mated calibration and optimization can be necessary for their
operations.

2 Artificial Intelligence Quantum Metrology
Machine learning (ML) represents a powerful alternative to the
need for developing a model describing the system behavior;
for this reason, its use in the most varied research fields is
spreading.24,25 Such techniques are particularly effective when
applied to the study of quantum systems that usually live in
a high-dimensional space and their characterization turns out
to be a computationally hard task to solve, requiring the analysis
of a huge amount of data.26,27 Different supervised and unsuper-
vised learning algorithms have been applied to solve efficiently
quantum many-body problems,28 reconstruct the density matrix
of high-dimensional quantum systems,29 and even to design
new quantum experiments30–34 and discover new physical
concepts.35,36 Their application to the metrology and sensing
fields fosters the idea of self-calibrated quantum sensors not
relying on explicit knowledge of the model describing the de-
vice operation37–39 and retrieving Hamiltonian parameters
directly from experimental data.40 As an example, Nolan et al.18

reformulated the parameter estimation problem as a classifica-
tion task to overcome the calibration requirements needed from
Bayesian estimation.

The term ML refers to a huge class of algorithms sharing one
common feature: the ability to extrapolate some kind of knowl-
edge directly from the data. These algorithms are then subdi-
vided into three macroareas: supervised learning, unsupervised
learning, and RL.41,42 Although the first two kinds of algorithms
have the purpose of inferring the structure relating labeled or
unlabeled data, the latter refers to algorithms developed to con-
trol the dynamics of a system. This is done through a model-free
feedback-based method where an intelligent agent learns to per-
form tasks in a defined environment, depending on the reward it
receives. The purpose of the agent is to find the optimal series of
actions in response to the changing state of the environment,
which maximizes its reward. After the agent has been suffi-
ciently trained, it has been demonstrated that it can beat humans
in several tasks, for example, in playing games such as Go.43

When RL algorithms are combined with the output of NNs,
we can speak of deep RL.44

Very recently, the use of RL algorithms has proven to be a
powerful resource. Indeed, they have been deployed in different
numerical works for quantum systems control,45–49 for finding
the optimal feedback in parameter estimation tasks enhancing
the sensor dynamics,50–53 and for Hamiltonian learning.26,54,55

Interestingly, Fiderer et al.56 developed an RL method to create
efficient experiment-design heuristics for Bayesian quantum
estimation, gaining a great advantage over the extremely slow
previously developed algorithms.57,58 However, these works still
rely either on the full knowledge of the system’s quantum state
or on the explicit likelihood (lHd) function describing the sys-
tem output probabilities. Also for this reason, until now, their
application has been demonstrated mostly through theoretical
simulations.

A generalization and extension of such ML approaches are
thus necessary for handling realistic metrological processes over
their whole spectrum. Here we develop and test experimentally
a protocol fully based on artificial intelligence, which governs
a real noisy sensor, from learning how to update the Bayesian
belief over the system dynamics, to the optimal choice of
actions to be performed in order to speed up the estimation
performance. In order to do so, we extended and combined
the two aforementioned ML algorithms in Refs. 18 and 56 to
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demonstrate a black-box adaptive multiparameter quantum es-
timation protocol in a real photonic device, where the unknown
parameters are the relative phase shifts between the arms of
an interferometer (see Fig. 1).

2.1 NN Bayesian Adaptive Multiparameter Estimation

2.1.1 Bayesian learning

The purpose of estimation protocols is to retrieve the values of a
vector of parameters ϕ through the measurement with a previ-
ously prepared probe. When the probe state interacts with the
investigated system, its state changes depending on the param-
eters’ vector ϕ; therefore, the measurement of the state of the
probe after such an evolution allows us to give an estimate
of the parameters. To correctly assess their values, it is necessary
to reconstruct the detection probabilities of all the possible mea-
surement outcomes. Bayesian protocols use the measurement
results to update the a priori knowledge pðϕÞ on the parameters
under investigation retrieving the posterior probability distribu-
tion through the Bayes’s rule:

PðϕjdÞ ¼ PðdjϕÞpðϕÞ
pðdÞ : (1)

Here PðdjϕÞ is the lHd function describing the probability
of obtaining a certain measurement outcome d, which can be
retrieved from the Born’s rule as follows:

PðdjϕÞ ¼ Tr½ΠdρðϕÞ�; (2)

where fΠdg represents the complete set of positive-operator-
valued measurements among the possible D output results,
i.e., d ∈ fd1;…; dDg. Knowing the explicit model of the system
under study, it is then possible to compute the mean of the pos-
terior probability PðϕjdÞ, reconstructed after sending N probes,
from which it is possible to retrieve the estimate ϕ̂ of the inves-
tigated parameters as follows:

ϕ̂ ¼
Z

ϕPðϕjdÞdϕ: (3)

2.1.2 Bayesian NN

To overcome the need for reconstructing the explicit model of
the detection probabilities, we train a feed-forward NN for the
reconstruction of such posterior probability distributions. The
network requires the discretization of the continuous parame-
ters’ space in order to treat the problem as a classification task,
identifying each possible value of the vector ϕ as one among Nϕ
specific labels ϕ1;…;ϕNϕ

. The training is performed by asso-
ciating the single-measurement results corresponding to the D
possible outcomes to the respective label associated with the
setup parameters. For each class, a fixed number of measure-
ment repetitions r with a sequence of results d must be shown
to the NN during training, allowing it to learn the correct condi-
tional probability distribution PNNðϕjjdÞ.

Following the arguments of Nolan et al.,18 the output of the
trained NN corresponds to the Bayesian posterior distribution
for each measurement outcome up to a normalization factor,
which depends on the parameters’ grid spacing. In our case,
such spacing results are δϕ ¼ L

Nϕ−1, where L is the width of
the interval of the parameters’ values. From the retrieved pos-
terior distribution, it is possible to compute the a priori distri-
bution of the parameters of interest, pðϕjÞ, defined as follows:

pðϕjÞ ¼
XD
i¼1

NPNNðϕjjdiÞ; (4)

whereN is a normalization factor that can be computed through
marginalization, obtaining the following expression:

pðϕjÞ ¼
XD
i¼1

PNNðϕjjdiÞ
XNϕ

k¼1

PðdijϕkÞpðϕkÞδϕ: (5)

Here PðdjϕjÞ corresponds to the lHd function of the system, and
it governs the system behavior as a function of the vector of

Fig. 1 (a) Generic multiparameter estimation problem fully managed by artificial intelligence proc-
esses. Quantum probes evolve through the investigated system and consequently their state
changes depending on ϕ. Both the single-measurement update and the setting of control param-
eters c are done via machine-learning algorithms to optimize the information extracted per probe.
(b) Sketch of the implemented protocol. A limited number of quantum probe states are fed into
the sensor treated as a black box. A grid of measurement results is collected to train an NN, which
learns the posterior probability distribution associated with the single-measurement Bayesian
update. Such distribution is used to define the reward of an RL agent who sets the control phases
on the black-box device.
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parameters under study. The latter can be approximated with the
occurrence frequencies fd;j of each outcome d retrieved from
the whole training set. The prior distribution can be then com-
puted solving Eq. (5) as an eigenvalue problem, and it is deter-
mined from the sampling of the training set (see Ref. 18).

Once having trained the NN and retrieved both the a priori
distribution and the single-measurement posterior probabilities,
it is possible to perform the estimation applying Bayes’s theo-
rem [Eq. (1)] to update the prior knowledge depending on the
m measurement results ðd1; d2;…; dmÞ:

PðϕjjdÞ ¼ pðϕjÞ
Ym
i¼1

�
PNNðϕjjdiÞ

pðϕjÞ
�
: (6)

Here the upper bar over the probabilities indicates that they have
been rescaled for the factor δϕ.

2.1.3 Extension to adaptive regime

We have extended such an approach to perform the NN
Bayesian update in an adaptive framework in a limited data re-
gime. Such protocols are indeed vital for ab initio estimation
problems,59 where the possibility to perform the estimate at dif-
ferent working points of the device allows one to disambiguate
values associated with the same detection probability, which
therefore results in a nonmonotonic function in the considered
parameters’ interval. Here the discrimination can be done apply-
ing random feedback after each interaction of the probe with the
investigated system.

In this scenario, the estimate of the parameters of interest is
done after each interaction of the probe with the system and a
series of control parameters c can be tuned after each step of the
estimation protocol, setting the system in a different condition in
order to increase the amount of information extracted about the
parameters. Moreover, to perform the Bayesian update effi-
ciently, we use the QInfer implementation60 of a particle filtering
algorithm, also known as SMC61 which, in this case, is particu-
larly appropriate, since the parameter space is already discre-
tized. Indeed, in our implementation, the number of points Nϕ
corresponds to the so-called particles of SMC approximation,
and their initial locations correspond to the grid points in the
training set. The integrals are therefore substituted with the
respective discrete approximation, and the generic probability
distribution is replaced by a sum over all the discrete points
for the respective weights: pðϕÞ ≈Pkwkδðϕ − ϕkÞ. Moreover,
in SMC, a resampling technique is recommended,61 which
shifts the particle positions to more likely locations during the
estimation process to avoid precision loss due to discretization.
However, this last aspect of the technique is not implemented
when applying SMC to Bayesian NN, since the latter algorithm
is developed for fixed particle positions.

Before sending each probe state, we set the vector of control
phases c and after each measurement result di. The particle
weights are updated through the NN Bayesian single-measure-
ment update. However, to assign the right weights, we remove
the resampling procedure and we shift both the Bayesian
and the prior distribution accordingly, i.e., PNNðϕj − cjdÞ
and pðϕj − cÞ, paying attention to renormalizing the updated
particles’ weights:

wi → wi

�
PNNðϕj − cjdÞ
pðϕj − cÞ

��
n; (7)

where n is the normalization factor. Note that with this
procedure [Eq. (7)], we generalize the protocol of Ref. 18
to adaptive strategies.

2.2 Feedback-Based NN for Single-Phase Estimation

We start applying the designed protocol for the estimation of a
phase shift φ among two arms of a Mach–Zehnder interferom-
eter injected by single-photon states in one of the two input
ports. Bayesian estimation protocols require the knowledge
of the lHd function describing the detection probabilities at
the two output ports d ∈ f0,1g of the interferometer as a func-
tion of the parameter of interest, i.e., Pð0jφÞ ¼ cos2ðφ=2Þ and
Pð1jφÞ ¼ 1 − Pð0jφÞ in ideal conditions. Probing the system
with a sufficient number of probes N, it is possible to retrieve
an estimate whose performance converges to the ultimate pre-
cision bound. Due to the monotonicity of the problem, such op-
timal performances are granted only when φ ∈ ½0; π�; indeed,
to disambiguate the φ values in all the periodicity intervals,
an adaptive scheme must be implemented. Instead of relying on
the lHd knowledge, we train an NN to implement a black-box
Bayesian update [see Eq. (7)]. As expected, increasing the num-
ber of single-measurement repetitions r, corresponding either
to the outcome 0 or 1, and consequently the training set size,
the posterior probability reconstructed during training becomes
more accurate. However, when only a limited number of
measurements are available, the estimation precision retrieved
through the NN Bayesian update is considerably higher than
the one achieved with standard calibration methods, as shown
in Fig. 2(a). Here we compare the estimation performances,
retrieved through numerical simulations, achieved when the
full knowledge of the system is available (lHd), with the ones
obtained when performing the Bayesian update through the
posterior reconstructed by an NN trained when only r ¼ 10
measurements for each of the Nφ ¼ 100 labels of φ are
available. The performances are compared with a standard
calibration procedure approximating the model lHd with the
relative occurrence frequencies extrapolated from the same
set of measurement results used for the training. The perfor-
mances are computed in terms of quadratic loss: QlossðφÞ ¼
ðPiwiφi − φtrueÞ2. To be robust against the presence of possible
biases in the estimation procedure, randomly sampling 100 in-
dependent values of φtrue ∈ ½0; π� is done. To make the results
more robust, we repeat the estimation protocol 30 times for each
inspected phase value. The reported results correspond to the
average over all the repetitions and the phase values; the shaded
area is the region of 1 standard deviation of such averaged
results. The comparison of the achieved performances is done
with the shot-noise limit, i.e., ðΔφÞ2 ¼ 1=N, which corresponds
in such a scenario to the ultimate precision bound. Importantly,
the small bias between the bound and the estimation with the
lHd is a consequence of the limited number of particles used
to discretize the parameter space, which, as previously dis-
cussed, is equal to Nφ ¼ 100. In the inset, we show the results
achieved when adding noise in the simulations considering a
nonunitary fringe visibility V. In particular, we show the ratio
ξ among the average Qloss obtained with the NN estimation and
the one with the lHd changes when reducing the visibility to
V ¼ 0.8. In order to reach the precision levels obtained in ideal
conditions, it is necessary to dedicate a larger number of resour-
ces to the NN training, thus increasing the number of measure-
ments r for each grid point.
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Such results show the enhanced performance achieved by
the NN Bayesian update compared to standard calibration pro-
cedures when a limited set of measurement outcomes is avail-
able. To understand the reason for this difference, we show in
Fig. 2(b) the reconstructed lHd functions with these two ap-
proaches. In agreement with the results of Ref. 18, it can be seen
that the NN is able to better disambiguate close values of φ,

while, when simply approximating the probability with the
registered occurrence frequencies, close values of φ are all
associated with the same probability value. Note that, since the
estimation is done by restricting the prior distribution to the
½0; πÞ domain, we approach the bound from Ref. 62, and such
results are obtained setting the control phase c ¼ 0 for all
the probe states. As previously stated, setting a value of c ≠ 0,

(a) (c)

(b) (d)

Fig. 2 Single-phase estimation in a Mach–Zehnder interferometer. (a) Averaged quadratic loss
as a function of the number of probes N , computed over 30 repetitions of 100 phase values of
φ ∈ ½0; π�. The results are obtained setting the control phase to zero. We compare the results ob-
tained when having the full knowledge of the outcome probabilities (green line), with the ones
achieved using the NN-reconstructed single-measurement posterior probability (blue line) and
the ones resulting from approximating the lHd of the system with the occurence frequencies
(yellow line), both retrieved performing r ¼ 10 measurements for each of theNφ ¼ 100 grid points.
In the inset, we report the ratio among the average Qloss achieved with the NN and the one re-
trieved using the lHd for ideal (blue) and noisy (purple) conditions. We compare the results with
V ¼ 0.8, changing the number of measurements r in the training set. (b) lHd functions relative to
the two possible measurements outcomes reconstructed via the NN on the left and with the stan-
dard calibration procedure on the right with r ¼ 10 and Nφ ¼ 100 in the π interval. The continuous
lines represent Pðd jφÞ, for d ¼ 0 (blue) and d ¼ 1 (red). (c) Averaged quadratic loss, as a function
of the number of probes N , computed over 30 repetitions of 100 phase values of φ ∈ ½ϵ; 2π − ϵ�.
Results obtained with the lHd and the NN update (reported in green and blue, respectively) when
estimating φ ∈ ½ϵ; π − ϵ� without feedbacks (light green and light blue lines) and applying random
feedback after each probe (green and blue lines). The shaded area in the plots represents the
interval of one standard deviation, whereas the dashed black line is the SNL ¼ 1=N. (d) lHd func-
tions relative to the two possible measurements outcomes reconstructed via the NN obtained
for r ¼ 1000 and Nφ ¼ 200 in the 2π interval, for d ¼ 0 (blue) and d ¼ 1 (red). On the right is
reported the posterior NN probability reconstructed after 20 probe states were measured. As dis-
cussed in the main text, due to the nonmonotoncity of the output probabilities in the considered
phase interval, the posterior shows two peaks, and this makes it necessary to use different feed-
back. The black line represents the true value of φ.
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different for each probe, becomes fundamental when φ ∈ ½0, 2π�;
indeed, as shown Fig. 2(d) of the same figure, the lHd in this
interval is not a monotonic function. The comparison of the
estimation results for a nonadaptive protocol (in light green
and light blue) with the ones achieved setting a random feed-
back after each Bayesian update is reported in Fig. 2(c).
As can be seen, the performance achieved with the NN estima-
tion method is close to the one obtained when the explicit func-
tion of the probability outcomes is known. However, in this
scenario, the estimation of edge values performs poorly due to
the randomness of the selected adaptive feedback. Therefore,
we choose φtrue in the reduced interval ½0þ ϵ; 2π − ϵ�, setting
ϵ ¼ 0.3.

2.3 Extension to Real Scenarios: Multiparameter
Estimation

The test of the effectiveness of such an NN approach on multi-
parameter sensors becomes fundamental for extending Bayesian
estimation protocols to high-dimensional systems where the
derivation of the explicit model often requires a great effort
and is not always available. Indeed, in a real scenario, the access
to any desired quantum state can be particularly challenging or
even impossible. Therefore, a calibration of the quantum device,
based on the device physical model necessary for its optimal
use, is not always feasible and often computationally and exper-
imentally demanding. We apply the Bayesian NN adaptive pro-
tocol to estimate three optical phases in an integrated four-arm
interferometer.17 The device is fabricated through the femtosec-
ond laser writing (FLW) technique,63 and all the optical phases
can be tuned applying a voltage to various microheaters, pat-
terned in a thin gold layer and placed onto the different arms
of the interferometer. In particular, the interferometric phases
under study are combined with two integrated quarter splitters
(4 × 4 balanced beam splitters) that close the interferometer
(see Fig. 3). The presence of a pair of microheaters in each
of the internal arms allows one to set both the triplet of inves-
tigated phases ϕ and the control feedback c to implement adap-
tive protocols (see Sec. 4 for more details on the experimental
platform).

In the same spirit of the procedure described for the single-
phase Mach–Zehnder interferometer, here we identify each trip-
let of phases with a specific class in order to train the NN for
Bayesian update. We discretize the parameters space, building a
grid of N3

ϕ different triplets. The training is performed by asso-
ciating the single-measurement results to the respective triplet of
phases set on the sensor corresponding to a univocal class. In
order to achieve higher estimation performance, we inject into
the device pairs of indistinguishable photons, which after the
interaction into the first quarter, are projected into a two-photon
entangled state (see Fig. 3). With the two-photon inputs, the
possible output configurations are D ¼ 10: four related to the
events having both the photons in the same output port of
the integrated device and the six combinations of the two indis-
tinguishable photons in two different outputs of the four ports of
the chip. Due to the structure of the output probabilities of our
device when two-photon entangled states are injected, we can
estimate unambiguously phase values in a π range. However,
we need to be able to set feedback. From this, it follows that
the training must be done in the whole 2π interval such that
ϕþ c ∈ ½−π; π�.

To ensure the achievement of the optimal estimation perfor-
mance, a sufficient number of grid points Nϕ and measurement
repetitions r are required. To identify the minimum size of the
training set, we perform some simulations with different grid
spacing changing Nϕ and different numbers of measurement
repetitions r (see Supplementary Material). All the simulations
are done using the lHd function of the ideal device to simulate
the measurement outcomes. We therefore choose Nϕ and r,
allowing both to achieve good performance, collect the neces-
sary data, and perform the training in a reasonable time. To sat-
isfy these conditions, we set Nϕ ¼ 20, corresponding to 203

different triplets of phases in the interval ½−π; π� and collecting
r ¼ 1000 events for each one. The training is performed directly
on experimental data corresponding to the measurement of one
of the 10 possible output configurations associated with the
corresponding vector of the Nϕ parameter labels. Details on the
network architecture are reported in Sec. 4. Notably, the exten-
sion to the multiparameter scenario has required additional com-
putational efforts related to the huge dimension of the training
matrices (see Sec. 4). Once trained, we can reconstruct the pos-
terior probability associated with each of the 10 measurement
outcomes for all the grid points. The obtained results for half
of the probabilities are reported in Fig. 4 (the other five prob-
abilities are reported in the Supplementary Material).

We start by inspecting the performance achieved applying
random feedback after each probe; then we implement an opti-
mization algorithm through RL to select the feedback, assuring
a faster convergence to the bound, a fundamental requirement in
the limited data regime.

Once the NN for the single-measurement Bayesian update is
trained, we implement an estimation protocol that uses the pos-
terior probability learned by the network directly from the exper-
imental data to update the knowledge on new experiments. Since
the prior distribution is determined by the training data, we have
to rescale all the probabilities derived by the NN training to solve
the monotonicity issues of our estimation problem. We start shift-
ing the NN probabilities PNNðϕj − cjdÞ and pðϕj − cÞ, as seen
before, in the whole periodicity interval to take into account the
value of the feedback, but before performing the Bayesian update.
We select only the values in the π interval PNN and p, renorm-
alizing the obtained probabilities as follows:

Fig. 3 Scheme of the integrated photonic phase sensor. The
device consists in a four-arm interferometer with the possibility
of estimating three optical phases adjusting three relative phase
feedbacks through thermo-optic effects. Two-photon states are
injected at the device input and both the Bayesian update and
the choice of the optimal feedback are done through ML-based
protocols trained directly on measurement outcomes.
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NN ¼ PNN

, X
PNN ·

π�
Nϕ

2

�
3 − 1

!
;

pnew ¼ p

, X
p ·

π�
Nϕ

2

�
3 − 1

!
: (8)

We perform the protocol offline. First of all, we collect the
events relative to a grid of phases with more statistics than the
one used for the NN training, allowing us to compute the out-
comes probabilities associated with all the grid points. Then we
select a random triplet of phases in the prior, and the events at
each step of the estimation protocol are picked from the exper-
imental grid with the relative probability.

2.4 Reinforcement Learning for Black-Box Adaptive
Quantum Metrology

The possibility of implementing adaptive protocols becomes
fundamental in the limited data regime to speed up the estima-
tion process by adopting a practical measurement scheme based
on feedback coming from the measured system.64 The use of
feedback allows us to optimize the protocol when only a limited
number of probe states can be used for the estimation.

We now combine the demonstrated NN Bayesian update
with a new concomitant learning agent interacting with the NN
output. More specifically, we implement an RL algorithm that,
using the NN update, sets the optimal control parameters to
ensure a faster convergence of the estimation with the minimum
amount of resources. For high-dimensional and complex sys-
tems, the convergence to the ultimate precision bound, with a
limited number of probes, is indeed granted only if at each step
of the protocol the relative optimal feedback is set. This allows
us to extract the maximum amount of information from each
probe state.

2.4.1 RL-based design heuristics

The purpose of RL is to find an optimal strategy, often referred
to as policy, that the agent can perform on the environment in
order to maximize its reward. In particular, the policy represents
the conditional probability distribution πðajsÞ of performing
the action a conditioned on the observed environment state s.
For problems with continuous action spaces, the agent’s policy
can be modeled as a parameterized function of states, such as
deep NNs. The method that we chose for the RL algorithm is
the cross-entropy method (CEM), which is one of the most
generic and easy-to-implement methods. It maximizes the agent’s
reward with a derivative-free optimization approach. It can be
considered as a black-box approach, since it looks for the
NN weights linked to actions gaining the highest reward. Such
weights ωi are initially sampled from a Gaussian distribution
with a given mean and variance: ωi ∼N ðμ; σÞ. Then n batches
of episodes are sampled from the distribution, in which the agent
performs some actions from the policy network based on the
relative weights, and the rewards generated by the environment
for each episode are registered. Every episode consists of a se-
quence of observations of states of the environment when the
agent makes actions. Only episodes showing a reward above
a certain threshold are kept, and such elite weights of the relative
NNs are used to compute a new mean μ and variance σ for
the new weight distribution. For this reason, such a method is
also called an evolutionary algorithm, since it samples the NN
weights from a distribution that is updated at each iteration.
Such procedure is iterated until the mean average reward for
the batch of episodes converges to the desired value.

The training is performed offline using the same grid of data
used for the training of the Bayesian NN. At each episode, a true
value of ϕ is sampled from the prior distribution and the agent
performs a sequence of actions, depending on the number N of
available resources, setting the control phases c, and therefore
changing the operation point of the device. The obtained mea-
surement outcomes are selected from the grid point closer to the
imparted phase shift. After each measurement outcome, it is
possible to update the posterior probability distribution with

Fig. 4 Experimental posterior probability distributions reconstructed by the NN. The points on the
three axes correspond to the N3

ϕ ¼ 8000 grid points measured, while the color indicates the value
of the probability. Only half of the 10 possible probabilities are reported here: in particular, the
probabilities relative to d ¼ 1, 3; 5, 7; and10 are shown. In the second row, we have reported
three slices, of the corresponding above probability, obtained fixing the value of one phase to
zero to give more insight into the probabilities structure.
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the one retrieved by the Bayesian NN. When such a sequence is
finished, it is possible to compute the reward function achieved
with these settings. We choose as a reward function the one used
in Ref. 56:

RðdmÞ ¼ Tr½covϕjdm−1ðϕÞ� − Tr½covϕjdmðϕÞ�; (9)

which is the difference in the traced covariance over the pos-
terior distribution after the updating with the measurement result
obtained with a new probe. When all the N probes are used, the
episode is completed, and the environment is reset, the posterior
is reset to the prior, and a new training episode starts.

It is important to note that, differently from Ref. 56, when
using the NN Bayesian update, we do not rely in any way
on the system model. This crucial step, combining the afore-
mentioned techniques, allows us to reach a totally black-box
approach for metrological tasks.

2.4.2 Experimental results

As a benchmark model, we use the RL protocol to optimize the
feedbacks in a simulated experiment of an ideal four-arm inter-
ferometer. In this case, we can compute the lHd [obtained in
general as given in Eq. (2)] of the ideal device, using it both
to reconstruct the posterior distribution necessary at each step
of the Bayesian estimation protocol and to simulate the mea-
surement results. We demonstrate that the trained agent allows
us to select the optimal feedback necessary to show a faster con-
vergence for a smaller number of probe states N than the one
obtained if setting random controls. We train the agent on 104

episodes, simulating the measurement outcomes obtained after
the choice done by the agent on the control phases. We perform
the simulation with the ideal lHd function using the same num-
ber of particles that will be used in the NN-based approach, i.e.,
nPART ¼ N3

ϕ ¼ 103. In Fig. 5(a), we show the prior distribution
and the reconstructed posterior after sending N ¼ 100 probe
states for a specific triplet of phases. The averaged
estimate on 30 different repetitions of the experiment on the
same triplet is reported, with the corresponding standard
deviation in Fig. 5(b) as a function of the number of sent probes.
The performance is then studied in terms of multiparameter
Qloss:

QlossðϕÞ ¼
�X

i

wiϕi − ϕtrue

�
T

·

�X
i

wiϕi − ϕtrue

�
; (10)

where wi are the weights of the particles’ SMC approximation
[Eq. (7)]. The results achieved with the RL optimization, when
the explicit model of the system is known, are reported in
Fig. 6(a). The dashed line represents the ultimate precision
bound corresponding to the quantum Cramér–Rao bound
(QCRB)65 of the ideal device injected with the employed input
states, whereas the red and the orange lines represent the aver-
aged performance of more than 100 different triplets of phases
after calculating the median and the mean, respectively, of more
than 30 different repetitions of the Bayesian SMC protocol.
Note that the QCRB refers to the mean over all the repetitions;
however, since the distribution of errors in phase estimation of
such a protocol shows fat tails due to the presence of outlier
experiments where the protocol fails, the mean does not always
saturate the relative bound, as already noted in Ref. 66. In order
to reduce the weight of such outliers, occurring in some

repetitions of the Bayesian protocol, the median instead of
the mean is commonly used as the figure of merit, since the
former is less sensitive to the presence of a few outliers.

We then compare the obtained results with the full knowl-
edge of the system with the ones achieved when the Bayesian
update is done through the single-measurement posterior recon-
structed by the NN. In this case, the training of the RL algorithm
is also done updating the posterior after each choice of the
agent through the NN reconstructed probability distribution.
We therefore generate a grid of simulated data using the lHd
function of the ideal device for the Bayesian NN training with
the same step size and configurations used before on the exper-
imental data. In Fig. 6(b), we can see that the performance of the
optimization algorithm is still very high; the remaining differ-
ence between the red curve, obtained when knowing the lHd of
the system, and the magenta curve is related to the fact that to
train the Bayesian NN we choose a grid of only Nϕ ¼ 10 points

Fig. 5 Estimate of ϕ ¼ ½0.6; 1.7; 2.5� rad retrieved applying the
standard Bayesian estimation using the lHd of the ideal device
and optimizing the control feedbacks with the RL agent. (a) The
blue line represents the prior distribution, while the orange, green,
and red lines are the reconstructed posterior probabilities for the
first, second, and third phases, respectively. (b) Estimated values
as a function of the number of probes. Continuous lines represent
the average over 30 repetitions, whereas the shaded area is the
interval of one standard deviation.
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in the interval ½0; π� for each of the three phases (see
Supplementary Material for further investigations). The im-
provement obtained performing the optimization of the control
phases is clearly visible when comparing the results obtained
with the same network but randomly choosing the feedback
after each measurement result (blue curve). With the aim of only
studying the impact of the reduced size of the grid, we study the
performance achieved, in terms of avarage Qloss, when training
the NN in the reduced interval ½0; π�. Consequently, only for
this test, we need to restrict the possible random feedback in
the interval ½−ϕtrue; π − ϕtrue�. The results obtained for different
discretizations Nϕ are reported in Fig. 6(c) with the relative
discretization bound. Even if the estimation results are not

independent from the true value ϕtrue, this is a clear proof
that using grids with a higher number of points assures optimal
performance when using the NN-based Bayesian update. In
particular, the achievable bound is related to the grid spacing
resolution given in our case by δϕ ¼ π

Nϕ−1 for each parameter
resulting in a bound on the quadratic error of the multiparameter
estimation given by 3ðπ=ðNϕ − 1ÞÞ2.

Finally, we test such an algorithm on the actual device report-
ing in Fig. 6(d) and Sec. 2.4.2. Here the training of both the NN
for Bayesian update and the one of the RL agent is done di-
rectly on the grid of collected experimental data. Considering
the coincidences rate of the overall setup (∼3000Hz), includ-
ing losses, the training grid is reconstructed in <30 min.

(a)

(c) (d)

(b)

Fig. 6 Three-phase estimation in a four-arm interferometer. Achieved Qlosses [Eq. (10)] averaged
over 100 different triplets of phases in the interval ð0; π� as a function of the number of probes. The
shaded area represents the standard deviation from the mean values. (a) Performance of the ideal
device obtained when the explicit model is used for the Bayesian estimation. The orange line
represents the mean over all the 30 repetitions for each of the 100 parameters inspected, whereas
the red line is the median over the different repetitions. The dashed line is the QCRB, relative to the
mean, that for our device is 2.5=N . (b) Average over 100 triplets of phases of the median Qloss
computed over 30 repetitions of the estimation protocol. Comparison with the results obtained
when substituting the Bayesian updated through the explicit posterior (red line) with the one re-
constructed by an NN trained on simulated data (magenta line). The blue line represents instead
the performance achieved applying random feedback instead of the ones found by the RL agent.
(c) Simulation on the ideal device changing the number of grid points Nϕ in the training of the
Bayesian NN. Since the training for such simulations has been done in the restricted interval
½0; π�, here we limit the possible applied feedback to satisfy the condition ϕtrue þ c ∈ ð0; π�.
The dashed lines correspond to the sensitivity saturation values given the considered discretiza-
tion. (d) Experimental results achieved with the Bayesian NN update and the RL optimization
algorithm (magenta points), when the latter is substituted by a random choice of feedback (blue
points) and when the Bayesian update is done approximating the lHd with the occurrence frequen-
cies (green points). Error bars represent the standard deviation of the averaged Qlosses. The
magenta line shows the performance obtained with simulation done using the lHd function of
the real device; it is shown as a reference.
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The reported Qlosses refer to the average of over 100 triplets of
phases of the median Qloss computed over 30 repetitions of the
estimation protocol of different experiments. For the sake of
demonstrating the goodness of the experimental results, we per-
form some simulations using the lHd function of the real device
reconstructed from experimental grids knowing the model of
the system (this is equivalent to having infinite resources for
the system calibration). As expected, the performance on the
actual experimental data is slightly lower than the one achieved
with the simulated data (magenta line) due to the presence of
experimental noise in the training data. However, even for the
protocol trained directly with experimental data, the improve-
ment of the multiparameter estimation precision when using
the RL algorithm combined with the NN Bayesian update is
clearly visible compared to the performance obtained, with
equal resources, by methods not using the optimal feedback
or an approximated lHd without the NN learning. In this way,
the results in Fig. 6 demonstrate the advantage of a full artificial
intelligence approach for black-box quantum metrology. Finally,
we note that major time resources are required for training of
the Bayesian NN and the RL algorithm. The necessary training
time is strongly dependent on the parameters chosen (Nϕ; r,
number of episodes); in our case, it varies between 1 and 2 h
in total on a standard quad-core desktop computer. In contrast,
the actual execution of the trained algorithm depends on the
probe rate (two-photon states) and the speed of voltage appli-
cation, so it is almost immediate (order of milliseconds) and
compatible with standard experimental applications.

3 Conclusions
Quantum sensing represents one of the most promising appli-
cations of quantum theory. In order to develop optimized quan-
tum metrology protocols, one has to face several challenges in
the limited resources regime: the characterization of the quan-
tum sensor operations as well as devising optimal feedback for
adaptive estimations. In this work, we overcome these funda-
mental challenges by developing a deep RL protocol, which
combines an RL agent, designated to choose the optimal control
feedback, with a deep NN that updates the knowledge on the
parameter values, in an actual noisy multiparameter estimation
experiment. The quantum sensor is represented by an integrated
photonic circuit consisting of a four-arm interferometer, seeded
by indistinguishable photons, for sensing of multiple optical
phases. All the NN trainings are performed directly on exper-
imental data, without any a priori knowledge of the considered
quantum sensor and relying only on the accessible output sta-
tistics of the limited number of set phase points. To achieve
these results, we started by generalizing the NN Bayesian
updater18 to the multiparameter case and further extended the
protocol for adaptive implementations. Then we managed to im-
plement such a black-box ML approach for the learning of op-
timal feedback. An additional ML protocol, consisting of an RL
agent that takes as input the results of the NN Bayesian update,
is implemented. The fusion of these two extended ML algo-
rithms enabled us to experimentally demonstrate a fully artificial
intelligence approach outperforming standard techniques for
optical sensing.

We can implement such automated protocol thanks to the use
of a programmable integrated photonic circuit, which allows
us to control the performed measurements, easily configuring
control parameters to implement adaptive protocols in a fully
black-box fashion using quantum states.

The implementation of a model-free approach for quantum
multiparameter estimation paves the way for everyday auto-
mated use of complex quantum sensors without the need of
time- and resource-consuming characterization or the require-
ment of a faithful theoretical modeling. The latter can be a
fundamental limitation in all the scenarios where the theoreti-
cal description of the whole quantum evolution is lacking.
Consequently, most of the quantum metrology scenarios, rang-
ing from microscopy and imaging to Hamiltonian learning,
will largely benefit from the developed strategy.

4 Materials and Methods

4.1 Experimental Details

The integrated device realizing the quantum sensor is a 3.6-cm
long tunable four-arm interferometer seeded by pairs of indis-
tinguishable single photons. The chip is realized by means of
the FLW technique67,68 able to write waveguides inside a glass
substrate, suitable for photons at 785 nm. More specifically,
the interferometer is realized by two cascaded four-arm beam
splitters (quarters), each composed of four couplers in a three-
dimensional configuration,69 whose global action on incoming
photons is to equally split the photonic amplitude among the
four output modes. The four output modes of the first quarter
are connected to the inputs of the second quarter through four
straight waveguides equipped with thermo-optic phase shifters.
These allow to tune the internal phase shifts ϕi between the arms
of the interferometer by applying a current on resistors, with a
dissipated power responsible for the the phase changes.70,71 The
relation linking the dissipated power to the value of the phase
shift is approximatively quadratic.16 The three internal phase
shifts ϕ1, ϕ2, and ϕ3, with respect to a reference one, represent
the unknown parameters to be simultaneously estimated in our
sensing problem (see Fig. 3). Although the first quarter allows
one to prepare the photonic probe, the final quarter acts as a
measurement operator together with the single-photon detectors
at the output modes of the interferometer. In order to detect
events where the two photons exit along the same output port,
a probabilistic photon-number-resolving detection is employed
by means of fiber beam splitters before the detectors. The input
and output modes of the chip are pigtailed with single-mode
fibers.

The chip is provided by overall 12 thermo-optic phase shift-
ers. Two pairs of resistors are devoted to tuning the action of the
two quarters, respectively. The remaining eight resistors are
used to set the internal phases. In particular, three resistors
are used to set the phases to be estimated, whereas other three
are used to tune the control feedback chosen by the RL agent to
optimize the estimation process.

The input used to seed the circuit is composed of two indis-
tinguishable photons injected along the last two input modes,
that in the Fock basis results in j0011i. The probe state before
interacting with the unknown phases to be estimated is gener-
ated by the input two-photon state evolved by the first quarter.
The generated state is a generalized N00N-like state in the four-
dimensional Hilbert space of the evolution. Given the generated
probe state, in the case of an ideal quarter, we can calculate the
corresponding quantum Fisher information (QFI) matrix asso-
ciated to the ultimate quantum precision bounds achievable by
any estimation procedure for the interferometer phases.8 More
specifically, from the QFI matrix, the bound on the sum of the
errors of the three independent phase shifts is equal to 2.5=N,
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where N is the number of two-photon probes employed in the
measurement. In Fig. 6, we use this bound as a comparison for
the estimation performance achieved by our artificial intelli-
gence protocol.

Note that in order to obtain the maximum sensitivity with
such probe states, the two photons have to be indistinguishable.
To guarantee the temporal indistinguishability of the photons
inside the chip, one of the photons passes along an optical delay
line, able to tune the temporal delay with respect to the other.

The two photons are generated at 785 nm by a degenerate
SPDC source composed of a pulsed laser at 392.5 nm.

4.2 Bayesian NN

The NN architecture used for Bayesian update on the experi-
mental data is a five-layer, fully connected network imple-
mented using the Python Library Keras. It consists of an input
one-node layer and three 64-node hidden layers. The output
layer has instead a number of nodes, which depend on the dis-
crete grid of acquired data, i.e., N3

ϕ nodes, for our three-param-
eter problem. All the nodes, except for the output ones, which
are activated by a softmax function, are activated by a rectified
linear unit (ReLU) function initializing their weights with ran-
dom values extracted from a normal distribution centered at zero
and with variance σ2 ¼ 2=n, where n is the number of neurons
in the previous layer. To speed up the training process, the whole
training set is divided into 256 small random batches, which are
iteratively analyzed during each training epoch. We train the
algorithm for 60 epochs using as loss function the categorical
cross entropy and the ADAM optimization algorithm.72

Concerning the training set, for each class, a fixed number of
measurement repetitions r has to be shown to the NN during
the training, allowing it to learn the correct conditional proba-
bility distribution PNNðϕjjdÞ of the measurement outcomes.
Therefore, in the multiparameter scenario, the whole training
set consists of a one-dimensional input vector X containing
in each of its rows the measurement outcomes di obtained
for N3

ϕ · r different measurements and an output classification
vector Y with the same number of rows and N3

ϕ columns.
Thus additional computational efforts related to the huge dimen-
sion of the training matrices have been required. To solve such
issues, since we deal with sparse matrices where most of the
matrices elements are zero values, we work with the correspond-
ing matrix of coordinates in order to keep only the information
of the nonzero values and their position in the high-dimensional
matrix.

4.3 Reinforcement Learning Algorithm

The training of the RL agent is performed through the CEM,
following the STABLE-BASELINES73 implementation. For
each iteration of the algorithm, the agent picks an action from
the policy network whose weights are selected through the
CEM. The choice is paid with a reward depending on the vector
of observations extracted on the environment. Such a vector
consists of the estimated value ϕ̂, the current number of adopted
probes, and the posterior covariance matrix. Given such obser-
vations, depending on the goodness of the implemented action,
the reward is defined.

The structure of the network used to train the agent has an
input layer with a number of nodes equal to the length of the
observation vector, a 16-node hidden layer, and an output layer
with three nodes, one for each control feedback. The hidden

layer is activated via a ReLU function, whereas the output layer
activation is a sigmoid function.
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