
 1

Automatic User Interface Generation and Migration in Multi-Device
Environments

Renata Bandelloni, Giulio Mori, Fabio Paternò
ISTI-CNR

Via G.Moruzzi 1
56124 Pisa, Italy

Abstract

Ubiquitous computing systems provide for migratory user interfaces that allow users to move about freely

while carrying on their tasks through a variety of interaction platforms. We present our environment, which

provides runtime support to obtain migratory interfaces automatically generated for different platforms. The

solution is based on a migration/proxy server, which is able to generate interfaces for the target device with the

state resulting from previous user interactions in order to support platform adaptation and task performance

continuity. Thus, it allows users to receive user interfaces adapted to their device even if only a desktop version

was originally developed and, when they change device, they can continue from the point they left off on the

previous device without having to enter again the information already provided.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Evaluation/methodology; Input devices and strategies; Interaction styles;
D.2.2 [Software Engineering]: Design Tools and Techniques—User interfaces
General Terms: Design, Human Factors, Reliability
Additional Key Words and Phrases: Migratory interfaces, Adaptation to interaction
platform, Model-based design, Multi-device interfaces.

Introduction

The availability of various types of interaction platforms and the possibility of freely changing devices

without having to restart the session from scratch are important characteristics of ubiquitous environments. For

this reason, recently there has been an increase of interest in migratory interfaces. They provide users with the

possibility of changing the interaction device and still continue their tasks through an interface adapted to the

new platform. Migration can involve devices belonging to different platforms. The concept of platform is used to

group those devices that have similar interaction resources (such as the graphical desktop, the graphical PDA,

 2

the vocal device). Migratory interfaces require that the interface be able to adapt to the features of the new

device in such a way as to satisfy usability criteria and support continuity in task performance.

In this paper, we present a solution able to support migration through several kinds of platforms with the

possibility of automatically redesigning the existing application interface to adapt to their features. Our

migration environment (GeReMi: Get Redesign Migrate) can involve different types of platforms offering

different interaction modalities, such as graphical and vocal. The environment retrieves the original pages for the

desktop from the Web and analyses them, thereby obtaining logical descriptions at different levels concerning

both their user interface and the underlying task model. The logical descriptions are used to generate a

redesigned page for the platform accessing the page or for the platform onto which the page is migrating. Since

migration implies task performance continuity, the runtime interface state resulting from the previous user

interactions is stored and adapted to the newly generated interface. Thus, our solution supports automatic

generation of user interfaces for various platforms and even the possibility of dynamically migrating through

them. This means that our environment allows developers to avoid developing multiple versions in a separate

manner and limit themselves to implementing the desktop version, from which our runtime support generates the

other interface versions as needed. Indeed, user interfaces for various platforms are generated from the Web

desktop version independently of who implemented it and what authoring environment was used for this purpose

assuming that standard W3C languages have been used.

In the paper, after a short discussion of related work, we first describe the architecture of our environment, we

move on to explain how logical descriptions of the existing desktop version are created and then we indicate how

such semantic information is used to redesign the interface for different modalities. An example application of

the proposed approach is illustrated. We also report on user tests carried out on some applications of migratory

interfaces. Lastly, conclusions and indications for future work are provided.

Related Work

The increasing availability of various types of interactive devices has raised interest in model-based

approaches because they provide logical descriptions that can be used as a starting point for generating interfaces

that adapt to the various devices at hand. In recent years, such interest has been accompanied by the use of

XML-based languages to represent such logical descriptions (examples are XIML[1], UIML[2], TERESA-

XML[3], USIXML[4]). However, such approaches have usually focused on providing support, not in the

 3

runtime phase, but only in the design and authoring phase in order to help designers to efficiently obtain

different versions that adapt to the various interaction features.

Different techniques for redesigning Web applications for small devices have been proposed, see for example

[5] [6] both orientated to obtaining a thumb-nailed view of the original page. These approaches are mainly based

on a layout analysis and the small screen pages accessed through the thumbnails are built by extraction and

summarisation of parts of the original page. In PUC [7] there has been a proposal aiming at dynamically

generate user interfaces able to control a domestic appliance starting with its logical description, this work does

not address the possibility of supporting users in continuing task performance when moving dynamically through

different devices.

Supple [8] is an application and device independent system that automatically generates user interfaces for a

variety of display devices. Supple uses decision-theoretic, combinatorial optimisation. Conceptually, Supple

enumerates all possible ways of laying out the interface and chooses the one which minimizes the user’s

expected cost of interaction. The system uses a single level of functional specification language while our

approach uses user interface description at three different abstraction levels for each different platform. Supple

addresses exclusively graphical devices, and does not support interface migration.

ICrafter [9] is a solution to generate adaptive interfaces for accessing services in interactive spaces. It

generates interfaces that adapt to different devices starting with XML-based descriptions of the service that must

be supported. However, ICrafter is limited to creating support for controlling interactive workspaces by

generating user interfaces for services obtained by dynamic composition of elementary ones and does not

provide support for migration and, consequently, continuity of task performance across different devices.

 Aura [10] provides support for migration but the solution adopted has a different granularity. In Aura for

each possible application service various applications are available and the choice of the application depends on

the interaction resources available. Thus, for example for word processing, if a desktop is available then an

applications such as MS-Word can be activated, whereas in the case of a mobile platform a lighter editing

application is used. Thus, Aura aims to provide a similar support but this is obtained mainly by changing the

application depending on the resources available in the device in question, while we generate interfaces of the

same application that adapt to the interaction resources available.

A general reference model for user interfaces aiming to support migration, distribution and adaptivity to the

platform (termed plasticity in their article) is proposed in [11]. In our work we propose a concrete architecture,

based on a client/server infrastructure, able to support migration of user interfaces associated with applications

hosted by different content servers. While in our previous work [12] we found a solution based on the use of pre-

 4

computed interfaces for different platforms that are dynamically activated, in this paper we present a solution,

whereby, starting with the richest version (that is for the most powerful platform, the desktop), it is then possible

to automatically generate versions for different platforms and associate them with the state resulting from the

interactions performed on the previous devices. We moreover offer the possibility of migrating among devices

with different interaction modalities. We introduced some preliminary ideas on how to obtain automatic

generation of migratory Web interfaces in [13]. In this paper we are able to present a solution, along with an

engineered prototype, supporting also migration through different modalities (such as voice) and report on first

tests of the proposed tool and its results.

Software Architecture

The architecture of GeReMi is based on a migration/proxy server, which receives the access and migration

requests and performs interface adaptation and interface runtime state management. The environment starts with

pre-existing Web applications typically developed for desktop platform enhancing them with interface migration

capabilities.

The users who want to access the service, have to load the migration client software onto their devices. This is

a light weight piece of software used to communicate with the server to send migration requests, indicate when

the device is available for migration and additional information related to the device, which can be useful in the

migration process. It also permits to gather runtime information concerning the state of the interface running on

the device, which results from the history of user interactions.

Figure 1: GeReMi Migration Service Architecture.

The migration/proxy server behaviour can be explained analysing the different situations it can cope with:

 5

Simple proxy: The user accesses the Web through a device that belongs to the same platform type for which

the pages were created for. The migration/proxy server retrieves the required page from the Web server and

passes it on to the client.

Interface redesign. The user accesses the Web through a device that belongs to a platform different from that

for which the pages were created, for example a vocal platform client accessing the pages designed for the

desktop. First, the migration/proxy server retrieves the required page from the Web server, then the page is

redesigned to be suitable for vocal interaction and the resulting interface is activated on the vocal device.

Migration from Desktop to non-Desktop platform. The user accesses the Web through a device whose

platform is the same for which the pages were created and at a certain point migration towards a different

platform is required. Let us consider for example a desktop to PDA migration. First, the target device of the

migration has to be identified. Thus, the page that was accessed through the source device is stored and

automatically redesigned for the PDA. This is enough to support platform adaptation, but there is still one step to

be performed in order to preserve task performance continuity. The runtime state of the migrating page must be

adapted to the redesigned page. In addition, the server has to identify the page to activate in the target PDA; this

page is the one supporting the last task performed by the user, before migration. At the end of the process, the

adapted selected page is sent to the PDA from which the user can continue the activity which was left off on the

desktop.

Migration from non-Desktop platform to non-Desktop platform. The user accesses the Web through a device

whose platform is different from the one for which the pages were created, and at a certain point migration

towards another different platform is required. This is the most complex and interesting case, in which all the

functionalities of our migration/proxy server are involved. This case differs from the previous one because both

the source and the target device of migration do not match the platform of the original Web pages, and both of

them require that the associated interfaces be redesigned. When redesigning the interface for the target device,

the migration/proxy server exploits the logical description concerning the original platform interface already

built. This is obtained by a double mapping first from the source redesigned interface to the original desktop

interface, then from the original desktop interface to the target redesigned interface. As an example we can

consider an application developed for desktop, accessed through a PDA and migrating to a mobile vocal phone.

The steps to perform this migration example shown in Figure 1 are:

1. The user loads a Web page from a PDA

2. The server asks the content server for the original desktop page

3. The page is retrieved and stored in the migration/proxy server

 6

4. The desktop page is redesigned for PDA going through the generation of the necessary logical

descriptions

5. The redesigned page is sent to the PDA.

6. The user sends a migration request toward a vocal platform

7. The server recognizes and identifies the target platform and redesigns the interface for the vocal platform.

Thus, even the runtime state of the migrating page is adapted to the newly interface generated.

8. The vocal interface containing the adapted state is sent to the target vocal platform.

Figure 2 provides more detail on how the server supports the migration. Through the use of reverse

engineering techniques our environment builds the logical descriptions associated with the existing desktop

version. When a request of migration arrives, the tool transforms the desktop logical descriptions into a version

suitable for the target platform taking into account the modalities and interaction resources available. In addition,

in this process the state resulting from previous user interactions (for example, text entered, elements selected

and so on) is associated with the new interface version generated so that the user has not to enter such

information again.

Figure 2. Processing performed on the server side for supporting migration.

Generating User Interface Logical Descriptions.

The generation of the user interface for the new platform starts with a reverse engineering step. From the Web

page considered, three logical descriptions at different abstraction level are built: the concrete interface level,

consisting in a platform-dependent description of the user interface but independent of the implementation

language; the abstract interface level, consisting in a platform-independent description of the user interface; the

task level, where the logical activities are considered.

 7

There have already been proposals aiming to provide some support for reverse engineering of user interfaces.

For example, WebRevEnge [14] automatically builds the task model associated with a Web application, whereas

Vaquita [15] and its evolutions build the concrete description associated with a Web page. In order to support the

automatic redesign for migration purposes, we need to reconstruct concrete, abstract and task description. We

have developed new transformations able to take Web pages and then provide any of the three possible logical

descriptions.

At implementation level, the information regarding the concrete description is added to the abstract

description. In fact, the concrete description is a refinement that adds information regarding concrete attributes to

the structure provided by the abstract description. The abstract interface level represents platform-independent

semantics of the user interface, thus the interface elements are identified in terms of the main effect that they

support (for example: selection, editing, activator, navigator). It also provides a high-level description of how

interactors (user interface elements) are arranged and composed together. The concrete interface level provides

platform-dependent descriptions of the user interface and is responsible for how interactors and composition

operators are implemented in the chosen platform with their related information content. For example, a

selection interactor at the abstract level can be refined into a list or a radio-button (depending on the number of

elements) in the case of a concrete description for a graphical desktop interface. The concrete description is still

independent of the implementation languages. Thus, for example, the list could be still implemented in XHTML

or Java or some other language for graphical applications.

The abstract description is used in the redesign phase in order to drive the changes in the choice of some

interaction object implementations and their features and rearrange their distribution into the redesigned pages in

such a way that the original semantics is still supported but using techniques suitable for the current platform.

For example, a graphical list can be mapped onto an abstract selection element, which is then mapped onto a

vocal enumerate choice in the case of migration from graphical desktop platform to vocal one. Both task and

logical interface descriptions are used in order to create associations between the implementation elements in the

original interface and in the redesigned one and restore the runtime state resulting from the user interactions with

the source device in the corresponding elements of the target interface.

From the User Interface to its Logical Description.

The concrete interface is the logical level closest to the user interface implementation, it is organised in

presentations interconnected by connection elements. Presentations are made up of logical descriptions of

interaction objects called interactor elements. The interactors can be combined by composition operators. The

 8

goal of the composition operators is to identify the designers’ communication goals, which determine how the

interaction elements should be arranged in the presentation. We use four composition operators, which capture

common effects that designers aim to achieve when they structure their presentations: Grouping (the elements

are logically related to each other), Hierarchy (there are different levels of importance among elements), Relation

(one element is related somehow to other elements), Ordering (when some order among elements can be

identified).

We need to reverse the single desktop page that is accessed or that corresponds to the user interface part of a

non-Desktop platform, which is currently accessed. The page is reversed into a concrete presentation and each

interaction technique in the implementation into an interactor. The reversing algorithm works on the DOM tree

of the page. In order to acquire it, we need to have well formed X/HTML files. Since many of the pages

available on the Web do not satisfy this requirement, before starting the reversing phase, the page is parsed using

the W3C Tidy parser that corrects features like missing and mismatching tags and returns the DOM tree of the

corrected page. The corrected DOM tree is analysed recursively starting with the body element and going in

depth. Each node is analysed by a specific function extracting information to generate the corresponding

interactor or composition operator (Table 1).

Considering the X/HTML DOM node analysed by the recursive function, we have three basic cases:

• The node is mapped into a concrete interactor. This is a recursion endpoint. The appropriate

interactor element is built and inserted into the XML-based logical description. For example DOM

nodes corresponding to the tags , <a> and <select> respectively cause the generation of a

only_output – image, interaction - navigator and – selection interactor elements.

• The node corresponds to a composition operator. The proper composition element is built and the

function is called recursively on the node subtrees. The subtree analysis can return both interactor

and interactor composition elements. Whichever they are, they are appended to the composition

element from which the recursive analysis started. For example the node corresponding to the tag

<form> is reversed into a Relation composition operator, into Ordering.

• The node does not require the creation of an instance of interaction in the concrete specification (for

example, in the Web page there is the definition of a new font). In this case no new element is added

in the concrete description and if the node has no children we have a recursion endpoint. This can

happen for example when there are some empty paragraphs <p></p> or line separators like

tags.

 9

Table 1. Transformation of Desktop Web implementation into Logical Description

From the User Interface Logical Description to the Task Model

A logical presentation can contain both elements that are single interactor objects and composition operator

elements. The compositions can contain both simple interactors and further composition operators. Our reverse

engineering transformation builds a task model represented through the ConcurTaskTrees (CTT) notation [16].

In this notation, tasks (which are the logical activities that should be accomplished in order to reach users’ goals)

are structured hierarchically, starting with high-level, general tasks, which are decomposed into more refined

ones. A set of temporal operators are available to indicate the temporal relations among such tasks (sequential,

concurrency, choice, disabling, suspend, order independence, …). A logical presentation is first associated with a

high-level abstract task, which is decomposed into the subtrees obtained by reversing the elements contained in

the presentation along with the appropriate temporal operators.

Each composition operator is reversed into a task, whose sub-tasks are the tasks obtained by reversing the

elements to which the composition operator applies. Such subtasks are connected through appropriate CTT

temporal operators. Each interactor is reversed into the corresponding basic task (a task that cannot be logically

decomposed into subtasks). For example, a Relation composition in the user interface logical description

corresponding to a Web form is reversed in such a way that all the basic tasks corresponding to elements

involved in the Relation are connected by a concurrent temporal operator. Such elements are also associated with

the task corresponding to the action triggering (for sending the form) by a disabling temporal operator.

(X)HTML Element Logic Interface Element
Unordered List

Ordered List Ordering

Div
Fieldset Grouping

Table Description
Input checkbox Single select

Input radio Multiple select
Select Single / multiple select
Form Relation

Input text Textfield
Input button

Anchor

Navigator
Input reset Activator

Input submit Activator
Text Text

Image Object (Image)
Text+Image Description

Text+Anchors InteractiveDescription

 10

Interface Redesign

The redesign transformation aims to change the design of a user interface. In particular, we propose a redesign

for identifying solutions suitable for a different platform, which is performed automatically by exploiting

semantic information contained in the logical description of the user interface (created by reverse process).

Given the limited resources in screen size of mobile devices (such as cell phones or PDAs), desktop

presentations generally must be split into a number of different presentations for the mobile devices. The logical

description provides us with some semantic information that can be useful for identifying meaningful ways to

split the desktop presentations along with the user interface state information (the actual implemented elements,

such as labels, images, etc.). The redesign module analyses the input from the logical descriptions and generates

an abstract and concrete description for the mobile device from which it is possible to automatically obtain the

corresponding user interfaces. The redesign module also decides how abstract interactors and composition

operators should be implemented in the target mobile platform.

Since our environment has to work on a single page at a time, it considers only its logical descriptions. It

would be expensive in time and computational efficiency downloading all the site pages and reverse engineering

all of them, especially considering sites composed of hundreds of pages.

Redesign for Small devices

In order to automatically redesign a desktop presentation for a mobile presentation we need to consider

semantic information and the limits of the available resources. If we only consider the physical limitations we

may end up dividing large pages into small pages which are not meaningful. To avoid this, we also consider the

composition operators indicated in the logical descriptions. To this end, our algorithm tries to maintain

interactors that are composed through some operator at the conceptual level in the same page, thus preserving the

communication goals of the designer. However, this is not always possible because of the limitations of the

platform. In this case, the algorithm aims to equally distribute the interactors into presentations of the mobile

device.

In addition, the splitting of the pages requires a change in the navigation structure with the need for additional

navigator interactors that allow access to the newly created pages. More specifically, the transformation follows

the subsequent main criteria:

• The presentation split from desktop to mobile takes into account the composition operators because

they indicate semantic relations among the elements that should be preserved in the resulting mobile

interface.

 11

• Another aspect considered is the number and cost of interactors. The cost is related to the interaction

resources consumed, so it depends on pixels required, size of the fonts and other similar aspects.

• The implementation of the logical interactors may change according to the interaction resources

available in the target platform (for example an input desktop text area, could be transformed into an

input mobile text edit or also removed, because writing of long text is not a proper activities for a

mobile device).

• The connections of the resulting interface should include the original ones and add those derived

from the presentation split.

• The images should be resized according to the screen size of the target devices keeping the same

aspect ratio. In some cases they may not be rendered at all because the result is too small or the

mobile device does not support them.

• Text and labels can be transformed as well because they may be too long for the mobile devices. In

converting labels we use tables able to identify shorter synonyms.

In particular, regarding the creation of new connections the following rules are applied:

• original connections of desktop presentations are associated to the mobile presentations that contain the

interactor triggering the associated transition. The destination for each of these connections is the first

mobile presentation obtained by splitting the original desktop destination presentation;

• composition operators that are allocated to a new mobile presentation are substituted in the original

presentation by a link to the new presentation containing the first interactor associated with the

composition operators.

• when a set of interactors composed through a specific operator has been split into multiple presentations

because they do not fit into a single mobile presentation, then we need to introduce new connections to

navigate through the new mobile presentations.

In the transformation process we take into account semantic aspects and the cost in terms of interaction

resources of the elements considered. We have defined for each mobile device class identified (large, medium or

small) a maximum acceptable overall cost in terms of the interaction resources utilizable in a single presentation.

 12

Thus, each interactor and (even each composition operator) has a different cost in terms of interaction resources.

The algorithm inserts interactors into a mobile presentation until the sum of individual interactor and

composition operator costs reaches the maximum global cost supported. Examples of elements that determine

the cost of interactors are the font size (in pixels) and number of characters in a text, image size (in pixels), if

present. One example of the costs associated with composition operators is the minimum additional space (in

pixels) needed to contain all its interactors in a readable layout. This additional value depends on the way the

composition operator is implemented (for example, if a grouping is implemented with a fieldset or with bullets).

Another example is the minimum and maximum interspace (in pixels) between the composed interactors.

After such considerations, it is easy to understand that each mobile presentation could contain a varying

number of interactors depending of their interaction resources consumption. Table 2 shows how each desktop

logical element is transformed for mobile devices.

Table 2. Transformation of logical interface for Mobile platform

Only output interactors Transformation for Mobile platform

Text Text is presented using a smaller font. In case the text is too long to be
contained in a single page, the text is divided into more pages.

Description The image is reduced in size while the text part is treated as normal text.
Object (image) The image is reduced in size.

Interaction interactors Transformation for Mobile platform

Navigator
Textual links are presented as are (changing fonts) or reduced in length, when

they are too long, through the use of the synonym database. Image links have
the image reduced in size.

Activator Activator is transformed adapting the script code to the script supported by the
mobile device web browser.

Text Edit Text Edit is implemented through a textfield and if the specified length is too
high, the length is reduced to fit the mobile device screen.

Numerical Edit Same as Text Edit

Single selection

In dependence of the number of options, the implementing object can be a
radio button or select element. In case the options are too many to be shown in a
single PDA page, the selection menu is divided into sub menus or can be
substituted with a textedit when the choices are intuitive.

Multiple selection
In dependence of the number of options, it can be implemented using a

checkbox or select element. The number of choices should not be higher than the
lines that can be shown in a single mobile device page.

Interactive Description A piece of text containing links is generated applying separately the rules for
text and link parts.

Composition operators Transformation for Mobile platform

Grouping
Row grouping are transformed into column grouping and they are

implemented through the use of fieldset element. The fieldset size is minimized
in order to frame exactly the elements it contains.

Ordering An ordered list is used.

Hierarchy It is used a decreasing font and image size. The sizes are kept smaller than in
the desktop version.

Relation It is implemented through a form element.

 13

Redesign for Vocal interaction

There are various differences to consider between graphical and vocal interfaces. In vocal interfaces there are

several specific features that are important in order to support effective interaction with the user. For example, it

is important that the system always provides feedback when it correctly interprets a vocal input and it is also

useful to provide meaningful error feedback in the event of poor recognition of the user’s vocal input. At any

time, users should be able to interrupt the system with vocal keywords (for example “menu”) to access other

vocal sections/presentations or to activate particular features (such as the system reading a long text). An

important aspect to consider is that sometimes users do not have an overall control of the system state, such as in

graphic interfaces. In fact, short term memory can be easily disturbed by any kind of distraction. Thus, a useful

technique is to provide some indication about the interface state in the application after a period of silence

(timeout). Other useful support for this problem can be the use of speech titles and welcome or location

sentences in each vocal presentation to allow users to understand their position and the subject of the current

presentation and what input the system needs at that point. Another important difference between speech and

graphic interfaces is that the vocal platform supports only sequential presentations and interactions while the

graphical ones allow concurrent interactions. Thus, in vocal interfaces we have to find the right balance between

the logical information structure and the length of presentations. For example, a large desktop presentation with

some meaningful parts (i.e.: some top level grouping), it should not be transformed into a single vocal

presentation containing a long sequential and heterogeneous vocal output. It is better to split desktop

presentations by inserting elements associated with grouping composition operators in different vocal

presentations so that the main vocal presentation is structured to access the various logical parts. On the other

hand, newly created vocal presentations containing grouping content should not be further split in order to avoid

a navigation level too deep, which could be a negative factor for user orientation in speech interfaces. Moreover,

the generated vocal presentations representing the elements of each desktop grouping should produce the proper

amount of homogeneous vocal flow. The main criteria of the redesign algorithm for the vocal platform are:

• Before redesign for vocal interaction, elements regarding tasks unsuitable for the vocal platform (for

example, long text inputs) are removed and labels too long are modified (with the help of a database of

terms suitable for vocal activities);

• Semantic relations among interactors in the original platform are maintained in the vocal platform,

keeping interactors composed through the same composition operators in the same vocal presentation,

and transforming them for better adaptation to the vocal device (see Table 1 below);

 14

• Before redesign, images are removed, they are substituted by alternative descriptions (ALT tag). In

some cases such descriptions can be obtained through OCR algorithms to recognize words and letters

from the image content;

• Implementation of interactors and composition operators will change according to new vocal devices

resources (see Table 3);

• The algorithm aims to provide a logical structure to vocal presentations avoiding too deep navigation

levels because they may disorient users. To this end, the highest level composition operators (in the

case of nested operators) are used to split desktop presentations into vocal presentations.

• Composition operators that are allocated to new vocal presentations are substituted in the main vocal

presentation that cannot contain them by a vocal link to the new presentation, which contains the first

interactor associated with the composition operator.

• Original connections of desktop presentations are associated to vocal presentations containing the

corresponding triggering interactor; the destination presentation for each of these connections is the first

vocal presentation associated with the redesign of the desktop destination presentation.

Table 3. Transformation of logical interface for vocal platform

Only output interactors Transformation for vocal platform

Text

Text is read by system; generally long text reading, should be activated by the
users to avoid long vocal feedback, which could annoy them.

When possible too long text can be summarized or divided in structured
paragraphs depending on their homogeneous content.

Description Image transformed in text if present (or using content of Alt tag).
Object Algorithm considers only alternative text.

Interaction interactors Transformation for vocal platform

Navigator “Please, say X to access to…”
(where X represents the key word to activate the link)

Activator “Please, say X to activate the function …”
(where X represents the function to activate)

Text Edit

“Please insert your ” + label_value
(where label_value is the text label of the element contained in the desktop

presentation; if the system understands from labels and synonyms database that
label_value is a personal data like Name, Surname, Address, etc.), otherwise

system asks:
“Please insert the ” + label_value

(if the system understands that label_value represent a general data)

Numerical Edit “Please insert the ” + label_value
(Similar to Text Edit, but input represents a number)

Single selection

The system read the question sentence of desktop selection and then the list of
possible choices: X1, X2, X3; after that, system asks:

“Please make your choice.”
(Number of choices should be a max number of four/five, because an high

number of choices couldn’t be memorized by user)

Multiple selection It is transformed in a sequence of selections

Interactive description Can be considered such as a text, but links should be managed in different

 15

ways:

• if the text does not contain many links, keywords of each link can be
hold between a specific sound or can be read with a loud tone;

• if the text contains many links, all possible links can be listed at the end
of text.

Composition operators Transformation for vocal platform

Grouping System inserts at beginning and at the end: a pause, a sound, a keyword or a
change of volume

Ordering System arranges elements in alphabetical order or with keywords
Hierarchy System decreases or increase volume after each choice
Relation System changes context

Engineered Support in Interface Redesign and Generation

In order to make our environment suitable for realistic contexts, with user sessions that require access to

several pages of an application or users who access the same application at different times through different non-

desktop platforms, sometimes even migrating through them, we had to consider various issues. One is related to

the links of the generated pages for the target platform. It can happen that some of them are newly generated

links while others are still those included in the original desktop version. Such links are modified in such a way

as to redirect them to the proxy server so that, if selected, the corresponding page is loaded and transformed by

the migration sever for generating new pages adapted to the target platform.

In order to improve the performance of our system, when logical descriptions of an accessed page are created

then they are saved in the server so that if that page is accessed again through a non-desktop platform then the

corresponding logical descriptions are immediately available and do not need to be calculated again. However,

we have to take into account whether the considered page has been modified in the meantime because in this

case the previously calculated logical descriptions can be no longer valid. Thus, the migration server compares

the time of the last modification for the accessed page obtained from the content server with the time when the

logical description was calculated, which is stored locally. If the page has been modified after its last reverse

engineering then the corresponding logical descriptions have to be calculated again.

Sample Application

In order to explain how our environment works we introduce an example application. We consider a scenario

and discuss the example, and how it is supported. The MovieRent site has been designed for a desktop platform.

In our scenario the user accesses the site using a PDA. The migration/proxy server intercepts the PDA page

requests to the MovieRent site, retrieves the Web pages and applies the reverse-redesign process to generate an

interface version for the PDA platform. Before reverse engineering, the Proxy Server filters (when possible)

 16

some dynamic elements of the page (such as advertising, animations, old archive material, etc) and removes the

elements implementing tasks not suitable for the new target platform. This last operation is performed with the

help of an analysis of the type of interactor and the labels used (which can provide useful information regarding

the associated task).

Figure 3. Desktop Page in the Example.

When the user selects the Shark Tale movie from the New Release page in the redesigned PDA page, the link

still refers to the original page in the desktop version. The migration/proxy server retrieves it and produces the

PDA interface shown in Figure 3. Notice that tabbed panels in the desktop version (Figure 4, right side) have

been transformed into links in the PDA presentations (Figure 4, left side) and the Reviews tabbed panel has been

removed because it contains elements for an activity, which is not particularly suitable for PDAs (long text

insertion). Moreover, the left column containing links (Figure 3 left side) is repeated in all desktop pages, but to

gain screen space they are inserted only in the main PDA presentation. Figure 4 also shows the central part of

the Shark Tale DVD page for desktop. At this point of the scenario, the user enters his car and the application

migrates to the voice car system. The migration/proxy server refers again to the original desktop page for

 17

building a vocal interface. The vocal interaction is represented in Figure 4 (on the bottom) where we can see the

dialog corresponding to the desktop Shark Tale page, with the tab panel More Details selected and followed by

the dialogue concerning the shipment and payment information and corresponding to the form that in the desktop

version is loaded after clicking on the Buy Now button. When the user selects More Details on the PDA a new

redesigned page is loaded. When migrating towards the voice system, the graphic to vocal redesign is done

starting from the abstract description of the original page designed for the desktop platform, while the URL of

the page loaded on the PDA is interpreted as interface state information indicating which tabbed panel must be

visualized. When redesigning for the vocal platform, the tool generates a feedback message to remind the user

which point of the interaction has been reached. The vocal interface continues to provide the movie information

and enables the possibility of interrupting the active dialogue to access the menu dialogue through particular

keywords (such as “menu”). Notice that the presentation of movie information in the vocal platform should not

be too detailed. This is obtained by considering only important elements and filtering minor ones (such as

running time, DVD Release, etc.), which are considered minor because of the limited space allocated in the

graphical version. Thus, the vocal system provides the possibility of making a choice between cast, category and

synopsis.

Figure 4. The Example Migration

 18

User Tests
In order to understand the impact of migration on users and the usability of the interfaces obtained through the

automatic redesign transformation some user tests were performed. The trans-modal migration funtionalities,

from graphic to vocal, have been tested in the first version of the migration service.

Trans-modal migration test

The first test was performed on the “Restaurant” application, which allows users to select a restaurant, accessing

its general information and make a reservation. The interfaces of the test application for desktop, PDA and vocal

platforms differ both in the number of tasks and their implementation. For example, the date insertion is a text

field in the desktop version and a selection object in the PDA version, while the insertion of free comments was

removed from the vocal interface.

Figure 5. Restaurant application and migration client interface

Since we were interested in considering multi-device environments, both a desktop PC and a PDA were used as

graphic source platforms. This is useful for understanding if the features of the platform can influence the user

because of the different interaction resources and, consequently, the different set of tasks supported. The 20 users

involved were divided into two groups. The first one started with migration from PDA to vocal platform and

repeated the experiment starting with the desktop. The second started with the desktop and repeated the test

 19

using the PDA. Users were asked to load the “Restaurant” application on the graphic device and start booking a

table at a restaurant. At some point, they had to ask for migration towards the available vocal device and there

complete the Restaurant Reservation task. After the session the users filled in the evaluation questionnaire. The

average user age was 33.5 years (min 23 - max 68). Thirty percent of them were females, 65% had

undergraduate degrees or higher and 55% had previously used a PDA. Users had good experience with graphic

interfaces but far less with vocal ones: on a scale of 1 to 5, the average self-rating of graphic interface skill was

4.30 and 2.05 for vocal interfaces. For each migration experiment, users were asked to rate from 1 to 5 the

parameters shown in Table 4.

Table 4. User rating for trans-modal migration attributes.

Parameters Desktop to vocal PDA to vocal
Migration client interface clearness 3.4 3.9
Interaction continuity easiness 4.35 4.65
Initial vocal feedback usefulness 4.1 4.2
Vocal feedback usefulness 4.25 4.25

Vocal feedback was provided via both the initial message, recalling the information inserted before migration,

and a final message at the end of the session about the information inserted after migration. We chose this

solution as the most likely to reduce user memory load. After the test, we asked the users if they would have

preferred only total final feedback instead. Finally, we asked whether they noticed any difference between the

graphic and vocal interface with the aim of finding out whether they could perceive the different number of

supported tasks. The numeric test results were interpreted taking into account the answer justifications and free

comments left in the questionnaire and considering user comments while performing the test.

Table 5. User preferences and salience of task differences.

Parameters Laptop to vocal PDA to vocal
Only final vocal feedback preferred Yes 20% - No 80% Yes 20% - No 80%

Noticed different task set Yes 25% - No 75% Yes 20% - No 80%

The service in itself was appreciated by users. Many judged it interesting and stimulating. The users had never

tried any migration service before and interacted with it more easily in the second experiment, thus, showing it

was easy to learn through practise, once the concepts underlying migration were understood. Interaction

continuity received a slightly higher score in the PDA-to-vocal case. Indeed, the PDA and the vocal versions

were more similar in terms of number of tasks than the desktop and the vocal ones. The difference in ease of

continuity between the two platforms is small, thus the interaction continuity ease is influenced, but not

compromised. Both the initial and the overall feedback through the vocal application were judged positively

 20

(Table 4). The vocal feedback design was appreciated and 80% of the users would have not changed its style.

One concern was the potential user disorientation in continuing interaction, not only by the change in modality,

but also in the different range of possible actions to perform. Only 20-25% noticed the difference and it was

perceived more in the desktop-to-vocal case (Table 5).

This first study provided some useful suggestions to keep in mind while designing user interface transmodal

migration. The modality change does not cause disorientation but must be well supported by proper user

feedback balancing completeness while avoiding boredom. The differences in interaction objects used to support

the same task were not noticed at all, while the difference in the number of task supported was. Changing the

number of actions that the user can perform can not be avoided due to the different capabilities of the platforms

involved. However, this must be well designed in order to reduce as much as possible any sudden disruption in

user’s expectation.

Test on the new version of the migration environment.

The first test confirmed our choices concerning the support for trans-modal migration and gave useful

suggestions for improving the migration environment. The work undertaken after the first test resulted in the

new version of the migration environment discussed in this article and we performed a new test with a different

application: the “Virtual Tuscany Tour”. The goal was to have further empirical feedback on the migration

concept and the new solution supporting it. Since very few changes concerned the trans-modal interface

trasformation while many more affected the unimodal (graphic) migration, the new test considered desktop to

PDA migration, in order to evaluate the new functionalities. The considered application is the Web site of a

tourism agency specialized in trips around Tuscany, an Italian region. Interested users can ask material and

detailed information about trips around the sea and the beach or around the countryside and mountains; it is also

possible to have an overview of good quality places where to sleep. From this Web site it is also possible to get

information about the main social events, amusements, places where to taste good food and wine, sport activities

and other useful information, such as the weather forecast and public transportation. Thus, users during the test

could freely interact with the application and at a certain point they were asked to fill in a form for requiring

tourist documentation about Tuscany. The form had to be filled in partially, choosing some fields in any

preferred order (see for example Figure 6). Hence users had to interact with the desktop migration client

interface to require migration towards the PDA and continue the registration on the new device. They also were

asked to check previously inserted information and performing some more tasks on the PDA. Lastly, users were

asked to fill in an evaluation questionnaire.

 21

Figure 6. The Test Application

The experiment involved 20 users whose average age was 31.94 years (min 22 - max 58). Forty percent of them

were females, 85% were graduated or had a higher degree. Users had good experience in accessing Web

applications through desktop platform and far less through PDA: on a scale of 1 to 5, the average self-rating of

Web access through desktop platform skill was 4.35, while PDA usage ability was 1.95.

The evaluation questionnaire was divided into two parts, one concerning migration as a whole service and one

related to the result of the automatic page redesign from desktop to PDA platform. The migration related part

asked for a 1 to 5 score to the parameters shown in Table 6 along with the average values collected.

Table 6. Migration Service Evaluation

Parameters Average Score
Migration Service Usefulness 4.1
Migration Client Interface Clearness 4.1
Easiness in Continuing Task Performance After Migration 4.4
Easiness in Retrieving Information Inserted Before Migration 4.75

User were also asked to say if they would have changed anything in the way migration is issued and only the

55% of them answered no. We discuss how this gave useful suggestions for improving the migration client

 22

interface in the next section. In Table 7 we show the average scores collected for the redesign part and the

parameters we asked to evaluate, still on a 1 to 5 score scale.

Table 7. Redesign Transformation Evaluation

Parameters Average Score
Visual Impact of PDA Redesigned Pages 3.9
Functional Navigation Structure on PDA 4.1
Interaction Difficulties due to Redesign Result 1.6
Interaction Difficulties due to PDA device 1.75

A final question concerning the redesign part was about noticing changes in the redesigned pages compared to

the original ones. The 40% said yes, and we discuss what this means in the next section.

The evaluation questionnaire was not only a mere collection of numeric values because users were asked to

provided justifications for each answer and free comments were also allowed. This gave us the possibility to

better understand numeric results. Looking at Table 6, we can see that all the average scores concerning

migration evaluation were higher than 4, moreover as we can see in Figure 7 scores below 2 did not pass the

10%. Some of the people who did not find useful the migration client said that they simply do not use any PDA.

The migration client interface resulted to be quite clear since it was considered basic and easy to use, some

uncertainty was found just because it was never seen before, as some user commented, at a second usage they

would have known what to do. The values about task performance continuity and access to information inserted

before migration can be considered very satisfactory.

Figure 7. Migration Evaluation

Regarding the 45% of users who would have changed something in the way the migration was performed, this

most referred to the list of IP addresses, which was used to indicate the possible target devices (instead of a

significant label). We understand such criticism since the migration client interface was at prototypical stage and

it is being improved in this respect.

 23

(a)

(b)

Figure 8. Evaluation of the Redesign Transformation

Concerning the evaluation results obtained for the redesign part (see Table 7 and Figure 8a) we did not get the

best results for the visual effectiveness of the redesigned pages. One issue was that current browsers for PDA

have limitations with respect to those for desktop systems in terms of implementation constructs that are

supported. The navigation structure of the redesigned pages was appreciated, we noticed that some people had

difficulties in finding the links positioned at the bottom of the pages, while the links at the beginning of the page

seemed easier to access. Indeed, some of the redesigned pages had links both on the top and on the bottom.

Taking into consideration such difficulties we will consider the possibility of modifying the redesign

transformation trying to obtain most links positioned at the beginning of the page.

About difficulties of interacting on the PDA platform (see Figure 8b), the numbers must be interpreted

in a converse way, since the parameters are related to a negative feature. As we can see in Table 7, some

difficulties were found while interacting with the PDA, but it must be said that most users had never used one

before and many difficulties raised just because of low knowledge of this platform. Lastly, users said they

noticed changes between the desktop and the PDA presentations. This question was made in order to understand

if changing the specific interaction object implementing a given basic task (i.e.: a desktop pull down menu with

hundreds of choices transformed in a PDA text input field) when changing platform could disturb the users. The

comments provided in the questionnaire outlined that the changes that had been noticed were the obvious one

regarding aspects related to the fact that a desktop single page had been split into multiple PDA pages and

 24

images where reduced in size. They did not make any observation concerning the different implementation of

some tasks. Users did not find any particular difference that disturbed them.

Conclusions

We have presented an environment based on a migration/proxy server, which supports migratory interfaces in

multi-device environments. Starting with a pre-existing version for desktop platform, the environment is able to

dynamically generate interfaces for different platforms and modalities exploiting semantic information, which is

derived through reverse engineering techniques. The environment currently supports access to Web applications

and is able to generate versions for PDAs, various types of mobile phones and vocal devices and support

migration through them. The application implementation languages currently supported in our GeReMi

environment are XHTML, XHTML Mobile Profile and VoiceXML but we are extending it in order to also

support X+V (for multimodal interaction), SVG (for direct manipulation graphical interfaces), Digital TV and

gestural interaction with mobile devices. The tool has been tested on a number of Web applications (Movie

rental, Tourism in Tuscany, Restaurant reservations, …). Our environment assumes that the desktop Web site

has been implemented with standard W3C languages and filters some dynamic elements of the page (such as

advertising, animations, …).

We also report on usability tests carried out in order to better understand the usability of migration and the

interfaces resulting from our semantic redesign transformation. The results are encouraging and show that

migration is a feature that can be appreciated by end users because it provides them with more flexibility in

emerging multi-device environments, with a mix of stationary and mobile devices. The test results have also

shown that the proposed redesign transformations are able to automatically generate presentations that allow

users to be able to continue their task performance in the target device without being disoriented by the platform

change.

Future work will be dedicated to identifying techniques for supporting distributing migration, where the user

interface migrates from one device to multiple devices. This requires an intelligent processing able to identify

usable solutions in splitting the resulting user interface across multiple devices at the end of the migration.

References

1. Puerta A., Eisenstein J., XIML: A Common Representation for Interaction Data. In Proceedings of IUI2002: Sixth
International Conference on Intelligent User Interfaces, ACM, January 2002.

2. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J., UIML: An Appliance-Independent XML User
Interface Language, Proceedings of the 8th WWW conference, 1994..

 25

3. Mori G., Paternò F., Santoro C. Design and Development of Multidevice User Interfaces through Multiple Logical
Descriptions. IEEE Transactions on Software Engineering August 2004, Vol 30, No 8, IEEE Press, pp.507-520.

4. Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description Language Supporting Multiple Levels of
Independence, in Matera, M., Comai, S. (Eds.), Engineering Advanced Web Applications, Rinton Press, Paramus, 2004.

5. Chen, Y., Ma, W.-Y., Zhang, H.-J. Detecting Web page structure for adaptive viewing on small form factor devices. In
Proceedings of the twelfth international conference on World Wide Web (WWW’03)(May 20-24, 2003, Budapest,
Hungary), ACM 1-58113-680-3/03/0005, pp 225-233.

6. MacKay, B., Watters, C. R. Duffy, J. Web Page Transformation When Switching Devices. In Proceedings of Sixth
International Conference on Human Computer Interaction with Mobile Devices and Services (Mobile HCI’04) (Glasgow,
September 2004), LNCS 3160. Springer-Verlag, 228-239.

7. Nichols, J. Myers B. A., Higgins M., Hughes J., Harris T. K., Rosenfeld R., Pignol M. “Generating remote control
interfaces for complex appliances”. Proceedings ACM UIST’02, pp.161-170, 2002.

8. K. Gajos, D. Christianson, R. Hoffmann, T. Shaked, K. Henning, J. J. Long, and D. S. Weld. Fast and robust interface
generation for ubiquitous applications. In Seventh International Conference on Ubiquitous Computing (UBICOMP’05),
September 2005, pp. 37-55.

9. Ponnekanti, S. R. Lee, B. Fox, A. Hanrahan, P. and Winograd T.. ICrafter: A service framework for ubiquitous computing
environments. In Proceedings of UBICOMP 2001. (Atlanta, Georgia, USA., 2001). LNCS 2201, ISBN:3-540-42614-0,
Springer Verlag London UK. Pp 56-75.

10. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P. Project Aura: Toward Distraction-Free Pervasive Computing.
IEEE Pervasive Computing, Vol 21, No 2 (April-June 2002), 22-31.

11. Balme, L. Demeure, A., Barralon, N., Coutaz, J., Calvary, G. CAMELEON-RT: a Software Architecture Reference
Model for Distributed, Migratable, and Plastic User Interfaces. In Proceedings the Second European Symposium on
Ambient Intelligence (EUSAI ‘04), LNCS 3295, Markopoulos et al. Springer-Verlag, Berlin Heidelberg, 2004, 291-302.

12. Bandelloni, R., Berti, S., Paternò, F. Mixed-Initiative, Trans-Modal Interface Migration. In Proceedings of Sixth
International Conference on Human Computer Interaction with Mobile Devices and Services (Mobile HCI’04) (Glasgow,
September 2004), LNCS 3160. Springer-Verlag, 216-227.

13. Bandelloni, R. Mori, G. Paternò, F., Dynamic Generation of Migratory Interfaces, Proceedings Mobile HCI 2005, ACM
Press, Salzburg, September 2005.

14. Paganelli, L., Paternò, F. A Tool for Creating Design Models from Web Site Code. International Journal of Software
Engineering and Knowledge Engineering, World Scientific Publishing 13(2), pp. 169-189 (2003).

15. Bouillon, L., Vanderdonckt, J. Retargeting Web Pages to other Computing Platforms. In Proceedings of IEEE 9th
Working Conference on Reverse Engineering (WCRE'2002) (Richmond, Virginia, 29 October-1 November 2002), IEEE
Computer Society Press, Los Alamitos, 2002, pp. 339-348.

16. Paternò, F. Model-based Design and Evaluation of Interactive Applications. Springer Verlag, ISBN 1-85233-155-0, 1999.

