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Elasticity and metastability limit in supercooled liquids: a lattice model
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We present Monte Carlo simulations on a lattice system that displays a first order phase

transition between a disordered phase (liquid) and an ordered phase (crystal). The model

is augmented by an interaction that simulates the effect of elasticity in continuum models.

The temperature range of stability of the liquid phase is strongly increased in the presence

of the elastic interaction. We discuss the consequences of this result for the existence of a

kinetic spinodal in real systems.
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I. INTRODUCTION

When a liquid is cooled below its freezing point without forming a crystal, it enters a metastable

equilibrium phase known as supercooled. A supercooled liquid is squeezed in an uncomfortable

region in the time domain: if we are too fast in measuring its properties, the system cannot ther-

malize and it behaves as an off-equilibrium glass; while, if we are too slow, the system has the time

to nucleate the solid, and we obtain an off-equilibrium polycrystal. If at a certain temperature the

relaxation time of the liquid τR exceeds the nucleation time of the crystal τN , no equilibrium mea-

surements can be performed on the liquid state and the supercooled phase does not exist anymore.

Such a temperature is called kinetic spinodal Tsp and it marks the metastability limit[1]. Recently

we have argued that the viscoelastic response of the supercooled liquid is the main mechanism

determining whether or not a metastable limit is present[2]. The central idea is that on time scales

shorter than τR, supercooled liquids exhibit a solid-like response to strains. So, the thermody-

namic drive for crystal nucleation gets depressed by an elastic contribution, which is relaxed with

the passing of time.

In order to partially test this idea we study here a lattice model, without quenched disorder,

that has a phenomenology similar to supercooled liquids (first order phase transition, metastabil-

ity, glassy behaviour). The advantage of using a lattice model rather than a realistic structural

supercooled liquid is that one can simulate for longer times and larger systems. We add in the

model an ad hoc interaction which, we argue, simulates the effects of the elastic interaction as in
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a solid. Our proposal is to study in a controlled manner how the elastic interactions affect the

kinetic spinodal, neglecting, for simplicity, the relaxation of this interaction.

II. THE LATTICE MODEL

The lattice model, hereafter CTLS, without the elastic effects has been studied in Ref. [3]. The

Hamiltonian is:

HCTLS = J
N
∑

i=1

(1 + σi)fi ; (1)

where σi = ±1 are spins on a 2-dimensional lattice and fi = σN

i σ
S

i σ
E

i σ
W

i is the product of the first

neighbors of the spin σi. We fix the units of energies and temperatures by setting J ≡ 1 and kB ≡ 1.

The following results, in the absence of elastic effects, were found in Ref. [3] and reproduced in

the present study. The model present a first-order phase transition between a disordered phase

(liquid) and an ordered one (crystal) at the melting temperature Tm = 1.29 (Fig. 1).
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Figure 1: Equilibrium energy density of the liquid and the crystal as function of the temperature.

The system has a well defined kinetic spinodal at temperature Tsp. This is illustrated in Fig. 2

where we show numerical quench experiments at different temperatures. If we quench the system

at a temperature T > Tsp we see that it remains trapped in a metastable liquid state for a time

much longer than the relaxation time. Finally for T < Tsp we don’t observe any plateau and the

system goes down towards the ground state. Below Tsp the liquid phase cannot be equilibrated

and therefore it becomes ill-defined.

Before introducing the elastic effects in this model we have to define a “volume” for the liquid

phase and one for the crystal phase, and a “pressure”. We can write a new Hamiltonian for the
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Figure 2: Quench experiments: energy density as function of time at three different temperatures for p = 0.

system:

H = HCTLS + pV , (2)

where p is the pressure and V is the total volume. We define an ad hoc variable V which plays the

role of volume: let us assume that the volume per site for the crystal and the liquid phase (νC , νL

respectively) are different as in a real crystal-liquid transition in the continuum. The total volume

then can be put as:

V = νLNL + νCNC = NνL +NC∆ν . (3)

here NL (NC) is the number of sites in the liquid (crystal) phase and ∆ν = νC − νL. This defines

the total volume as function of given quantities (νL, νC , N) and of the total number of the spins

that are in the crystalline phase. To determine the latter we define a local order parameter mi in

such a way that takes the value mi = 1 for every site in the crystalline phase [4] and we define

the total number of crystalline sites as NC =
∑N

i=1
mi [5]. We fix our units of volume by setting

∆ν ≡ 1. In this units the pressure is measure in units of J/∆ν.

With these definitions the Hamiltonian takes the form:

H = HCTLS + p∆νNC + pνLN . (4)

In Fig. 3 we show the phase diagram in the p− V plane. We see that one obtains the expected

behavior, indeed as the pressure increases the crystal phase, which we defined with the smallest

specific volume, is favored.
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Figure 3: Phase diagram: temperature vs pressure. Negative pressures correspond to a strained system.

Sudden compression (crunching) experiments are particularly interesting because they are very

similar to quenching experiments but using the pressure as control variable. We can now monitor

both the value of energy density and the crystal volume.

As shown in Fig. 4 one can define a spinodal pressure psp = 0.03. As long as we crunch the

system at a pressure p < psp, it remains trapped in the metastable liquid for a time much longer

than the relaxation time. On the contrary, for p > psp we do not observe any plateau: the system

goes steadily (but slowly) to the ground state. Above psp the liquid phase cannot be equilibrated

and therefore it becomes ill-defined. The same behaviour is displayed by the total crystal volume

(Fig. 4).

III. INTRODUCING ELASTICITY IN THE MODEL

At low temperatures and for not too long times the supercooled liquid will show an elastic

response to strains. Since the crystal has a different specific volume than the surrounding liquid

phase a relatively fast nucleation process will produce strains in the liquid. The interplay between

crystal nucleation and elastic stress relaxation is expressed by a self-consistent equation for the

nucleation time τN [2]:

T log τN =
σ3

[δG(T ) − Eelastic(f(τN)/τR)]
2
, (5)

where σ is the surface tension and δG(T ) is the free energy density difference between liquid and

crystal. The relaxation of elastic stress is encoded in the fact that the elastic energy depends

on the ratio betwen a time-scale of nucleus formation, f(τN), and the relaxation time τR: for
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Figure 4: Crunching experiments; top: energy density vs time, bottom: crystal volume vs time.

τR ≪ f(τN), Eelastic(∞) = 0, and the stress is relaxed. In [2] we assumed f(τN) ∼ τN, whereas

a more accurate hypothesis is that f(τN) ∼ (log τN)
3 [6], coming from the fact that the time to

build a nucleus scales as the square of the number of particles in the nucleus. This modification

makes elastic effects quantitatively even more important. Indeed it shift the critical value of the

effective elastic coupling (which now becomes λc = 1, see [2]). On the other hand, qualitatively,

the physical picture remains unchanged. In the present numerical study we are interested to the

case τR ≫ f(τN), and thus we can assume Eelastic constant, as in solids. This approximation is

even more reasonable for f(τN) = (log τN)
3, since the argument of Eelastic becomes very small as

soon as we move away from the melting temperature.

Nucleation with volume mismatch in an elastic solid has been studied in different contexts[7,

8]. In the case of an isotropic systems the elastic cost for nucleation (or for any inhomogeneous
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configuration) takes a simple form[8]:

Eelastic =
(d− 1)KG

dK + 2(d− 1)G

∫

V

(

ǫ0
1
(x)− ǭ0

1

)2

dx . (6)

where d is the dimension of the system (in our case d = 2), G (K) is the infinity frequency shear

(bulk) modulus, ǫ◦
1
(x) is the trace of the stress free-dilation strain tensor and ǭ0

1
is its mean value.

We assume that G and K are the same for both phases. This formula tells us that the system tries

to prevent heterogeneities. In order to implement this physics in our model we first rewrite the

elastic energy as:

Eelastic = A

∫

V

ǫ0
1
(x)2dx−AV (ǭ0

1
)2 , (7)

where A = KG/(2K + 2G) (in d = 2). The trace of the strain tensor is a measure of the volume

change[9], so we link it with mi assuming a linear relationship in the spirit of Vegard’s law in

alloys[7]:

ǫ0
1
(xi) = δ

(

mi −
1

2

)

, (8)

where δ = (νC − νL)/ν0 and ν0 = (νC + νL)/2. The hamiltonian with the elastic term (p = 0)

becomes:

H = HCTLS + Eelastic = HCTLS + γ

[

N
∑

i=1

mi
2
−

1

N

( N
∑

i=1

mi

)

2]

, (9)

where γ = Aν0δ
2 is the effective elastic coupling constant. We stress again that we are assuming

that the supercooled liquid behaves as an elastic solid. This is true only at times shorter than the

structural relaxation time. At longer times the stresses that give rise to the above elastic energy

cost will relax. That said, we want to test how the elastic contribution affects the kinetic spinodal

when the structural relaxation time is very long. Our simulations (Fig. 5) show that the melting

temperature Tm is approximately constant in γ. On the other hand, the elastic term enhance the

free energy barrier to nucleation, and thus the spinodal temperature drastically decreases. As a

consequence, the temperature range where the metastable liquid is defined, Tsp < T < Tm, gets

wider and wider as the elastic coupling γ is increased.

IV. SUMMARY AND CONCLUSIONS

Recently we have argued that viscoelasticity is the main factor determining the existence or

not of a kinetic spinodal in a supercooled liquid. Our arguments relied on the assumption that
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Figure 5: Kinetic spinodal Tsp and melting temperature Tm vs elastic parameter γ.

elasticity depress nucleation, and thus shifts the kinetic spinodal. In [2] we performed a self-

consistent determination of the nucleation time, taking into account viscoelastic effects. In this

work we tested the above assumption in a microscopic model but neglecting relaxational effects.

The supercooled liquid is strongly influenced by elastic effects as expected, and our results

underline the importance of these effects. Elastic effects strongly increase the range of metastability

of the liquid phase. Due to technical reasons we can not increase γ beyond 0.07. This prevents us to

answer the interesting question of whether the kinetic spinodal can cross Kauzmann temperature

TK , when elasticity is increased. Should this be the case, one expects this system to be an example

of an ideal glass former.
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