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Abstract. We analyze global export data within the Economic Complexity

framework. We couple the new economic dimension Complexity, which captures how

sophisticated products are, with an index called logPRODY, a weighted average of

the Gross Domestic Products per capita of a product’s exporters. Products’ aggregate

motion is treated as a 2-dimensional dynamical system in the Complexity-logPRODY

plane (CLP). We assign an average value of competition on the markets to points of the

CLP, using the Herfindahl index. The motion of the products on the CLP consists in

a fast movement away from zones where the competition is low, towards what we call

the asymptotic zone, where competition is maximum. logPRODY of products in this

area of maximum competition depends on their Complexity value. Since logPRODY is

a proxy for the underlying set of countries that export a given product, displacements

on the plane correspond to shifts in the export market. The observed dynamics can

be modeled with an equation linking average speed to competition. The asymptotic

logPRODY value corresponds to a market configuration that maximizes competition.

We characterize it and call it asymptotic market; we find that its shape depends on

the Complexity value of the product.

Abstract. We discuss here further information in support of the claims made by the

paper.



Checking the validity of the ~v − ~∇kH relation

Here we report a more detailed comparison between the velocity field ~v and the gradient

of the H field mentioned in the paper, calculated on the Feenstra dataset. We repeat

the defining equation:

~v ' −kx
∂H

∂x
~x− ky

∂H

∂y
~y ≡ −~∇kH. (1)

We run a regression between horizontal and vertical components, moduli and

directions of both ~v and −~∇kH: the results are shown in figure S1 Fig. All the

regressions are linear, with the zero-order coefficient set to be zero. The only exception

is the regression of velocities along the vertical axis that, in all datasets, shows a clean

linear trend and a few big outliers. It can be clearly seen by running a bootstrap on

the regression, randomly taking away some of the points: in figure S2 Fig we show

that the resulting Pearson’s R2 distribution is bimodal. This situation is caused by the

very high velocities in the bottom right part of the RCLP plane not matched by the

model, because the actual maximum of the H field is slightly away from the corner,

causing a very small gradient to appear in that area. To separate the outliers, we use

a RANSAC regression [1]. We also show in figure S3 Fig that the equation holds for

different resolutions of the grid used to divide the RCLP plane, and if we calculate the

~v field by averaging displacements over an interval ∆t bigger than one year.

BACI dataset results

We report here the results for the second dataset; both a representation of the ~v and

−~∇kH fields in figure S4 Fig, the comparison via regression, in figure S6 Fig, and the

market shape representation in figure S5 Fig, as done for the Feenstra dataset. The

results are very similar across the two datasets, which span different time intervals,

countries and products. This further confirms the consistency of our analysis. We also

show a plot of all the individual points of the BACI dataset in figure S7 Fig.

Checking for size effects

There is a significant size effect on the value of the average Herfindahl index per box.

The less points there are in a box, the higher is the variance on the average value, so

higher values of the average are more likely. This has consequences on the meaningful-

ness of the H field, as its spatial pattern could conceivably be a mere consequence of the

density pattern on the plane. To check for this effect, we build a null model in which

each product is assigned a random value of the Herfindahl index chosen from all the

observed values in the dataset. Careful examination of this model allows us to conclude

that the spatial pattern of the observed H field is highly unlikely to arise from the size

effect alone, see fig.S8 Fig, panel a). We also check Eq.1 against the fields obtained

with the null model (which we will call H̃). We obtain a comparable significance level
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S1 Fig. Comparison between the 1-year average velocity field, ~v, and the field

obtained from the gradient of H defined in Eq.1. Calculations done on the Feenstra

dataset. Top: comparison between the horizontal and vertical components of the field.

In the left panel, showing the regression for velocities along the logPRODY axis, the

points removed by the RANSAC regression are shown in red. The Bottom: Comparison

between orientations and moduli of the field.

for the equation in about 1.5% of the cases, see Fig.S8 Fig, panel b). The results are

similar on the BACI dataset. Given the combined two tests onto two different datasets,

we conclude that the size effect is not originating the observed pattern of the H field.

Other definitions of the H field

We find that much better results can be obtained by calculating the Herfindahl index

on the distribution of logPRODY weighs R̃cp in place of the market share distribution

scp, as it reproduces the ~vy component of the velocity field with significantly greater

accuracy. This was expected, since R̃ enters directly in the definition of logPRODY.

As mentioned in the paper, similar results can be obtained by calculating the H



SUPPLEMENTARY INFORMATION 4

0.0 0.2 0.4 0.6 0.8 1.0

y axis regression R 2

0

100

200

300

400

500

600

700

800

900

n

S2 Fig. Bootstrapping the regression of ~vy versus −~∇kH at 1 year displacement

time and 10x10 grid. Each iteration of the bootstrap randomly removed 10% of the

samples, for 50k iterations. Two peaks are clearly visible: one at about R2 = 4, and

one at about .7. The bimodal distribution confirms our hypothesis that the points

follow a very clear linear trend, with a few very big outliers. The peak at .7 is caused

by the bootstrap randomly removing the outliers from the regression. The peak at .4

comes from the bootstrap removing points following the linear trend, and leaving the

outliers in. This clear bimodal distribution allows us to use RANSAC, which is an

algorithm apt to take out a few big outliers from a regression [1].

field with the R̃ values, i.e.

HR
p =

∑
c

(
R̃cp

)2
; R̃cp =

∑
c

Rcp∑
j Rjp

(2)

Results are shown in figure S10 Fig, and the gradient obtained with −~∇kH
R is

shown in figure S9 Fig.

Similar results can be obtained as well by substituting the Herfindahl index with

the entropy of the distribution of market shares, and inverting the sign of the gradient:

Sp =
∑
c

−scp log(scp); ~v = +kx
∂S

∂x
~x + ky

∂S

∂y
~y = ~∇kS (3)

This was anticipated, and intuitively makes sense, as the Herfindahl index

essentially measures the concentration of the discrete distribution of market shares,

scp; therefore it anti-correlates very strongly with the entropy of such distribution. For

the values of the S and H field, a linear relation is a good enough fit, as shown in figure

S11 Fig, even though we find that the actual relation is not linear, as discussed further

on. The test of Eq. 3 is shown in figure S12 Fig, while the field obtained is in figure

S11 Fig.

In figure S12 Fig we show the results of the analysis if one substitutes H with S:
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S3 Fig. A plot of the R2 values obtained by regressing ~vy versus −~∇kH at various

resolution and displacement time values, Feenstra dataset. On the horizontal axis

there is the resolution of the grid, with the number of boxes per side. In blue to red

color, we show the time interval used to calculate the products’ displacements, which

are then averaged into ~v. The yellow line indicates the minimum number of points per

box at a given resolution. The accuracy of our model’s prediction peaks at a resolution

between 10 and 15. Less resolution is probably too little detail to capture the features

of the system. Accuracy starts to drop, especially for longer time displacements, as

soon as the number of points per box is 1; this is probably caused by an increase in

noise in the less populated areas of the plane. All the regressions are linear, calculated

with RANSAC, and with the zero-order coefficient set to zero by hypothesis.

1. Ubiquity

One possible critique of the model exposed in the paper is that the Herfindahl index

should be inversely correlated to Ubiquity, defined as:

Up =
∑
c

Mcp, (4)

where Mcp is the adjacency matrix of the bipartite country-product network. Ubiquity

measures the number of countries that export a given product. The field obtained by

regressing average Ubiquity per cell, though, is quite different from the one obtained
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S4 Fig. ~v and −~∇kH fields for the BACI dataset. The results are extremely

similar to those shown in the paper for the Feenstra dataset, with great consistency

across datasets. Panel a). In red, the average velocity field of the products on the

RCLP plane, ~v. The asymptotic zone is marked by the orange line, together with the

bootstrap result for the 5% confidence interval. Panel b). Average Herfindahl per

box, the H field (in blue), with the derivatives calculated according to eq. 1 (green

arrows). The line is the kernel regression of the minima of the Herfindahl field per

column, with 5% confidence interval on the value superimposed. All the arrows in

both panels are to 1:1 scale with each other and with the plot’s axes.

by regressing the Herfindahl field, as can be seen in Fig.S13 Fig. This is because the

average Ubiquity of products decreases with increasing Complexity; therefore the left

part of the RCLP plane has higher Ubiquity values than the right. For this reason,

Eq.1 does not give good results.

Stationarity of the points distribution on the RCLP plane

To support our claim that the distribution of the points on the RCLP plane is stationary,

even though the velocity field ~v seems highly non-stationary, we remind that ~v only

measures the average velocity of points going out of each box. The displacement is

counted in a box’s average if the product moved out of the box in the subsequent

timestep. ~v does not show how products enter the boxes. We show this “inward”

velocity ~w (i.e. the average velocity of points entering each box) in ??. The vectors

are not to scale with the ones showed in the paper, so in order to allow comparison, we

show both ~w and ~v represented with the same scale in figure S15 Fig. We also show the

total fluxes in and out of each box in figure S17 Fig, as well as their integral, the total

occupation numbers timeseries for each box in figure S16 Fig.
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S5 Fig. Average RCA weights per box, BACI dataset. For each box b we plot a

histogram showing the average R̃ values of countries exporting the products contained

in b. Each bar of the histograms shows the average RCA of countries with a fitness

value between two consecutive deciles of the fitness distribution. We remind that R̃

represents the share of a product in a country’s total exports. Here we see the same

patterns found in the Feenstra dataset: the distributions on the minima of H going

from flat for the lowest Complexity level to markedly peaked on high fitness for the

highest Complexity. Again, the results show consistency.

S-H relationship

We find that there is a particular relationship between the Herfindahl value of a

distribution and its corresponding entropy value. In figure S18 Fig we show a scatter

plot of the Herfindahl index vs. the entropy value for individual products’ market share

distributions. It actually consists of the relation between the expected values
∫
xf(x)dx

and
∫

log(x)f(x)dx, where the f(x)’s are the empirical distributions of market shares.
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S6 Fig. Comparison between the 1-year average velocity field, ~v, and the field

obtained from the gradient of H defined in the paper. Calculations done on the BACI

dataset. Top: comparison between the horizontal and vertical components of the field,

the latter regressed with RANSAC. Bottom: Comparison between orientations and

moduli of the field.
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S7 Fig. All individual data points of the BACI dataset. One can clearly see higher

density on the diagonal, and a decreasing number of points in the upper left and lower

right quadrants of the RCLP plane.
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S8 Fig. Panel a) Maximum value of the H field. Given that the less points one

has per box, the higher the standard deviation for H in that box is, one expects to

find higher values of H where the density of points is lowest on the RCLP plane.

We check whether the null model can produce a H̃ field with the same highest value

found in H, which we will call maxH. Running the model 1M times produced few

samples of comparable highest value max H̃. In the histogram we show the frequency

of max H̃; the vertical line shows maxH for the Feenstra dataset. A similar result (not

shown) is found in the BACI dataset. Panel b) Check of Eq.1’s validity versus the null

model. We ran the null model 1M times, and for each H̃ field obtained we calculated

the correlation between H̃’s and ~v’s vertical and horizontal components with a linear

regression. The sum of the two Pearson’s R2 coefficients obtained from this process,

R2
tot (which is a number between 0 and 2), is used here as a measure of significance

for the H̃. In this histogram we show the frequency of the R2
tot values; the vertical

line represents R2
tot obtained from the H field. The null model produces gradients

that correlate both positively or negatively with each component of ~v: in some cases,

one gets a high R2
tot, but the field being reproduced is the inverse of ~v. In light blue,

we show the fraction of the H̃’s that correctly reproduce the direction of ~v on both

components, while dark blue represents the fraction that reproduces at least one of the

components of −~v. The result is that, among all generated H̃ fields (both with right

and wrong direction), those with a significance level higher than that of H are 1.5%.
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S9 Fig. The field obtained by calculating the gradient of the HR field, defined in

equation 2
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S10 Fig. Comparison between the 1-year average velocity field, ~v, and the field

obtained from the gradient of HR defined in equation 2. Calculations done on the

Feenstra dataset. Top: comparison between the horizontal and vertical components of

the field Bottom: Comparison between orientations and moduli of the field.
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S11 Fig. Left: Relation between values of the S and H field in the BACI dataset.

Left, in black, a linear fit, which is good enough for the fields, that aggregate many

individual points. The actual relationship between entropy and Herfindahl index of a

distribution is not linear, as we show in the next section. Right: The field obtained by

applying equation 3
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S12 Fig. Comparison between the 1-year average velocity field, ~v, and the field

obtained from the gradient of S. Calculations done on the Feenstra dataset. Top:

comparison between the horizontal and vertical components of the field Bottom:

Comparison between orientations and moduli of the field.
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S13 Fig. In green, the field obtained by regressing the average value of U (Ubiquity)

per box in the RCLP plane. It is different from the field obtained by regressing

H, because the average Ubiquity of products decreases with increasing Complexity;

therefore the left part of the RCLP plane has higher values than the right. The plot

shows the regression for the Feenstra dataset.

S14 Fig. “inward” velocity field ~w. To calculate this field, considered all products

that entered a given box, and averaged their displacements. The vectors are not to

scale with those shown in the rest of the paper. To allow comparison, we present a

depiction of both ~w and ~v fields in figure S15 Fig. The figure refers to the BACI

dataset.
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S15 Fig. Both ~w and ~v fields, to scale with each other. The figure refers to the BACI

dataset.
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S16 Fig. Occupation number timeseries for each box onb the RCLP plane. Each

of the plots in this figure shows the evolution in the number of products contained in

each box. The horizontal axis of the plots represents time in years, and the vertical

axis the number of points. The plots are to scale relative to each other. The figure

refers to the BACI dataset.
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S17 Fig. Inward (blue) and outward (red) fluxes for each box on the RCLP plane.

Each of the plots in this figure shows the yearly change in the number of products

contained in each box. The horizontal axis of the plots represents time in years, and

the vertical axis the difference in number of points (for the outward flux the difference

is negative). The plots are to scale relative to each other. The figure refers to the

BACI dataset.
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S18 Fig. A scatter-plot of the Herfindahl index vs. the entropy value for individual

products’ market share distributions, from the BACI dataset.


