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 Abstract— Pedestrian dead reckoning based on particle filter is 
commonly used for enabling seamless smartphone-based indoor 
positioning. However, compass directions indoor are heavily 
distorted due to the presence of ferromagnetic materials. 
Conventional particle filters convert the raw compass direction to 
a distribution adding a constant variance noise and leveraging a 
particle swarm to simulate the distribution. Finally, the selection 
of eligible directions is performed applying external constraints 
mainly imposed from the indoor map. However, the choice of a 
constant parameter decreases the positioning performances 
because the variance of nearby context, including topography, 
ferromagnetic materials, and particle distribution, is not 
represented. Therefore, we propose the particle filter 
reinforcement able to adaptively learn and adjust the variance of 
the direction observing the context in real-time. Experiments in 
real-world scenarios show that the proposed method improves the 
positioning accuracy by more than 20% at the 80% probability 
compared with state-of-the-art methods. 

Index Terms— Indoor location tracking, particle filter, pedestrian 
dead reckoning, reinforcement learning, smartphone-based 
navigation.    

I. INTRODUCTION 
OSITIONING techniques based on inertial measurement 
unit (IMU) have become widely adopted in the indoor 
positioning field through the development of smartphones 

with the micro-electro-mechanical system (MEMS) integrated. 
Considering the low accuracy of the MEMS in smartphones, 
traditional inertial navigation systems (INS) are generally not 
usable [1]. Several researchers have shown pedestrian dead 
reckoning (PDR) systems able to leverage step detection [2], 
the prior knowledge of human step length [3] and moving 
direction to estimate positions and to achieve good accuracies. 
Nevertheless, the estimation of the moving direction is still 
challenging in indoor scenarios due to the geomagnetic field 
heavily distorted by the ferromagnetic materials present in the 
environment. Therefore, researchers began to consider a 
direction distribution, leveraging a particle swarm to represent 
the possible moving directions and finally selecting the correct 
direction through the map constraints. the uniformity of floor 
plans.       

Estimating an optimal direction variance, able to properly 
cover all the possible directions, is still challenging. In fact, a 
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small variance simplifies the particle distribution but tends to 
miss correct directions. A large variance improves the system 
robustness but decreases the positioning accuracy because the 
particle is sparse. Several factors affect the optimal variance 
estimation, including topography, ferromagnetic materials, and 
particle distribution. In order to simplify this multi-dimensional 
and multi-channel problem and to find a solution, researchers 
generally select a constant and empirical variance value based 
on their experiments [4, 5]. This choice leads to a loss in terms 
of accuracy and robustness 

We address this problem by proposing a novel particle filter 
reinforcement (PFR). Considering the success of AlphaGo Zero 
[6], reinforcement learning is able to improve itself through 
self-play iterations. Therefore, the proposed system observes 
the state of the particle distribution and the local floor map, then 
learns a proper action to adjust the variance of particle moving 
directions exploiting multiple times particles self-moving. The 
learning process is guided by a reward that encourages at each 
step the particles to distribute around ground-truth positions. 
Basically, actions that assure longer tracking time and better 
positioning accuracy are rewarded. As a conclusion, the 
contributions of this paper are as follows. 

• Particle filter reinforcement via context-sensing. Our 
algorithm enables the particle filter to automatically adjust 
the particle distribution by observing the current system 
contexts. This improves positioning accuracy and 
robustness. 

• Neural network for implementing a particle parameter 
adjusting policy (PPAP). We propose a lightweight neural 
network for implementing the PPAP agent in order to 
quickly converge and effectively evaluate proper actions. 

• We have conducted real-world experiments to test our 
algorithm. Experiments reveal that our algorithm improves 
the accuracy by more than 20% if compared to traditional 
particle filters. 

The rest of the paper is organized as follows. Section II 
provides an overview and explain the workflow of the PFR 
system. Section III details the learning process and the proposed 
PPAP neural network. Section IV and V present the 
experiments and conclusions. 
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II. SYSTEM OVERVIEW 
The proposed system architecture, shown in Fig.1, relies on 

three functional modules: (a) PPAP neural network, (b) PPAP 
reinforcement learning module and (c) particle filter. The 
system is driven by pedometer events [2]. When a step event is 
detected, the estimated step length [3], the moving direction, 
and the reachable areas at the floor plan considered are given as 
input. Then, the system estimates user positions. The three 
functional modules are detailed as follows. 

(a) Particle filter: this module leverages discrete random 
particles to approximate the probability of a user’s position 
distribution [4]. Particles move dynamically based on the 
estimated step length and the measured moving direction. As a 
consequence, an accurate and standard step length estimation 
method has been developed [3]. However, the moving direction 
is difficult to be precisely estimated for smartphone-based 
systems because the magnetic field inside a building is heavily 
distorted by ferromagnetic materials (e.g., pillars and large iron 
cabinets). The distortion degree also varies at different places 
and, in this paper, we propose the PPAP neural network to 
dynamically estimate the direction divergence based on the 
distribution of the particles. 

 (b) PPAP neural network: based on the distribution of 
particles and the local map of reachable areas, this module 
estimates the particle direction divergence to optimize the 
tracking process of the particle filter. 

(c) PPAP reinforcement learning module: during the training 
phase (dash lines in Fig.1), the module evaluates the estimation 
based on the particle distribution and the ground truth position 
of training samples instructing the PPAP neural network to 
learn how to manipulate the direction divergence of the 
particles. 

 

Fig. 1. Overview of the proposed particle filter reinforcement learning. 

The workflow of the proposed positioning system based on 
particle filter reinforcement learning is summarized in 
Algorithm I. 

ALGORITHM I 
THE POSITIONING WORKFLOW OF THE PROPOSED SYSTEM 

INPUT: Estimated step length 𝑙𝑙. Measured moving direction 𝛼𝛼. Particle 
number 𝐾𝐾, Local map of reachable areas. 
OUTPUT: Estimated user position (𝑥𝑥�,𝑦𝑦�). 

1: Initialization 

2: Spread 𝑁𝑁 particles at the initial position 𝑝𝑝0 = (𝑥𝑥0𝑡𝑡 ,𝑦𝑦0𝑡𝑡). 
3: Particle filter reinforcement loop 
4: while True do 
5:   if the 𝑡𝑡𝑡𝑡ℎ step event is detected then 
6:     Get a raw measurement of moving direction 𝛼𝛼𝑡𝑡 and step length 𝑙𝑙𝑡𝑡. 

7:     The PPAP neural network estimates particle moving direction 
divergence 𝒶𝒶𝑡𝑡. 

8:     for each particle 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝐾𝐾) do 
9:       Get a sample of moving direction 𝛼𝛼𝑖𝑖𝑡𝑡. 𝛼𝛼𝑖𝑖𝑡𝑡~𝑁𝑁(𝛼𝛼𝑡𝑡,𝒶𝒶𝑡𝑡). 

10:       Move the particle (𝑥𝑥𝑖𝑖𝑡𝑡,𝑦𝑦𝑖𝑖𝑡𝑡) = (𝑥𝑥𝑖𝑖𝑡𝑡−1,𝑦𝑦𝑖𝑖𝑡𝑡−1) + 𝑙𝑙𝑡𝑡(cos(𝛼𝛼𝑖𝑖𝑡𝑡) , 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖𝑡𝑡) ). 
11:       Set particle state to dead if it moves into unreachable areas. 
12:     end for 
13:     Resample particles based on alive ones with systematic method [7]. 
14:     Send the particle distribution to the PPAP neural network. 
15:     Output positioning estimation. (𝑥𝑥𝑡𝑡�,𝑦𝑦𝑡𝑡�) = 1

𝑁𝑁
∑ (𝑥𝑥𝑖𝑖𝑡𝑡,𝑦𝑦𝑖𝑖𝑡𝑡)𝑁𝑁 . 

16:   end if 
17: end while 

III. REINFORCEMENT LEARNING FOR THE MANIPULATION OF 
PARTICLE FILTERS 

Through the observation of particle filter state, the PPAP 
neural network estimates the direction divergence and produces 
a proper action as input for the particle filter update [8]. The 
state 𝒮𝒮𝑡𝑡 is a representation of the current particles’ distribution 
at step 𝑡𝑡 , as shown in equation (1). This state is a random 
variable of 3D tensor which includes the particle distribution 
matrix 𝑀𝑀𝑃𝑃  and the map of the local reachable area 𝑀𝑀𝑅𝑅 . 
Elements of 𝑀𝑀𝑃𝑃 are integers to indicate the number of particles 
at a given point. The elements of 𝑀𝑀𝑅𝑅  consists of 1 and 0 
indicating wheatear a location is available for walking or not. 

𝒮𝒮𝑡𝑡 = {𝑀𝑀𝑃𝑃 ,𝑀𝑀𝑅𝑅}, 𝑡𝑡 ∈ ℕ+ (1) 
The action 𝒜𝒜𝑡𝑡  is the decision taken by the PPAP neural 

network to adjust the movement of particles at the next step. As 
equation (2) reveals, 𝒜𝒜𝑡𝑡  is a discrete random variable that 
indicates the measurements of the particle divergence. The 
constant value 𝜎𝜎𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝐾𝐾) indicates the standard deviation 
of the moving direction for each particle. 

𝒜𝒜𝑡𝑡 ∈ {𝜎𝜎1, 𝜎𝜎2, … , 𝜎𝜎𝑖𝑖, … , 𝜎𝜎𝐾𝐾}, 𝑡𝑡 ∈ ℕ+ (2) 
The PPAP neural network is the key intelligent module, able 

to learn how to control the particle filter. The learning process 
is guided by the PPAP reinforcement learning module.  

During the training phase, given a series of samples with 
measured compass directions, estimated step lengths, and 
known locations, particles move towards the destination. At 
each step, based on the particle state 𝒮𝒮𝑡𝑡 and the action 𝒜𝒜𝑡𝑡, the 
PPAP reinforcement learning module calculates an 
environment reward 𝑅𝑅𝑡𝑡 . As equation (3) reveals,  𝑅𝑅𝑡𝑡  is 
proportional to the ratio of particles around the ground truth. 
Variable 𝜀𝜀 defines the threshold for what is considered a close 
distance. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a function that counts the number of eligible 
elements. Considering that particle filter performances drop 
significantly if no particle is around the ground truth position, 
the system prefers actions that create more particles close to the 
ground truth. 

    𝑅𝑅𝑡𝑡(𝒮𝒮𝑡𝑡,𝒜𝒜𝑡𝑡) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
1≤𝑖𝑖≤𝑁𝑁

��(𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥0𝑡𝑡)2 + (𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦0𝑡𝑡)2 < 𝜀𝜀�

𝑁𝑁
, 𝑡𝑡 ∈ ℕ+ (3) 

The system optimization goals are making accurate 
estimation but also keeping the target tracked as long as 
possible. As shown in equation (4), we penalize actions that lost 
tracking by setting their returns to -1. 𝛾𝛾𝑖𝑖−𝑡𝑡  is the reduction 
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factor of future rewards. 𝑀𝑀  is the total number of steps 
contained in the training record. Basically, the PPAP 
reinforcement learning module leverages the reduced return 𝑈𝑈𝑡𝑡 
as the loss of the PPAP neural network, 

𝑈𝑈𝑡𝑡(𝒮𝒮𝑡𝑡, … ,𝒮𝒮𝑀𝑀,𝒜𝒜𝑡𝑡, … ,𝒜𝒜𝑀𝑀) = �
−1                  (𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

� 𝛾𝛾𝑖𝑖−𝑡𝑡𝑅𝑅𝑖𝑖(𝒮𝒮𝑖𝑖,𝒜𝒜𝑖𝑖)
𝑀𝑀

𝑖𝑖=𝑡𝑡
 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (4) 

As equation (5) reveals, the PPAP neural network can be 
modelled as a probability of an action instance 𝒶𝒶𝑡𝑡, given a state 
instance 𝓈𝓈𝑡𝑡 and parameters 𝜃𝜃, also called policy, of the neural 
network. 

𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃) ≜ 𝑃𝑃(𝒜𝒜𝑡𝑡 = 𝒶𝒶𝑡𝑡|𝒮𝒮𝑡𝑡 = 𝓈𝓈𝑡𝑡), 𝑡𝑡 ∈ ℕ+ (5) 
Consequently, the action value of a state and the action 

instance  pair (𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) can be drawn as equation (6). 𝑄𝑄𝜋𝜋 is the sum 
of the current reward and the expectation of future returns. 

𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) = 𝑅𝑅𝑡𝑡(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) + 𝔼𝔼(𝑈𝑈𝑡𝑡+1) (6) 
Calculating the expectation with respect to different actions, 

the state value can be drawn in equation (7). 𝑉𝑉𝜋𝜋 is the average 
return of different actions given a state 𝓈𝓈𝑡𝑡 and policy 𝜃𝜃. 

𝑉𝑉𝜋𝜋(𝓈𝓈𝑡𝑡) = � 𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)
𝒶𝒶𝑡𝑡∈𝒜𝒜𝑡𝑡

∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) (7) 

Eliminating the 𝓈𝓈𝑡𝑡 variable by calculating the expectation of 
different states, we evaluate the object function in equation (8). 
In other words, the learning object function maximizes the 
expectation of the system state value by adjusting the value of 
policy 𝜃𝜃. 

𝐽𝐽(𝜃𝜃) = max
𝜃𝜃

𝔼𝔼𝒮𝒮𝑡𝑡�𝑉𝑉𝜋𝜋(𝒮𝒮𝑡𝑡)� 

= max
𝜃𝜃

� 𝑃𝑃(𝒮𝒮𝑡𝑡 = 𝓈𝓈𝑡𝑡) ∙ 𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃) ∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡)
𝓈𝓈𝑡𝑡∈𝒮𝒮𝑡𝑡,𝒶𝒶𝑡𝑡∈𝒜𝒜𝑡𝑡

 (8) 

In order to maximize the object function 𝐽𝐽(𝜃𝜃), we can update 
𝜃𝜃 along its gradients with the policy gradient method [9]. 𝜂𝜂 is 
the learning rate. 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ ∇𝜃𝜃𝐽𝐽(𝜃𝜃) (9) 
Considering the system complexity, instead of calculating 

the gradient of 𝐽𝐽(𝜃𝜃)  directly, exploiting the Monte Carlo 
method [10],  ∇𝜃𝜃𝐽𝐽(𝜃𝜃)  can be approximated with a random 
gradient given an instance pair 𝓈𝓈𝑡𝑡 ,𝒶𝒶𝑡𝑡 . Then, the equation (9) 
can be updated to (10). 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) ∙ ∇𝜃𝜃ln [𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)] (10) 
As equation (11) reveals, the Monte Carlo method is also 

utilized for approximating the action-value function 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡 ,𝒶𝒶𝑡𝑡) 
with a group of complete observations 𝓈𝓈𝑡𝑡 , … , 𝓈𝓈𝑀𝑀,𝒶𝒶𝑡𝑡 , … ,𝒶𝒶𝑀𝑀 
called training record. Therefore, the PPAP neural network 
learns to control the particle filter using the training records. 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ 𝑈𝑈𝑡𝑡(𝓈𝓈𝑡𝑡, … ,𝓈𝓈𝑀𝑀,𝒶𝒶𝑡𝑡, … ,𝒶𝒶𝑀𝑀) ∙ ∇𝜃𝜃ln [𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)] (11) 

 
Fig. 2 Structure of the proposed neural network for the PPAP. 

The structure of the proposed PPAP neural network is shown 
in Fig. 2 (a). As an example, the reachable area around the 
positioning result and view of the particle distribution has been 
extracted as the observation. Then, a convolution layer and a 
ReLu (rectified linear unit) layer extract features from the 
observation. Successively, a fully connected layer estimates the 
probabilities of each action with different divergence values. 
Finally, the softmax layer normalizes the probability of the 
different actions. Fig. 2 (b) reveals an instance of the proposed 
PPAP neural network. Our system randomly samples an action 
based on the action probabilities, then updates the particle filter.  

IV. IMPLEMENTATION AND RESULTS EVALUATION 
We have conducted our experiments at an open space office 

on the 7th floor of a research building. The environment contains 
several iron file cabinets and pillars, thus orientation based on 
the geomagnetic field is differently distorted at different places. 
Seven volunteers—2 females and 5 males, ages from 22 to 35— 
were invited to hold a smartphone and naturally walk within the 
testbed at normal speed. The smartphone pointing direction was 
in accordance with the user moving direction. During the 
sampling, the ground truth was inputted by the volunteers 
through a smartphone application. More than 1000 ground truth 
points have been inputted by the volunteers and about 300,000 
have been elaborated.  

The sampled trajectories have been equally divided into two 
parts based on their position in the testbed: west area and east 
area. In the west area, about 120,000 samples are used for 
training, and 30,000 samples are used for trained area testing. 
The east area is used for testing into an unknown area and 
contains about 150,000 samples. 

A. Neural network training 
In this section, we detail an experiment for testing the 

training process of the neural network. As Fig. 3 (c) reveals, the 
reduced return of the system varies significantly at the 
beginning of the training epochs, then it converges with high 
return values (e.g., around  65 epochs), and finally it diverges 
again after 80 epochs. During the training phase, in order to 
prevent that the agent sticks into local optima, the system 
leverages entropy loss weight to penalize actions with high 
certainty. Basically, the action taken in the training phase is 
added with randomness to explore more possible action 
combinations. Therefore, the return at beginning epochs can 
only occasionally reach a high return value. Around 65 epochs, 
the policy neural network reaches the optimal setting. Then, the 
system return is stable to a high value. Therefore, we export the 
neural work at this epoch as the policy model. It is worth noting 
that if the training continues, the return may drop again because 
the exploration mechanism leads the neural network to leave 
the optimal state. 

The experiment also examines the influence of different 
particle numbers in the training of the neural network. As Fig. 
3 (a) and (b) reveals, we observe the reduced return of particle 
filters with 300 and 50 particles for the first 100 epochs. 
Although the running time for every epoch drops, the system 
becomes hard to converge because the particle filter requires 
enough particles to represent the probability distribution of the 
user position. In the office scenario, used as a testing scenario, 
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1000 particles are enough to depict the position probability. 

 
Fig. 3 The return variation of different particle counts with the increasing of 
training epochs. 

B. Adaptive action analysis 
As shown in Fig. 2 (b), our system leverages an observation 

window of  121 × 121 pixels. The scale of our system is 11.94 
pixels per meter, thus the observation window has a length of 
10.13m.  The action space contains four standard deviations of 
moving direction, including 1, 20, 40, 60. The PFR utilizes 
1000 particles. 

  
(a) Positioning traces (b) Positioning accuracy 

Fig. 4 Positioning trace and accuracy of a single road. The ticks of the X and Y 
axis in figure (a) are pixels. 

It is worth noting the importance of keeping a proper particle 
divergence. On the one hand, too low divergences lead the 
particles to lose track, especially when the observations contain 
several errors. On the other hand, too high divergences decrease 
the positioning accuracy. Particle divergence is an effective 
method to control the particle distribution and we propose the 
PPAP neural network to automatically estimate the moving 
direction divergence based on the state of the particle 
distribution. 

The experiment compares the algorithm with the traditional 
choice to consider a constant direction of deviation. 
Considering that our system adopts four standard deviation 
values, the experiment tests the positioning performance 
varying the action value to these four constant values. Fig. 4(a) 
reveals the evaluated positioning traces. When the action is 
equal to 1 or 60, the particles lost the target after few steps. In 
the 𝜎𝜎 = 1 case, all the particles hit walls and die due to the 
particle divergence set. In the 𝜎𝜎 = 60  case, particles scatter 
everywhere and lost the target due to the limited particles 
available. As shown in Fig. 4 (b), although the 𝜎𝜎 = 20 and 𝜎𝜎 =
40 cases allowed to follow the target along the whole path, the 
proposed PFR method outperforms the two cases because of the 
dynamic selection of optimal action values. 

In order to analyze the efficiency of the PFR algorithm, we 
detail the actions at every step, as shown in Fig. 5 (b). Two 
action values are taken in the trace, 20 and 60.  It can be found 
that most of the actions along the trace are 20, indicating a low 
orientation distortion. Particle distribution in these areas is tight 
as shown in Fig. 5 (a), thus improving the positioning accuracy. 

On the other hand, the PFR algorithm executes action equal to 
60 when users approach corners. Due to the presence of pillars, 
which contain iron, we observe a severe distortion of 
geomagnetic orientations. Consequently, the PFR algorithm 
increases the orientation deviation to improve system 
robustness. As obs4, obs5, and obs6 in Fig. 5 (c) reveal, 
particles become sparse to cover more area. Although these 
actions decrease the accuracy, they improve the possibility of 
covering the ground truth position, thus preventing the end of 
tracking and increasing future accuracy. 

 
Fig. 5 Actions and observations along a positioning trace (Color bar indicates 
the number of particles at the point). 

C. Direction bias vs. direction variance estimation 
This experiment compares performances of estimating the 

direction distribution variance with the performances obtained  
by estimating the adjustment to the direction. We replace the 
layer 3 in Fig. 2 with a fully connected network with only one 
element as output. In order to prevent the direction cyclicity 
problem,  a tanh layer is appended to confine the network output 
in the scope of  (-1, 1). Finally, a linear scaling layer transforms 
the direction compensation scope to (-90, 90) degrees. We set 
the direction variance to constant values of 𝜎𝜎 = 0, 5, 10, 20 
degrees respectively.  

Fig. 6 reveals the smoothed return value of the first 220 
training epochs. All the cases tested have reached their 
maximum values. The pure direction drift estimation (𝜎𝜎 = 0) is 
the worst. Adding a direction variance helps in increasing 
positioning accuracy, but the performance is lower than the 
proposed variance estimation method. In fact,  the direction 
biases of the particles vary, especially in turning areas or 
approximating ferromagnetic furniture. The proposed method 
estimates the direction variance of the particles, therefore 
outperforms the direction drift estimation method. 

 
Fig. 6 Training performance comparison of continuous and discrete policies. 
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D. Test in known and unknown areas 
In order to test the model adaptability, we have conducted 

experiments in known and unknown scenarios. The known 
scenario is an area where a sampler has collected the walking 
traces and the collected data are used to train the neural 
network. Finally, new data are collected by a user to test the 
maximum performance of the system. The unknown scenario is 
an area that the model has not seen before and the data collected 
are used to test the model adaptability. The test compares the 
performance of the proposed adaptive algorithm and two 
particle-filters with constant standard deviations of the direction 
setting to 𝜎𝜎 = 20 and 𝜎𝜎 = 40 respectively. These two values 
were the best values obtained in the adaptive action analysis 
test. 

Fig. 7 (a) shows the performance of the known area. Our 
proposal outperforms the traditional constant variance 
algorithm improving the overall positioning accuracy. It is 
worth noting that although the 𝜎𝜎 = 20 case has more results of 
errors less than one meter, the risk of losing the target increases 
due to the errors. The phenomenon reveals the importance of 
balancing accuracy and robustness. Into the unknown area, we 
test the trained model on new paths that the model has not seen 
before. Performances, shown in Fig. 7 (b), drop due to the 
unseen and not previously learned path. However, the system 
performance is still promising because the system is also able 
to estimate deviations of the orientation through the particle 
distribution. Furthermore, the PFR method still outperforms the 
traditional particle filters based on constant values. Although 
the 𝜎𝜎 = 20 and 𝜎𝜎 = 40 parameters are optimal in the trained 
scenario, they might be not suitable in new environments. 

 
Fig. 7 Performance comparison of known and unknown paths.  

E. Comparison with traditional indoor PDR algorithms 
The proposed algorithm is applicable in most of the particle-

filter-based PDR methods. Therefore, we compare the 
performances of several state-of-the-art PDR and the proposed 
PFR. Direction filter [4] leverages the direction bias calculated 
in the training phase to compensate for real-time measurements, 
but it is limited by the sampling density. MaLoc [11] utilizes 
first-time compass direction and gyroscope increment to reduce 
the influence of the distorted geomagnetic field, but it suffers 
from the gyroscope drift problem. Wi-Fi based methods [12, 
13] periodically add particles near ground-truth positions to 
keep particles in tracking. Fig. 8 reveals the comparison results 
showing that traditional direction compensation methods are 
helpful in improving PDR accuracy. The proposed PFR 
algorithm further enables traditional particle filters by 
adaptively adjusting real-time direction variance according to 
particle distributions and nearby floor plans, therefore it 
achieves higher overall accuracy.  

 
Fig. 8 Performance comparison with traditional PDR algorithms. 

V. CONCLUSION 
The paper presents the PFR, a novel particle filter based on 

reinforcement learning techniques. Compare to conventional 
particle filters, experiments performed in real-world scenarios 
reveal the system adaptability in estimating a proper direction 
variance when user walk and performances improve more than 
20% at the 80% probability compared with state-of-the-art 
methods. As future works, we should study how to leverage 
correlations across the entire maps, investigating potential 
optimal ways to represent particles and researching adaptability 
in complex buildings with multiple sources of information. 
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