
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 Abstract— Pedestrian dead reckoning based on particle filter is
commonly used for enabling seamless smartphone-based indoor
positioning. However, compass directions indoor are heavily
distorted due to the presence of ferromagnetic materials.
Conventional particle filters convert the raw compass direction to
a distribution adding a constant variance noise and leveraging a
particle swarm to simulate the distribution. Finally, the selection
of eligible directions is performed applying external constraints
mainly imposed from the indoor map. However, the choice of a
constant parameter decreases the positioning performances
because the variance of nearby context, including topography,
ferromagnetic materials, and particle distribution, is not
represented. Therefore, we propose the particle filter
reinforcement able to adaptively learn and adjust the variance of
the direction observing the context in real-time. Experiments in
real-world scenarios show that the proposed method improves the
positioning accuracy by more than 20% at the 80% probability
compared with state-of-the-art methods.

Index Terms— Indoor location tracking, particle filter, pedestrian
dead reckoning, reinforcement learning, smartphone-based
navigation.

I. INTRODUCTION
OSITIONING techniques based on inertial measurement
unit (IMU) have become widely adopted in the indoor
positioning field through the development of smartphones

with the micro-electro-mechanical system (MEMS) integrated.
Considering the low accuracy of the MEMS in smartphones,
traditional inertial navigation systems (INS) are generally not
usable [1]. Several researchers have shown pedestrian dead
reckoning (PDR) systems able to leverage step detection [2],
the prior knowledge of human step length [3] and moving
direction to estimate positions and to achieve good accuracies.
Nevertheless, the estimation of the moving direction is still
challenging in indoor scenarios due to the geomagnetic field
heavily distorted by the ferromagnetic materials present in the
environment. Therefore, researchers began to consider a
direction distribution, leveraging a particle swarm to represent
the possible moving directions and finally selecting the correct
direction through the map constraints. the uniformity of floor
plans.

Estimating an optimal direction variance, able to properly
cover all the possible directions, is still challenging. In fact, a

This work was supported in part by the National Key Research and

Development Program under Grant 2019YFC1511400, the Action Plan Project
of the Beijing University of Posts and Telecommunications supported by the
Fundamental Research Funds for the Central Universities under Grant
2019XD-A06, the National Natural Science Foundation of China under Grant
61872046, the Joint Research Fund for Beijing Natural Science Foundation
and Haidian Original Innovation under Grant L192004, Beijing Natural Science
Foundation under Grant 4212024, the Key Research and Development Project
from Hebei Province under Grant 19210404D, the Science and Technology
Plan Project of Inner Mongolia Autonomous Regio under Grant 2019GG328
and the Open Project of the Beijing Key Laboratory of Mobile Computing and
Pervasive Device.

small variance simplifies the particle distribution but tends to
miss correct directions. A large variance improves the system
robustness but decreases the positioning accuracy because the
particle is sparse. Several factors affect the optimal variance
estimation, including topography, ferromagnetic materials, and
particle distribution. In order to simplify this multi-dimensional
and multi-channel problem and to find a solution, researchers
generally select a constant and empirical variance value based
on their experiments [4, 5]. This choice leads to a loss in terms
of accuracy and robustness

We address this problem by proposing a novel particle filter
reinforcement (PFR). Considering the success of AlphaGo Zero
[6], reinforcement learning is able to improve itself through
self-play iterations. Therefore, the proposed system observes
the state of the particle distribution and the local floor map, then
learns a proper action to adjust the variance of particle moving
directions exploiting multiple times particles self-moving. The
learning process is guided by a reward that encourages at each
step the particles to distribute around ground-truth positions.
Basically, actions that assure longer tracking time and better
positioning accuracy are rewarded. As a conclusion, the
contributions of this paper are as follows.

• Particle filter reinforcement via context-sensing. Our
algorithm enables the particle filter to automatically adjust
the particle distribution by observing the current system
contexts. This improves positioning accuracy and
robustness.

• Neural network for implementing a particle parameter
adjusting policy (PPAP). We propose a lightweight neural
network for implementing the PPAP agent in order to
quickly converge and effectively evaluate proper actions.

• We have conducted real-world experiments to test our
algorithm. Experiments reveal that our algorithm improves
the accuracy by more than 20% if compared to traditional
particle filters.

The rest of the paper is organized as follows. Section II
provides an overview and explain the workflow of the PFR
system. Section III details the learning process and the proposed
PPAP neural network. Section IV and V present the
experiments and conclusions.

Wenhua Shao, Fang Zhao, and Jiaxin Li are with the School of Computer
Science (National Pilot Software Engineering School), Beijing University of
Posts and Telecommunications, Beijing, 100876, China. (e-mail:
shaowenhua@ict.ac.cn, zfsse@bupt.edu.cn, jiaxin_li@bupt.edu.cn).

Haiyong Luo is with the Institute of Computing Technology, and Beijing
Key Laboratory of Mobile Computing and Pervasive Device, Chinese Academy
of Sciences, Beijing, 100876, China (e-mail: yhluo@ict.ac.cn).

Wenhua Shao, and Hui Tian are with the School of Information and
Communication Engineering, Beijing University of Posts and
Telecommunications, Beijing, 100876, China. (e-mail: tianhui@bupt.edu.cn).

Antonino Crivello is with the Institute of Information Science and
Technologies, CNR, Italy. (e-mail: antonino.crivello@isti.cnr.it).

Wenhua Shao, Fang Zhao, Haiyong Luo, Hui Tian, Jiaxin Li, Antonino Crivello

Particle Filter Reinforcement via Context-Sensing
for Smartphone-based Pedestrian Dead Reckoning

P

mailto:shaowenhua@ict.ac.cn
mailto:zfsse@bupt.edu.cn
mailto:yhluo@ict.ac.cn

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. SYSTEM OVERVIEW
The proposed system architecture, shown in Fig.1, relies on

three functional modules: (a) PPAP neural network, (b) PPAP
reinforcement learning module and (c) particle filter. The
system is driven by pedometer events [2]. When a step event is
detected, the estimated step length [3], the moving direction,
and the reachable areas at the floor plan considered are given as
input. Then, the system estimates user positions. The three
functional modules are detailed as follows.

(a) Particle filter: this module leverages discrete random
particles to approximate the probability of a user’s position
distribution [4]. Particles move dynamically based on the
estimated step length and the measured moving direction. As a
consequence, an accurate and standard step length estimation
method has been developed [3]. However, the moving direction
is difficult to be precisely estimated for smartphone-based
systems because the magnetic field inside a building is heavily
distorted by ferromagnetic materials (e.g., pillars and large iron
cabinets). The distortion degree also varies at different places
and, in this paper, we propose the PPAP neural network to
dynamically estimate the direction divergence based on the
distribution of the particles.

 (b) PPAP neural network: based on the distribution of
particles and the local map of reachable areas, this module
estimates the particle direction divergence to optimize the
tracking process of the particle filter.

(c) PPAP reinforcement learning module: during the training
phase (dash lines in Fig.1), the module evaluates the estimation
based on the particle distribution and the ground truth position
of training samples instructing the PPAP neural network to
learn how to manipulate the direction divergence of the
particles.

Fig. 1. Overview of the proposed particle filter reinforcement learning.

The workflow of the proposed positioning system based on
particle filter reinforcement learning is summarized in
Algorithm I.

ALGORITHM I
THE POSITIONING WORKFLOW OF THE PROPOSED SYSTEM

INPUT: Estimated step length 𝑙𝑙. Measured moving direction 𝛼𝛼. Particle
number 𝐾𝐾, Local map of reachable areas.
OUTPUT: Estimated user position (𝑥𝑥�,𝑦𝑦�).

1: Initialization

2: Spread 𝑁𝑁 particles at the initial position 𝑝𝑝0 = (𝑥𝑥0𝑡𝑡 ,𝑦𝑦0𝑡𝑡).
3: Particle filter reinforcement loop
4: while True do
5: if the 𝑡𝑡𝑡𝑡ℎ step event is detected then
6: Get a raw measurement of moving direction 𝛼𝛼𝑡𝑡 and step length 𝑙𝑙𝑡𝑡.

7: The PPAP neural network estimates particle moving direction
divergence 𝒶𝒶𝑡𝑡.

8: for each particle 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝐾𝐾) do
9: Get a sample of moving direction 𝛼𝛼𝑖𝑖𝑡𝑡. 𝛼𝛼𝑖𝑖𝑡𝑡~𝑁𝑁(𝛼𝛼𝑡𝑡,𝒶𝒶𝑡𝑡).

10: Move the particle (𝑥𝑥𝑖𝑖𝑡𝑡,𝑦𝑦𝑖𝑖𝑡𝑡) = (𝑥𝑥𝑖𝑖𝑡𝑡−1,𝑦𝑦𝑖𝑖𝑡𝑡−1) + 𝑙𝑙𝑡𝑡(cos(𝛼𝛼𝑖𝑖𝑡𝑡) , 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖𝑡𝑡)).
11: Set particle state to dead if it moves into unreachable areas.
12: end for
13: Resample particles based on alive ones with systematic method [7].
14: Send the particle distribution to the PPAP neural network.
15: Output positioning estimation. (𝑥𝑥𝑡𝑡�,𝑦𝑦𝑡𝑡�) = 1

𝑁𝑁
∑ (𝑥𝑥𝑖𝑖𝑡𝑡,𝑦𝑦𝑖𝑖𝑡𝑡)𝑁𝑁 .

16: end if
17: end while

III. REINFORCEMENT LEARNING FOR THE MANIPULATION OF
PARTICLE FILTERS

Through the observation of particle filter state, the PPAP
neural network estimates the direction divergence and produces
a proper action as input for the particle filter update [8]. The
state 𝒮𝒮𝑡𝑡 is a representation of the current particles’ distribution
at step 𝑡𝑡 , as shown in equation (1). This state is a random
variable of 3D tensor which includes the particle distribution
matrix 𝑀𝑀𝑃𝑃 and the map of the local reachable area 𝑀𝑀𝑅𝑅 .
Elements of 𝑀𝑀𝑃𝑃 are integers to indicate the number of particles
at a given point. The elements of 𝑀𝑀𝑅𝑅 consists of 1 and 0
indicating wheatear a location is available for walking or not.

𝒮𝒮𝑡𝑡 = {𝑀𝑀𝑃𝑃 ,𝑀𝑀𝑅𝑅}, 𝑡𝑡 ∈ ℕ+ (1)
The action 𝒜𝒜𝑡𝑡 is the decision taken by the PPAP neural

network to adjust the movement of particles at the next step. As
equation (2) reveals, 𝒜𝒜𝑡𝑡 is a discrete random variable that
indicates the measurements of the particle divergence. The
constant value 𝜎𝜎𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝐾𝐾) indicates the standard deviation
of the moving direction for each particle.

𝒜𝒜𝑡𝑡 ∈ {𝜎𝜎1, 𝜎𝜎2, … , 𝜎𝜎𝑖𝑖, … , 𝜎𝜎𝐾𝐾}, 𝑡𝑡 ∈ ℕ+ (2)
The PPAP neural network is the key intelligent module, able

to learn how to control the particle filter. The learning process
is guided by the PPAP reinforcement learning module.

During the training phase, given a series of samples with
measured compass directions, estimated step lengths, and
known locations, particles move towards the destination. At
each step, based on the particle state 𝒮𝒮𝑡𝑡 and the action 𝒜𝒜𝑡𝑡, the
PPAP reinforcement learning module calculates an
environment reward 𝑅𝑅𝑡𝑡 . As equation (3) reveals, 𝑅𝑅𝑡𝑡 is
proportional to the ratio of particles around the ground truth.
Variable 𝜀𝜀 defines the threshold for what is considered a close
distance. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a function that counts the number of eligible
elements. Considering that particle filter performances drop
significantly if no particle is around the ground truth position,
the system prefers actions that create more particles close to the
ground truth.

 𝑅𝑅𝑡𝑡(𝒮𝒮𝑡𝑡,𝒜𝒜𝑡𝑡) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
1≤𝑖𝑖≤𝑁𝑁

��(𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥0𝑡𝑡)2 + (𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦0𝑡𝑡)2 < 𝜀𝜀�

𝑁𝑁
, 𝑡𝑡 ∈ ℕ+ (3)

The system optimization goals are making accurate
estimation but also keeping the target tracked as long as
possible. As shown in equation (4), we penalize actions that lost
tracking by setting their returns to -1. 𝛾𝛾𝑖𝑖−𝑡𝑡 is the reduction

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

factor of future rewards. 𝑀𝑀 is the total number of steps
contained in the training record. Basically, the PPAP
reinforcement learning module leverages the reduced return 𝑈𝑈𝑡𝑡
as the loss of the PPAP neural network,

𝑈𝑈𝑡𝑡(𝒮𝒮𝑡𝑡, … ,𝒮𝒮𝑀𝑀,𝒜𝒜𝑡𝑡, … ,𝒜𝒜𝑀𝑀) = �
−1 (𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

� 𝛾𝛾𝑖𝑖−𝑡𝑡𝑅𝑅𝑖𝑖(𝒮𝒮𝑖𝑖,𝒜𝒜𝑖𝑖)
𝑀𝑀

𝑖𝑖=𝑡𝑡
 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (4)

As equation (5) reveals, the PPAP neural network can be
modelled as a probability of an action instance 𝒶𝒶𝑡𝑡, given a state
instance 𝓈𝓈𝑡𝑡 and parameters 𝜃𝜃, also called policy, of the neural
network.

𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃) ≜ 𝑃𝑃(𝒜𝒜𝑡𝑡 = 𝒶𝒶𝑡𝑡|𝒮𝒮𝑡𝑡 = 𝓈𝓈𝑡𝑡), 𝑡𝑡 ∈ ℕ+ (5)
Consequently, the action value of a state and the action

instance pair (𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) can be drawn as equation (6). 𝑄𝑄𝜋𝜋 is the sum
of the current reward and the expectation of future returns.

𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) = 𝑅𝑅𝑡𝑡(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) + 𝔼𝔼(𝑈𝑈𝑡𝑡+1) (6)
Calculating the expectation with respect to different actions,

the state value can be drawn in equation (7). 𝑉𝑉𝜋𝜋 is the average
return of different actions given a state 𝓈𝓈𝑡𝑡 and policy 𝜃𝜃.

𝑉𝑉𝜋𝜋(𝓈𝓈𝑡𝑡) = � 𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)
𝒶𝒶𝑡𝑡∈𝒜𝒜𝑡𝑡

∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) (7)

Eliminating the 𝓈𝓈𝑡𝑡 variable by calculating the expectation of
different states, we evaluate the object function in equation (8).
In other words, the learning object function maximizes the
expectation of the system state value by adjusting the value of
policy 𝜃𝜃.

𝐽𝐽(𝜃𝜃) = max
𝜃𝜃

𝔼𝔼𝒮𝒮𝑡𝑡�𝑉𝑉𝜋𝜋(𝒮𝒮𝑡𝑡)�

= max
𝜃𝜃

� 𝑃𝑃(𝒮𝒮𝑡𝑡 = 𝓈𝓈𝑡𝑡) ∙ 𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃) ∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡)
𝓈𝓈𝑡𝑡∈𝒮𝒮𝑡𝑡,𝒶𝒶𝑡𝑡∈𝒜𝒜𝑡𝑡

 (8)

In order to maximize the object function 𝐽𝐽(𝜃𝜃), we can update
𝜃𝜃 along its gradients with the policy gradient method [9]. 𝜂𝜂 is
the learning rate.

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ ∇𝜃𝜃𝐽𝐽(𝜃𝜃) (9)
Considering the system complexity, instead of calculating

the gradient of 𝐽𝐽(𝜃𝜃) directly, exploiting the Monte Carlo
method [10], ∇𝜃𝜃𝐽𝐽(𝜃𝜃) can be approximated with a random
gradient given an instance pair 𝓈𝓈𝑡𝑡 ,𝒶𝒶𝑡𝑡 . Then, the equation (9)
can be updated to (10).

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡,𝒶𝒶𝑡𝑡) ∙ ∇𝜃𝜃ln [𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)] (10)
As equation (11) reveals, the Monte Carlo method is also

utilized for approximating the action-value function 𝑄𝑄𝜋𝜋(𝓈𝓈𝑡𝑡 ,𝒶𝒶𝑡𝑡)
with a group of complete observations 𝓈𝓈𝑡𝑡 , … , 𝓈𝓈𝑀𝑀,𝒶𝒶𝑡𝑡 , … ,𝒶𝒶𝑀𝑀
called training record. Therefore, the PPAP neural network
learns to control the particle filter using the training records.

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝜃𝜃 + 𝜂𝜂 ∙ 𝑈𝑈𝑡𝑡(𝓈𝓈𝑡𝑡, … ,𝓈𝓈𝑀𝑀,𝒶𝒶𝑡𝑡, … ,𝒶𝒶𝑀𝑀) ∙ ∇𝜃𝜃ln [𝜋𝜋(𝒶𝒶𝑡𝑡|𝓈𝓈𝑡𝑡;𝜃𝜃)] (11)

Fig. 2 Structure of the proposed neural network for the PPAP.

The structure of the proposed PPAP neural network is shown
in Fig. 2 (a). As an example, the reachable area around the
positioning result and view of the particle distribution has been
extracted as the observation. Then, a convolution layer and a
ReLu (rectified linear unit) layer extract features from the
observation. Successively, a fully connected layer estimates the
probabilities of each action with different divergence values.
Finally, the softmax layer normalizes the probability of the
different actions. Fig. 2 (b) reveals an instance of the proposed
PPAP neural network. Our system randomly samples an action
based on the action probabilities, then updates the particle filter.

IV. IMPLEMENTATION AND RESULTS EVALUATION
We have conducted our experiments at an open space office

on the 7th floor of a research building. The environment contains
several iron file cabinets and pillars, thus orientation based on
the geomagnetic field is differently distorted at different places.
Seven volunteers—2 females and 5 males, ages from 22 to 35—
were invited to hold a smartphone and naturally walk within the
testbed at normal speed. The smartphone pointing direction was
in accordance with the user moving direction. During the
sampling, the ground truth was inputted by the volunteers
through a smartphone application. More than 1000 ground truth
points have been inputted by the volunteers and about 300,000
have been elaborated.

The sampled trajectories have been equally divided into two
parts based on their position in the testbed: west area and east
area. In the west area, about 120,000 samples are used for
training, and 30,000 samples are used for trained area testing.
The east area is used for testing into an unknown area and
contains about 150,000 samples.

A. Neural network training
In this section, we detail an experiment for testing the

training process of the neural network. As Fig. 3 (c) reveals, the
reduced return of the system varies significantly at the
beginning of the training epochs, then it converges with high
return values (e.g., around 65 epochs), and finally it diverges
again after 80 epochs. During the training phase, in order to
prevent that the agent sticks into local optima, the system
leverages entropy loss weight to penalize actions with high
certainty. Basically, the action taken in the training phase is
added with randomness to explore more possible action
combinations. Therefore, the return at beginning epochs can
only occasionally reach a high return value. Around 65 epochs,
the policy neural network reaches the optimal setting. Then, the
system return is stable to a high value. Therefore, we export the
neural work at this epoch as the policy model. It is worth noting
that if the training continues, the return may drop again because
the exploration mechanism leads the neural network to leave
the optimal state.

The experiment also examines the influence of different
particle numbers in the training of the neural network. As Fig.
3 (a) and (b) reveals, we observe the reduced return of particle
filters with 300 and 50 particles for the first 100 epochs.
Although the running time for every epoch drops, the system
becomes hard to converge because the particle filter requires
enough particles to represent the probability distribution of the
user position. In the office scenario, used as a testing scenario,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

1000 particles are enough to depict the position probability.

Fig. 3 The return variation of different particle counts with the increasing of
training epochs.

B. Adaptive action analysis
As shown in Fig. 2 (b), our system leverages an observation

window of 121 × 121 pixels. The scale of our system is 11.94
pixels per meter, thus the observation window has a length of
10.13m. The action space contains four standard deviations of
moving direction, including 1, 20, 40, 60. The PFR utilizes
1000 particles.

(a) Positioning traces (b) Positioning accuracy

Fig. 4 Positioning trace and accuracy of a single road. The ticks of the X and Y
axis in figure (a) are pixels.

It is worth noting the importance of keeping a proper particle
divergence. On the one hand, too low divergences lead the
particles to lose track, especially when the observations contain
several errors. On the other hand, too high divergences decrease
the positioning accuracy. Particle divergence is an effective
method to control the particle distribution and we propose the
PPAP neural network to automatically estimate the moving
direction divergence based on the state of the particle
distribution.

The experiment compares the algorithm with the traditional
choice to consider a constant direction of deviation.
Considering that our system adopts four standard deviation
values, the experiment tests the positioning performance
varying the action value to these four constant values. Fig. 4(a)
reveals the evaluated positioning traces. When the action is
equal to 1 or 60, the particles lost the target after few steps. In
the 𝜎𝜎 = 1 case, all the particles hit walls and die due to the
particle divergence set. In the 𝜎𝜎 = 60 case, particles scatter
everywhere and lost the target due to the limited particles
available. As shown in Fig. 4 (b), although the 𝜎𝜎 = 20 and 𝜎𝜎 =
40 cases allowed to follow the target along the whole path, the
proposed PFR method outperforms the two cases because of the
dynamic selection of optimal action values.

In order to analyze the efficiency of the PFR algorithm, we
detail the actions at every step, as shown in Fig. 5 (b). Two
action values are taken in the trace, 20 and 60. It can be found
that most of the actions along the trace are 20, indicating a low
orientation distortion. Particle distribution in these areas is tight
as shown in Fig. 5 (a), thus improving the positioning accuracy.

On the other hand, the PFR algorithm executes action equal to
60 when users approach corners. Due to the presence of pillars,
which contain iron, we observe a severe distortion of
geomagnetic orientations. Consequently, the PFR algorithm
increases the orientation deviation to improve system
robustness. As obs4, obs5, and obs6 in Fig. 5 (c) reveal,
particles become sparse to cover more area. Although these
actions decrease the accuracy, they improve the possibility of
covering the ground truth position, thus preventing the end of
tracking and increasing future accuracy.

Fig. 5 Actions and observations along a positioning trace (Color bar indicates
the number of particles at the point).

C. Direction bias vs. direction variance estimation
This experiment compares performances of estimating the

direction distribution variance with the performances obtained
by estimating the adjustment to the direction. We replace the
layer 3 in Fig. 2 with a fully connected network with only one
element as output. In order to prevent the direction cyclicity
problem, a tanh layer is appended to confine the network output
in the scope of (-1, 1). Finally, a linear scaling layer transforms
the direction compensation scope to (-90, 90) degrees. We set
the direction variance to constant values of 𝜎𝜎 = 0, 5, 10, 20
degrees respectively.

Fig. 6 reveals the smoothed return value of the first 220
training epochs. All the cases tested have reached their
maximum values. The pure direction drift estimation (𝜎𝜎 = 0) is
the worst. Adding a direction variance helps in increasing
positioning accuracy, but the performance is lower than the
proposed variance estimation method. In fact, the direction
biases of the particles vary, especially in turning areas or
approximating ferromagnetic furniture. The proposed method
estimates the direction variance of the particles, therefore
outperforms the direction drift estimation method.

Fig. 6 Training performance comparison of continuous and discrete policies.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

D. Test in known and unknown areas
In order to test the model adaptability, we have conducted

experiments in known and unknown scenarios. The known
scenario is an area where a sampler has collected the walking
traces and the collected data are used to train the neural
network. Finally, new data are collected by a user to test the
maximum performance of the system. The unknown scenario is
an area that the model has not seen before and the data collected
are used to test the model adaptability. The test compares the
performance of the proposed adaptive algorithm and two
particle-filters with constant standard deviations of the direction
setting to 𝜎𝜎 = 20 and 𝜎𝜎 = 40 respectively. These two values
were the best values obtained in the adaptive action analysis
test.

Fig. 7 (a) shows the performance of the known area. Our
proposal outperforms the traditional constant variance
algorithm improving the overall positioning accuracy. It is
worth noting that although the 𝜎𝜎 = 20 case has more results of
errors less than one meter, the risk of losing the target increases
due to the errors. The phenomenon reveals the importance of
balancing accuracy and robustness. Into the unknown area, we
test the trained model on new paths that the model has not seen
before. Performances, shown in Fig. 7 (b), drop due to the
unseen and not previously learned path. However, the system
performance is still promising because the system is also able
to estimate deviations of the orientation through the particle
distribution. Furthermore, the PFR method still outperforms the
traditional particle filters based on constant values. Although
the 𝜎𝜎 = 20 and 𝜎𝜎 = 40 parameters are optimal in the trained
scenario, they might be not suitable in new environments.

Fig. 7 Performance comparison of known and unknown paths.

E. Comparison with traditional indoor PDR algorithms
The proposed algorithm is applicable in most of the particle-

filter-based PDR methods. Therefore, we compare the
performances of several state-of-the-art PDR and the proposed
PFR. Direction filter [4] leverages the direction bias calculated
in the training phase to compensate for real-time measurements,
but it is limited by the sampling density. MaLoc [11] utilizes
first-time compass direction and gyroscope increment to reduce
the influence of the distorted geomagnetic field, but it suffers
from the gyroscope drift problem. Wi-Fi based methods [12,
13] periodically add particles near ground-truth positions to
keep particles in tracking. Fig. 8 reveals the comparison results
showing that traditional direction compensation methods are
helpful in improving PDR accuracy. The proposed PFR
algorithm further enables traditional particle filters by
adaptively adjusting real-time direction variance according to
particle distributions and nearby floor plans, therefore it
achieves higher overall accuracy.

Fig. 8 Performance comparison with traditional PDR algorithms.

V. CONCLUSION
The paper presents the PFR, a novel particle filter based on

reinforcement learning techniques. Compare to conventional
particle filters, experiments performed in real-world scenarios
reveal the system adaptability in estimating a proper direction
variance when user walk and performances improve more than
20% at the 80% probability compared with state-of-the-art
methods. As future works, we should study how to leverage
correlations across the entire maps, investigating potential
optimal ways to represent particles and researching adaptability
in complex buildings with multiple sources of information.

REFERENCES
[1] L. Zhang, M. Cheng, Z. Xiao, L. Zhou, and J. Zhou, "Adaptable map

matching using PF-net for pedestrian indoor localization," Ieee Commun
Lett, vol. 24, no. 7, pp. 1437-1440, 2020.

[2] W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z. Tunio,
"DePedo: Anti Periodic Negative-Step Movement Pedometer with Deep
Convolutional Neural Networks," in 2018 IEEE International Conference on
Communications (ICC), Kansas City, MO, USA, 20-24 May 2018 2018, pp.
1-6, doi: 10.1109/ICC.2018.8422308.

[3] Q. Wang, L. Ye, H. Luo, A. Men, F. Zhao, and C. Ou, "Pedestrian walking
distance estimation based on smartphone mode recognition," Remote
Sensing, vol. 11, no. 9, p. 1140, 2019.

[4] W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z. Tunio, "Mass-
centered weight update scheme for particle filter based indoor pedestrian
positioning," in 2018 IEEE Wireless Communications and Networking
Conference (WCNC), Barcelona, Spain, 15-18 April 2018 2018, pp. 1-6, doi:
10.1109/WCNC.2018.8377274.

[5] J. L. Carrera Villacres, Z. Zhao, T. Braun, and Z. Li, "A Particle Filter-Based
Reinforcement Learning Approach for Reliable Wireless Indoor
Positioning," IEEE Journal on Selected Areas in Communications, vol. 37,
no. 11, pp. 2457-2473, 2019, doi: 10.1109/jsac.2019.2933886.

[6] D. Silver et al., "Mastering the game of Go without human knowledge,"
Nature, vol. 550, no. 7676, pp. 354-359, 2017, doi: 10.1038/nature24270.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking," Ieee T
Signal Proces, vol. 50, no. 2, pp. 174-188, 2002.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[9] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy
gradient methods for reinforcement learning with function approximation,"
in NIPs, 1999, vol. 99: Citeseer, pp. 1057-1063.

[10] N. Metropolis and S. Ulam, "The monte carlo method," Journal of the
American statistical association, vol. 44, no. 247, pp. 335-341, 1949.

[11] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, "MaLoc: A Practical Magnetic
Fingerprinting Approach to Indoor Localization using Smartphones,"
presented at the UBICOMP, SEATTLE, WA, USA, SEPTEMBER 13 - 17,
2014, 2014.

[12] W. Shao, H. Luo, F. Zhao, and A. Crivello, "Toward improving indoor
magnetic field–based positioning system using pedestrian motion models,"
Int J Distrib Sens N, vol. 14, no. 9, p. 1550147718803072, 2018, doi:
10.1177/1550147718803072.

[13] W. Shao, H. Luo, F. Zhao, H. Tian, J. Huang, and A. Crivello, "Floor
Identification in Large-Scale Environments with Wi-Fi Autonomous Block
Models," IEEE Transactions on Industrial Informatics, pp. 1-1, 2021, doi:
10.1109/TII.2021.3074153.

	I. INTRODUCTION
	II. System Overview
	III. Reinforcement Learning for the Manipulation of Particle Filters
	IV. Implementation and Results Evaluation
	A. Neural network training
	B. Adaptive action analysis
	C. Direction bias vs. direction variance estimation
	D. Test in known and unknown areas
	E. Comparison with traditional indoor PDR algorithms

	V. Conclusion
	References

