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ABSTRACT In Human-Machine interaction, the possibility of increasing the intelligence and adaptability
of the controlled plant by imitating human control behavior has been an objective of many research efforts
in the last decades. From classical control-theory human control models to modern machine learning, neural
networks, and reinforcement learning paradigms, the common denominator is the effort to model complex
nonlinear dynamics typical of human activity. However, these approaches are very different, and finding
a guiding line is challenging. This review investigates state-of-the-art techniques from the perspective of
human control modeling, considering the different physiological districts involved as the starting point. The
focus is mainly directed toward nonlinear dynamical system modeling, which constitutes the main challenge
in this field. In the end, transport systems are presented as a technological scenario in which the discussed
techniques are mainly applied.

INDEX TERMS Human-Machine Interaction, Human-in-the-loop, Decision Making, Human Control
Modeling, Machine Learning

I. INTRODUCTION

IN any system characterized by a close human-machine
physical interaction, providing controlled elements with

the ability to identify and understand what the human op-
erator is doing, is crucial to increase efficacy and safety.
While this is an ability that humans naturally learn over
time, machines need to be explicitly trained on how to do
this. Such recognition problem is heightened by the dis-
similarities between humans and controlled plants from a
mental, computational, and physical point of view. These
differences imply that, when faced with the uncertainty of
the real world, machines cannot always count on humans
to behave as expected and cannot always easily anticipate
how they will react to an unexpected event [1]. One way this
challenge can be addressed is by equipping machines with
explicit models of their human teammates. Many different
techniques are used to model human cognition and behavior,
spanning different timescales and levels.

As detailed in [2], the first approaches in this research field
aimed at identifying the linear human control models while
keeping the focus on the background physiological pro-
cesses. Pilot models when controlling an aircraft were vastly
investigated both in the frequency domain and using optimal

control strategies, successfully describing unwanted Spatial
Disorientation scenarios or pilot’s limitations and internal
feedback loops. These techniques are the basis for model-
based human-in-the-loop control frameworks in intelligent
transport systems, robotics [3], and many other domains.

Despite the successes, such models lack in representing
nonlinearities typical of human control behavior, especially
when facing high-complexity scenarios. McRuer and Hess
described the evidence of a pulsive behavior of the pilot when
the demanded task is too complex, leading to the formulation
of Dual Loop control models. They describe human bimodal
control behavior, focusing on the error compensation (typical
of classical crossover theory) and visual rate sensing (used in
pursuit tasks with predictable inputs) [4]. The dual-channel
structure proved to be more suitable for capturing nonlin-
ear dynamics in the pilot system during the information
processing stage, represented by thresholds and saturation
elements, which were used for describing phenomena like
Pilot Induced Oscillations (PIO) [5] or Spatial Disorientation
(SD) [6].

In such a modeling technique, the human is considered a
controller, an element part of the control loop (Human-in-the-
loop control). Its sensing elements and muscle actuators’ dy-
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namics are related to the external stimuli, the executed task,
and the controlled element. While executing a specific task,
the human subject tries to optimize its behavior to achieve its
goal while reducing efforts. If the difficulty increases, non-
linear dynamics is increasingly observable. Neuromuscular
dynamics can be considered one of the primary physiological
sources of nonlinearity in human control action. Modeling
techniques in this context are often based on optimal control
theory, trying to identify the system’s objective function
that the human tries to optimize while executing a specific
motion.

Aside from classical model-based approaches, a deeper
focus on information processing and learning abilities is
necessary to have a complete overview of the human as a
controller. Different modeling and data-driven approaches
have been proposed with this goal in many research efforts,
even resulting in a combination of them. The model proposed
by Xu et al. [7], for example, studied the origin of nonlinear
PIO proposing a multi-loop human pilot model during a
multi-axis control task. Here, the pilot’s ability to sense a
changing situation, being based on experience and judgment,
is represented by a fuzzy logic control element, able to
modulate his strategy and, indirectly, the system input/output
characteristics (through the variation of model parameters).
Apart from multi-loop models, fuzzy logic techniques have
been used in association with other nonlinear system model-
ing approaches and control techniques in order to deal with
uncertainties in the external environment [8] or in model
parameters tuning [9]. For instance, Fuzzy systems and Ar-
tificial Neural Networks (ANN) have been successfully used
in hybrid models in the past for human operator tuning [10]
or parameter optimization of the controlled plant [11]. The
spread of such kind of hybrid models led to the development
of neuro-fuzzy systems, which will be discussed in detail in
Section V-C.

Due to their simple mathematical structure and low com-
putational cost when implemented, ANNs have been suc-
cessfully used in the presence of unstructured data in learn-
ing, classification, and prediction algorithms in computer
vision [12], autonomous driving [13], medical [14], [15], bio-
informatics [16], industrial [17] and rehabilitation [18], [19]
robotics.

In human-machine interaction, however, it may be im-
portant to capture temporal relationships between raw data
in order to identify the system model accurately. Special
kinds of ANNs, such as RNN [20], [21] and LSTM [22], are
very common for this purpose, thanks to their internal loops
between the hidden layers, which in the case of LSTM allows
capturing even long-term temporal relations. Further details
on these two architectures will be given in Section VI, as
well as another data-driven approach, such as Reinforcement
Learning, useful to model human decision-making and the
generation of its internal goal.

Classical supervised, unsupervised, and semi-supervised
learning methods are introduced to represent how a "human
controller" creates a strategy to achieve a long-term goal,

passing through several intermediate steps. There is a vast
variety of practical applications exploiting such techniques
[23]–[26]. Remarkably, the optimal control theory modeled
the human control action by identifying its internal cost
function to minimize, similar to the reinforcement learning
approach. Indeed, in such a case, the human decision-making
process is modeled by describing its objective function,
which is maximized by the subject during its actions.

The mentioned modeling techniques, from the classical
control theory based to the modern data-driven approaches,
have succeeded in representing a different aspect of the
human control strategy when interacting with a machine.
Application scenarios such as intelligent transport systems or
human-robot collaboration offered many examples of mod-
eling and control techniques which has been developed by
combining two or more of these approaches.

II. PAPER CONTRIBUTION
The investigations of human nonlinear dynamics when con-
trolling a machine are so diversified that finding a common
point between them is difficult. This work aims to give a
structured overview of the existing techniques, focusing on
the underlying physical and physiological human processes.

This human-centered review of the existing efforts will
highlight the strengths and limitations of the presented tech-
niques in their effort to model the intrinsic nonlinear dynam-
ics in the human-machine system. Such nonlinearities will
be referred to as spatial and temporal variables of functionals
which are identifiable within the human physiological control
districts involved in sensing and information processing, but
also deriving from the interaction with controlled element
dynamics and/or the external environment [27]. With respect
to the existing review works relative to each research field,
this effort will help find a guiding line between more tra-
ditional control modeling techniques and modern learning
algorithms.

The paper is structured as follows, in Section III discusses
the Dual loop control model, giving an overview of the hu-
man controller when interacting with a controlled machine.
Section IV investigates the nonlinear muscular dynamics
models. Then in Section V, the focus will be directed toward
modeling techniques particularly useful for representing hu-
man information processing stages. Then machine learning
efforts to model the human decision-making process are
investigated in Section VI. Lastly, in Section VII, practical
examples of human-machine schemes in which the described
techniques are applied to model complex nonlinear dynamics
are considered.

III. DUAL LOOP CONTROL
In the last decades of the last century, Hess investigated
human control strategies when interacting with a machine,
resulting in his first "structural model" [28]. After the first
linear version, Hess noted that often human operators’ con-
trol strategies resulted in pulsive behavior, which was not
linked to any feature of classical linear models. In [29], the
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pulsive behavior was linked to McRuer’s quasi-linear model
hypothesis in the frequency-domain context. The assumption
was that when faced with a demanding task combined with
the controlled element’s high-order dynamics, the human op-
erator avoids the computational effort and reduces the num-
ber of parameters by using a less computationally-demanding
nonlinear strategy rather than a linear one.

The above assumption was applied to the early version
of the Hess model, resulting in the Dual Model depicted
in Figure 1. Such a model resulted from an effort to link
the hypothesis behind the crossover theory with the optimal
control approach.

The described nonlinear factor results in the various
switching elements in Figure 1. The first one (S1) allows
selecting error or error rate tracking and is supposed to
operate in unison with S2, which enables or disables the pro-
prioceptive feedback loop. The physiological reason behind
this is that after a triggering event, the pilot control strategy
regresses to simple tracking behavior, where the error rate is
controlled without the help of proprioceptive feedback. Right
after the two described sensing channels, there is a time delay
element due to the information processing occurring in the
central nervous system, present right before the neuromuscu-
lar actuation and internal feedback stages.

Moreover, switch S3 allows modeling both displacement
and force sensing inceptors. Ultimately, S4 allows using
vestibular rate or acceleration inputs for control, with gain
elements dependent on the perceived velocity Kṁ or ac-
celeration Km̈ [30]. Ultimately, only neuromuscular and
proprioceptive elements need parametrization, lowering the
model complexity level. The neuromuscular block is often
represented using second-order dynamics [31].

The neuromuscular force output is sensed and transformed
into an estimation of the output rate of the controlled element
using an internal model of its dynamics. This process is done
by the proprioceptive system, which can be described in the
Laplace domain using the following equation:

Hps(s) =


Kps(s+ a)

Kps
Kps

(s+a)

, (1)

where s is the Laplace variable in the complex plane, and
a ∈ R. In other words, the proprioceptive system transfer
function Hps can be defined, depending on the controlled
element dynamics, as a derivative term multiplied by a gain
element Kps (first case), through a simple proportional rela-
tionship (second case); or as integration (third case). If we
indicate the controlled element transfer function as HC , the
proprioceptive system’s dynamics would be chosen in order
to satisfy the following relationship around the crossover
frequency:

Hps(s) ∝ sHC(s) . (2)

This concept well represents the operator’s adaptability
to external dynamics. This human’s internal representation

of machine dynamics expresses the hypothesis behind the
crossover model and is equivalent to the Kalman estimator
in the optimal control model [32].

The last case of Equation 1, in which the inner loop
feedback signal is generated by integrating the force applied
to the controlled element, is the one in which the effect of
the pulsive control behavior on the time integrability of the
human is more evident. In fact, the integration of a pulsive
input signal can be approximated by

Yps =

n∑
i=1

Ai∆Ti , (3)

being Ai and ∆Ti the equivalent calculated amplitude
and time duration of the ith pulse, and Yps the resulting
proprioceptive output signal. The computational burden of
such an operation, if compared to integration over time, is
significantly lower. In order to represent the discussed pulsive
control effect on the inner loop feedback in the most simple
and realistic way, the following logic is can be added before
the neuromuscular system dynamics:

dq̂

dt
= 0 if |dq

dt
| < α

q̂ = βq if |dq
dt

| ≥ α . (4)

Where q and q̂ represent input and output variables, respec-
tively, α and β are the only parameters that must be tuned to
reproduce pulsive behavior. The dependence of the model on
just two parameters allows it to avoid its over-parametrization
and simplifies its adaptability to experimental data. Basically,
the action of this nonlinear element causes the output q̂ to
remain constant until a sufficiently rapid change in the input
q occurs.

Pulsive control as a result of the "ease of integrability"
principle, as hypothesized by Hess, found a physiological
interpretation in [33]. In particular, while proportional and
derivative control feedback can be actuated using direct sens-
ing organs, such as muscle spindles and Golgi tendon organs,
integral control does not have similar sensing input sources
and requires higher-level cognition in the central nervous
system [29]. Consequently, when performing acceleration
control, the human operator tends to generate a pulsive force
rather than a continuous one to facilitate the integration
process, being the computational cost of the latter much
higher. Different explanations of the same phenomena are
possible, being, for example, linked to energy saving strategy
when the required force peak value is low enough.

IV. NEUROMUSCULAR DYNAMICS
The latter consideration suggests the importance of neuro-
muscular actuation mechanisms as a source of nonlinearity
in the human controller. Several dynamical system modeling
approaches of the neuromuscular system have been proposed
in the literature, starting from simple state-space descriptions
[34]. Neuromuscular dynamics are typically nonlinear; for
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Figure 1: Dual model of the human operator in a compensatory task

instance, we consider the model of a human limb, and its
characteristics can be described in state-space form as

xt+1 = f(xt, t,u) + ω(t)

yt+1 = h(xt, t) + ϵ(t) . (5)

Where x is the state vector representing two angles and
two angular velocities, u is the control input corresponding
to the two applied joint torques, ω is the process noise,
while ϵ the observation noise. The general solution adopted
in this nonlinear problem has been to linearize the nonlinear
dynamics around a specific operating point, or a series of
active topics, in state space. The resulting linear time-varying
dynamics can be used only in a small interval around the
operating point; in the case of the above example, neglecting
the noise terms would be equivalent to

xt+1 = Atxt +Btut

yt+1 = Htxt . (6)

Here, A is the state transition matrix and B the control
transition matrix, while H represents the output measurement
matrix.

Most control-theory-based neuromuscular modeling ap-
proaches aim to find the correct series of control inputs
u1...uT , corresponding to muscle forces and joint torques,
which will make the system execute the desired trajectory
in the time horizon t = T . Such a control system is an
open loop; thus, if susceptible to disturbances, the controller
would fail to reach the desired state, not sensing any state
change. Moreover, the direct measurement of trajectories in
state space can be problematic in high-dimensional systems,
where part of the state may not be directly observable.

To overcome such shortcomings, optimal control ap-
proaches have been proposed [35] [36], where the dynamical
system is controlled by optimizing an objective function.
According to optimal control theory, the controller can di-
rectly access output and state variables or estimate their

values to implement an optimal control law to maximize the
system’s performance. A general mathematical expression of
the objective function to optimize to achieve this goal is

J(x) = minu

(
ϕ(xtN) +

∫ ∞

t0

q(x) +
1

2
uTRu dt

)
.

(7)
The system states are u and x, the control torques, forces,

or neural commands, and x, often expressed as joint angles,
velocities, or muscle activation. Moreover, ϕ is the cost term
dependent on the state, describing how a given target was
reached. At the same time, q is a state-dependent cost term
considered over the whole time horizon tN , and uTRu is the
cost dependent on the control input (also considered over the
time horizon tN ). The velocity value and the control effort
used to perform a given trajectory can be good examples of
the last two mentioned cost terms in a practical application.

Optimal control approaches for adapting classical linear
techniques, such as Linear Quadratic Gaussian Regulator
(LQG), have been proposed for nonlinear dynamics typical
of muscles and multi-body limbs. In [37], an Iterative Lin-
ear Quadratic Regulator (ILQR) was introduced based on
linearizing nonlinear muscular dynamics. An advantage of
this approach is that it does not need any predefined target
trajectory in the state space to work. ILQR method was
also extended in [38] for nonlinear stochastic systems char-
acterized by state-dependent and control-dependent noise.
Here, the ILQR technique permitted the description of the
nonlinear relation between muscle force, fiber length, and
contraction velocity. Further developments led to the use of
Extended Kalman Filters (EKF) in systems where there is
additive noise in sensory feedback loops [39], [40].

V. INFORMATION PROCESSING AND
DECISION-MAKING
The discussed models helped describe the human-machine
system dynamics in a control-theory fashion. The involved
physiological districts, sensing, and actuation systems were
put in relation, considering the human as an element of the
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control loop, and the nonlinear dynamics present in motion
command actuation and feedback were put in evidence.
However, to understand how human beings act as a controller
when interacting with a controlled machine, a deep focus on
the information processing stage is crucial to understand how
its central nervous system integrates pieces of information to
make decisions, learn, and generate commands.

A. FUZZY CONTROL MODELS
Processes such as human decision-making, inference, and
judgment are challenging to characterize precisely. A mod-
eling technique specifically meant to capture this concept is
Fuzzy control modeling. If we represent a human controller
as a fuzzy subsystem, the core of its control model would
be described by the fuzzy rules it will set. Specifically, fuzzy
rules describe the human decision-making process starting
from formulating a hypothesis and successively mapping the
fuzzy set from an input to an output space [41]. Such a
mapping process can be defined as the "fuzzification pro-
cess," while the reverse transformation will be called the
"defuzzification." The physiological equivalent of this pro-
cess is when the neuromuscular system receives an abstract
decision from the central nervous system and consequently
emits a force to the controlled device/machine. Fuzzy logic
control models have been used to represent various human
control activities in many research works, achieving good
results in overcoming the limitation of approaches relying on
a strict categorical division, especially in classification prob-
lems. In [42], fuzzy logic classification was used to represent
radiologists’ reasoning and decision-making process when
recognizing breast cancer types from the analysis of medical
images. While in [43], a fuzzy architecture was implemented
for malware detection and classification in IoT applications.
In the aeronautic domain, fuzzy control is suitable for de-
veloping a mental model of the pilot during a flight activity
[44], [45], primarily referring to a compensatory type of sub-
tasks [46]. The fuzzy logic control model was applied to
study changes in simulated activity fidelity in aircraft control
and Dynamic Multi-attribute Decision Making (DMADM)
applications [47]. Additionally, fuzzy control theory was
used for the safety evaluation of landing operations consid-
ering aircraft [48], [49] and rotorcraft [50]. However, the
computational efficiency of fuzzy control systems is limited
in cases in which a vast number of rules is present [51].
Moreover, it can be challenging to determine the rules when
their number is high, and subjective model tuning will make
its validation more challenging.

B. ARTIFICIAL NEURAL NETWORKS
For nonlinear dynamical system modeling, Artificial Neural
Networks have grown significantly in many research ac-
tivities in the last years due to their flexibility and ability
to imitate human learning, and decision-making. Moreover,
when building a model from unstructured data, ANNs proved
to be useful to build a reduced low-order model [52] and for
their classification capability [53]. Artificial Neural Networks

are composed of a linear combination of fundamental units
(i.e., neurons), which can provide a linear transformation
from the input data x to output y through several intermediate
hidden layers. Each ANN scheme can vary significantly if the
input vector dimension is known. The user usually chooses
the dimensionality of the hidden and output layers. The input-
output relationship of a single-layer neural structure with m
inputs (being m a positive integer greater than 1) and single
output would be, in the linear case:

y =

m∑
i=1

xiwi + q . (8)

Where variable xi(i ∈ (1, 2, . . . ,m)) represents the input
signal of the model, y represents the output signal, wi(i ∈
(1, 2, . . . ,m)) is the weight of each input signal and q is the
threshold of the activation function f . Nonlinear activation
functions can be used to represent a wider range of dynamics.
The more general definition of an ANN constituted by M
layers, providing a nonlinear mapping between input and
output data, would be:

y = fM (AM, . . . , f2(A2, f1(A1,x)) . . . ) . (9)

Here, the AM to A1 matrices contain the weight coefficients
wi that map each variable from one layer to the next. The
weights are chosen to fit the function:

argminAj
(fn(An, . . . f2(A2, f1(A1,x))) + λg(Aj)) .

(10)
Human behavior and information processing representation
are based on the weights of neural networks. Such modeling
technique is advantageous in aeronautical applications, for
example, when mapping pilot control in research works
where extensive data to process are available [54]. In [55],
ANN and quasi-linear approaches are confronted in a two-
axis tracking task, verifying neural network accuracy in de-
scribing nonlinear pilot behavior in aircraft control. In [56],
an adaptive neural network controller is used by combining
the trained network and a proportional-integral controller
in an attempt to find a model-based method for control
determination of unknown dynamics.

C. NEURO-FUZZY SYSTEMS
Generally, neuro-fuzzy systems can be defined as all the
modeling techniques involving artificial neural networks and
fuzzy logic. These techniques can be categorized into three
classes, depending on the combination of the two elements
[57]:

• Cooperative neuro-fuzzy systems
• Concurrent neuro-fuzzy systems
• Hybrid neuro-fuzzy systems
In a cooperative system, the neural component is only

present in an initial phase and determines the blocks com-
posing the subsequent fuzzy system using training data. After
this stage, only the fuzzy system will be executed.

In concurrent systems, on the other hand, the neural and
the fuzzy components work simultaneously. This means that
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the information is pre-processed by one of the two compo-
nents and then given in input to the other.

The most promising and utilized models belong to the
hybrid systems category. A hybrid neuro-fuzzy system can
be imagined as a fuzzy system in which parameters, such as
fuzzy sets and fuzzy rules, are determined using a learning
algorithm inspired by the neural network theory. Such a
neuro-fuzzy system can be entirely created starting from
measured input-output data without the a-priori knowledge
needed to develop fuzzy rules with the traditional approach.

An example of a commonly used model of this type is the
Adaptive-Network-Based Fuzzy Inference System (ANFIS),
which was proposed for the first time in 1993 [58]. Its struc-
ture is composed of five layers. The first hidden layer maps
the input variable relative to each membership function. The
output layer calculates the global output as the summation
of all the signals coming in the input. In particular, input
membership function parameters are determined using back-
propagation learning algorithms, and the least mean square
method is used to determine the consequent parameters. The
first advantage is to show both characteristics of neural net-
works and fuzzy logic, comprising if-then statements more
suitable for human-like decision-making logic. In addition,
its structure is not a black box, as in the case of neural
networks, and therefore can be more easily debugged and
improved. Moreover, it has smaller parameters to be deter-
mined to provide faster training without loss of generality
[59]. The such model recently found diverse domains of
application aside from human-machine interaction, such as
electric distribution systems [60], [61], speech recognition
[62], and economics [63]. In [64], the ANFIS model was used
for human fall detection in comparison with other neuro-
fuzzy techniques, such as the Local Linear Model Trees
(LOLIMOT) model [65].

In LOLIMOT models, each neuron is a local linear model
(LLM) and an associated validity function that determines
the region of validity of the LLM. The normalized validity
functions form a partition of unity for any model input z are:

M∑
i=1

ϕi(z) = 1 . (11)

While the output of each LLM is calculated as follows:

ŷ =

M∑
i=1

(ωi,0 + ωi,1x1 + ...+ ωi,nxxnx)ϕi(z) , (12)

where x = [x1, x2, ..., xnx]
T . Here, the local linear models

depend on x, while the validity functions depend on z and
are typically chosen as normalized Gaussian. The overall
LOLIMOT network output is computed as a weighted sum of
the LLMs outputs, where the ϕi(0) can be interpreted as the
operating point-dependent weighting factors. The network
interpolation between different LLMs is performed with the
validity functions, where weights wi,j are linear network
parameters. Again, LOLIMOT models were used in various
domains of application, such as transportation [66], medicine

Input
Layer

Output
Layer

Hidden Layers

Figure 2: General structure of a Recurrent Neural Network
and its internal feedbacks

[67], complex systems [68] and identification of time-variant
nonlinear dynamics [69].

A dual fuzzy neural networks (DFNNs) model constituted
by two equal neural networks has been used to simulate the
physical nervous system in [70]. The advantage of dual fuzzy
neural networks (DFNNs) is related to their close similitude
to functioning and flexibility typical of humans. As in the
case of ANNs, DFNNs can choose a suitable nonlinear map-
ping of input/output features through an iterative learning
phase, in which neuron weights are updated. Such a model
was implemented to simulate the relationship between the
control signal and human perceived input [71]. Its perfor-
mances were evaluated to provide insight into the pilot’s
decision-making process [72]. Moreover, [73] proposed a
risk evaluation procedure founded on ANNs with the fuzzy
control approach.

Even though in the Neuro-fuzzy model, neural networks
and fuzzy logic are integrated, its drawback is to increase
the computation and tuning time potentially. Besides, the
experimental validation of the obtained model parameters
may be tricky.

VI. DATA-DRIVEN APPROACHES
Data-driven approaches have attracted more and more atten-
tion in recent years in various application scenarios in non-
linear dynamical system modeling and identification [74]. In
human-machine interaction, learning processes starting from
unstructured data using different types of Artificial neural
networks (ANN) have been used for their processing classi-
fication by imitating human learning capability and decision-
making, often combined with other learning algorithms, as
we will discuss later in this section. A widely used type
of network is the Convolutional Neural Network (CNN),
traditionally used for capturing spatial relations in data, valid
for applications with robust image processing, which are very
common in human-robot collaboration [75] or autonomous
system navigation [76].

However, for the study of nonlinear dynamics introduced
by the human into the system during its control activity, as-
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Figure 3: Internal structure of an LSTM unit [80]

pects such as its temporal delay [77], or temporal relations in
general within the given data series, might be more relevant.
Recurrent neural networks (RNNs) are the primary ANNs
suitable for processing time series and other sequential data
types. RNNs can extract a sequence’s contextual information
by defining the mutual dependencies between various time
stamps. As shown from the scheme represented in Figure 2,
standard RNN is composed of numerous successive recurrent
layers and has a lot of feedforward and feedback connections
in the time direction, allowing it to sequentially model its
layers to map a sequence with other sequences. This makes it
a good choice for dynamic system identification and control.

Concerning its structure, an RNN can be defined as an
extension of feedforward ANN with internal loops in hidden
layers. The activation of the state of a recurrent hidden layer
at each time instant is dependent on that of the previous one.
At a given time frame, each non-input unit computes the
current activation as the nonlinear function of the weighted
sum of all the activation of every connected unit [78]. They
have been successfully applied in natural language process-
ing (NLP), image captioning, speech recognition, and other
fields. In [79], the authors investigated the approximation
capability of continuous-time RNNs to the time-invariant
dynamical systems. They proved that such network perfor-
mances for approximating any finite time trajectory of a time-
variant system were high. However, despite its suitability to
model temporal variations present in the input, depending
only on the current information and the previous output, a
standard RNN may encounter difficulties when it comes to
capturing long-term dependencies of time sequences.

To overcome this limit, a popular type of RNN which was
proposed in a lot of research works is the Long Short-Term
Memory network (LSTM), An LSTM network is a modified
RNN, mainly designed to improve its ability to capture long-
term relationships by avoiding premature gradient disappear-
ance in error back-propagation algorithms through time.

LSTM is composed of a combination of units, represent-
ing internal structure in Figure 3. Each unit simultaneously
receives an input vector x(t) and the state of the hidden
layer in the previous time instant h(t−1) and updates, as
output information, the cell state C(t) and the current state
of the hidden layer h(t). This operation is done through three
embedded layers in each LSTM unit: the input, output, and
forget gates. The three gates have different roles and work in

coordination: the forget gate f (t) determines the probability
that certain information has to be canceled from the cell state
vector; the input gate i(t) identify the new information to
be stored, while the output gate o(t) controls the output of
the current hidden state h(t). Translated into mathematical
expressions, LSTM unit operations are the following:

f (t) = σ(Wfh
(t−1) +Ufx

(t) + bf )

i(t) = σ(Wih
(t−1) +Uix

(t) + bi)

C̃(t) = tanh(WCh
(t−1) +UCx

(t) + bC)

C(t) = C(t−1) ⊙ f (t) + i(t) ⊙ C̃(t)

o(t) = σ(Woh
(t−1) +Uox

(t) + bo)

h(t) = o(t) ⊙ tanh(C(t)) . (13)

Where W, U, and b represent respectively the recurrent
matrix, input weight matrix, and bias vector, σ and tanh are
sigmoid and hyperbolic tangent functions, and ⊙ represent
the element-wise Hadamard product.

Yeo et al. [81] implemented LSTM networks to build
a simulation model of noisy nonlinear dynamical systems
using experimental data. Their goal was to identify the best
fit of the probability density function of a given stochastic
process and to represent the underlying nonlinear dynamics.
Chen et al. [80] used LSTM networks to learn the character-
istics of strongly nonlinear external dynamics of Van der Pol
and Lorenz systems.

As said, neural networks used for unstructured learning
have increased their potential by combining them with other
learning algorithms. The most promising technology in this
sense is Reinforcement Learning.

Unlike supervised and unsupervised learning, reinforce-
ment learning has arisen as the third kind of machine learn-
ing paradigm. Using computational Reinforcement Learn-
ing algorithms allowed us to quantitatively describe several
previously abstract concepts in neuroscience, cognitive, and
behavioral science [82].

As detailed in [83], reinforcement learning (RL) can rely
on Markov Decision Processes as a learning framework in
which a learning agent interacts with an external environment
and perceives its state, choose its actions to maximize a
numerical reward function. The reward function is a simple
numerical value for each time stamp, which can increase
or decrease by one unit in the future due to the agent’s
actions. Therefore, the goal to maximize the reward function
can be translated into maximizing the expected value of the
cumulative sum of the scalar reward signal. Being defined
from external information acquired from the environment
through sensory inputs (in the case of a human operator),
the goal to achieve is always defined outside the learning
agent. In the case of a human being, that means that the
learning agent can be defined as only the subsystem deputed
to process the external inputs to define a control strategy (i.e.,
the central nervous system). The sensory subsystems can be
considered part of the environment. In real-world complex
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situations in which humans are confronted with a challenging
task, their duty is to derive efficient representations of the
environment from high-dimensional sensory inputs and use
them to generalize past experience and be able to use it in
new situations [84]. If we consider an episodic task in which
the agent-environment interaction can be decomposed into
sub-sequences of repeated interactions, there is also a final
time step, T. In this case, for a given timestamp t, the reward
function to maximize is:

Gt =

T−t−1∑
k=0

γkRt−k−1 . (14)

Where γ, being 0 ≤ γ ≤ 1, is the discount rate. This
parameter determines the present value of future rewards.
When γ is close to zero, the weight of immediate rewards
is higher and mostly taken into account by the agent; as
it approaches 1, the goal takes future reward values more
strongly weighted. If we have a continuous interaction in
which there are neither definable intermediate steps nor a
known final time frame, the above equation can be rewritten
with T = ∞.

Reinforcement learning algorithms were extensively used
in many research works relating to humans interacting with
a machine, with many reward functions designed and more
suitable for the different application scenarios. In [85], a
Deep Deterministic Policy Gradient (DDPG) reinforcement
learning algorithm is used to estimate human intentions in
a human-robot interaction framework using EMG sensory
inputs. At the same time, [86] integrated RL into the robot
motion planning in a multi-robot collaborative manufacturing
plant to implement human-in-the-loop control in teleoperated
robots through augmented reality and digital twin techniques.

In the transport field, [87] adopted microscopic traffic
simulation and reinforcement learning to implement the
lane-changing strategy in connected and automated vehicles
(CAVs). Reinforcement Learning has been successfully used
with model-based techniques for systems identification in
[88]. This was done to estimate the reward function from
online data by acquiring and processing linear and nonlinear
external dynamics. Mu et al. [89] used a reinforcement learn-
ing algorithm for partially non-modeled nonlinear systems,
coupled with two neural networks, to implement an event-
triggering dynamic strategy. In robotics, Deep Reinforcement
Learning can be used for motion planning in cooperative
applications with a human subject, learning how the human
interacts with a specific environment and adaptively comput-
ing the best way to interact with him [90].

VII. NONLINEAR DYNAMICS IN HUMAN-MACHINE
SYSTEMS
The discussed modeling techniques and data-driven ap-
proaches have been successfully used for describing nonlin-
ear dynamics in many application domains where humans
interact with a controlled element.

Transport systems, for example, are a particularly rele-
vant field of application for nonlinear dynamics modeling

in human-machine interaction for what concerns the non-
linear dynamics deriving human decision-making, from the
nonlinear nature of the controlled element and/or the system,
and from human body physical coupling with the controlled
system.

For what concerns the first point, connected and automated
vehicle (CAVs) development has gained more and more
attention from companies and research centers in the last few
years. In studies dealing with automated lane changing, ma-
chine learning techniques were extensively used for human
decision-making modeling and its use in automatic control
strategies.

Let us consider the situation described by Figure 4, in
which Vehicle 1 (V1) has to choose a lane-change strategy
and is followed by vehicles 2,3, and 4. If we discretize the
CAV travel as a series of time steps t, and St are the state of
the external environment at each step t, we would have that:

St = {ã1L, ã1R, ã2L, ã4R, ã3, ν̃L, ν̃R, σ̃L, σ̃R}(t) . (15)

Here, ã represents the acceleration difference of the con-
sidered vehicles (in the subscripts, numbers represent the
vehicle and the letter the lane change direction) after V1
lane change; ν represents the mean acceleration difference
between the central and the left or right lanes; σ repre-
sents the difference between the standard deviations of the
acceleration differences. From a learning agent perspective,
these acceleration differences represent the gain obtained
after a lane change. Therefore, the reward function could be
formulated as follows:

Rt = at+1
1 . (16)

The subscript number stands for vehicle 1, and t + 1 repre-
sents two consecutive simulation time stamps.

A lot of research efforts on this topic used simulation
environments such as Matlab toolboxes [91], [92] to rep-
resent vehicles’ behavior, or robotic toolkits using partially
observable Markov decision processes (POMDPs), such as in
[93]. A connected and automated vehicle does not rely on any
external supervisor but must autonomously learn with a trial-
and-error approach to decide when to make a lane change and
how to execute it. One of the most challenging aspects is that
the vehicle must evaluate the long-term benefit of such an
action and become farsighted in its strategy to maximize the
travel’s efficiency. For this challenge, reinforcement learning
seems to be the preferential approach (as noticeable from its
formulation described in the previous section). For instance,
in a high-fidelity simulation environment, [94] used a deep
reinforcement learning training program for car following.
In [87], the authors also used reinforcement learning in a
microscopic traffic simulation environment [95] calibrated
using actual highway data. Li et al. [96] used an evolutionary
learning approach for lane change tested in a highway sim-
ulation environment. The optimization problem objective is
to maximize the velocity while minimizing the disruption to
the following vehicle; if it is impossible to reach this goal in
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Figure 4: Connected Automated Vehicles represented in a lane-change scheme

Figure 5: Motion intention estimation as explained in [97],
using hidden goal (a) and reaction (b) methods.

the current lane, a change-lane decision is taken. In this case,
the reward ri,t depends on the difference between desired
velocity vd and actual velocity vi,t of the controlled vehicle
and the acceleration of the following one (ak,t):

ri,t = −|vi,t − vd|+ ak,t . (17)

If the velocity difference overcomes a certain threshold, the
lane is changed.

However, the lane change has not a time-driven structure
but an event-driven one, described as a discrete dynamic
process, which can be well represented as a Markov Decision
Process. In [97], POMDPs were also used for an automatic
lane change in long-distance road experimental trials using
automated vehicles. Here, the decision-making process is
modeled, referring not only to the controlled vehicle but also
to the surrounding environment, inspired by the consideration
that human drivers change their behavior when interacting.
Reaction modeling is performed by measuring the temporal
evolution of the vehicle state, including in it also a reaction
and a deviation parameter.

Figure 5 represent the differences between the traditional
hidden goal method, which applies only to specific regions of
interest, and the reactive method, which models the group of
vehicles in general and their deviation.

Figure 6: Modeling of regret biasing (a) and probability
weighting (b) at a cognitive level as studied in [98].

A further aspect of human decision-making in a lane-
changing application is related to risk propensity. In [98],
the authors proposed a decision model that considered the
driver’s perception, reasoning, and emotions. Risk propensity
considers two mental processes: regret biasing and proba-
bility weighting, corresponding to the emotional aspect and
cognitive reasoning. Both functions’ nonlinearity increases
proportionally to the emotional bias and cognitive weighting.
The proposed model was tested with a dataset from a natural-
istic driving database. Figure 6 represents the obtained fitted
functions without considering regret biasing and probability
weighting (purple line) and with the two terms (green dashed
line). Figure 6a represents the regret q-functions, which re-
sulted in being linear, indicating the regret influence is not
evident in all cases. On the other hand, Figure 6b shows a
w-function divided into three intervals; in two of them, the
function overweights the objective probability (dot-dashed
line), indicating a general optimism and bent to take risks.

As said, aside from human decision-making represen-
tation, the source of nonlinearity in the human-machine
complex may be related to the dynamics of the controlled
element. If the human subject continuously controls such
devices, this will raise an essential challenge concerning
system modeling and control.

In cooperative teleoperated robotic systems, for instance,
many nonlinear control approaches have been developed
in order to deal with non-passive (and therefore unstable
[99]) factors such as the uncertainty of the environment, the
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presence of variable communication delays, kinematics, and
dynamics parametric uncertainty. Such kinds of systems have
found vast applications in healthcare [100], space [101], and
exploration in dangerous environments [102] and disaster
scenarios [103]. Even if Linear control approaches have been
successfully developed for robust stability achievement in the
presence of uncertain system dynamics, nonlinear controllers
proved to guarantee good stability and performance through
the exploitation of special properties of nonlinear rigid body
dynamics of master and slave manipulators [104].

In [105], nonlinear bilateral control of a teleoperation
system with a flexible-link slave manipulator is performed
by designing a robust tip position tracking controller for the
slave manipulator. The desired trajectory is determined based
on the master’s position signal, and a force controller for
the master robot, which should track the environmental force
exerted on the slave manipulator. While [106] proposes a
control strategy able to establish position-position kinematic
correspondence between master and slave by incorporating
in the adaptive controller the models of operators, controlled
robots, tools, and environment, as well as their parametric
uncertainty. Further approaches, as in [107], enlarged this
concept by mapping the human arm stiffness references in a
bilateral teleoperation framework, building a "teleimpedance
control", later extended with a semi-autonomous contact
detection strategy in [108]. Moreover, another challenging
aspect of bilateral teleoperation systems control is related
to the presence of communication time delays, which may
cause the system to degrade its performance and even result
in unstable behavior. The time delays should therefore be
considered in the design stage of the controller. In [109], this
problem is faced by considering adaptive neural synchroniza-
tion control of bilateral teleoperation systems with backlash-
like hysteresis, one of the most important nonlinearities in
robots. While in [110], a finite-time synchronization control
method is proposed based on fuzzy approximation of system
uncertainties.

Another example of highly nonlinear controlled systems
interacting with an unknown external environment consists
in multirotor remote control. Multirotor applications were
carried out in several research activities, with practical appli-
cations like surveillance, photography, video-making, grasp
or motion of an object, or military [111]. The equation of
motion of a multirotor with a mass m and inertia tensor J
can be written as:

mẍ = −mge3 + fRe3

R = RΩ̂

JΩ̇ = −Ω× JΩ+ τ . (18)

Where f and τ are the force and torque inputs, x is the
multirotor position with respect to the inertial frame, Ω =
[pB , qb, rB ]

T is the angular velocity vector in the body frame,
g is the gravity force, e3 = [0, 0, 1]T and R is the transfor-
mation matrix from the body to an inertial frame.

Trajectory tracking control for such systems is not ac-
cessible due to its nonlinearity, under-actuation, and highly
coupled states. Although simple linear controllers such as
PID or LQR have been successfully proposed in the past
[112]–[115] for a limited number of non-agile movements,
controllers using feedback linearization, backstepping or ge-
ometric control techniques are more suitable to handle with
the nonlinearity of the system. Various types of Feedback
Linearization (FL) techniques were used for multirotor, such
as input-output and state-space linearizations [116] have been
used for finding the rotor’s dynamics linear approximation.
In [117], FL performances were compared with an adaptive
sliding mode control technique. While in [118] FL controller
was combined with a Luenberger observer.

However, the rotorcraft nonlinearity cannot be eliminated
if a modeling error is present in feedback linearization.
Thus its stability is not guaranteed. Therefore, backstepping
control strategies with sliding mode techniques have been in-
creasingly used to overcome these problems, associated with
sliding mode techniques in [119]–[121]. When roll and pitch
angles were high, such as in [122], [123], the Lagrangian
formulation was preferred, even at a higher computational
cost. Xian et al. [124] proposed a different approach in which
an energy-based passivity controller controlled a quadrotor
with a suspended payload. Also, neural networks were used
in multiagent trajectory tracking applications, such as in
[125], where an online RNN-based controller enabled the
formation of a multiagent system characterized by a leader-
follower structure. Such a control strategy allowed each agent
to have the same output even with a different number of
inputs, facilitating the system task planning.

Extensive research efforts were also directed through mod-
eling unwanted human control behavior in transport systems,
particularly to Rotorcraft-Pilot Coupling (RPC) [126]. For
evaluating human-rotorcraft interaction in aspects such as
comfort and handling qualities, some performed modeling
efforts present in literature were directed towards studying
the dynamical behavior of the human body. Understanding
such body dynamics, in this case, the upper body is fun-
damental to identifying potentially dangerous nonlinearities
in RPC. These approaches vary significantly and can be
classified into two main categories, such as finite element
models (FEM); and multibody dynamics (MBD) or lumped
parameter models (LPM).

Lumped parameter models are composed of elementary
mechanical subsystems, such as lumped masses and vis-
coelastic elements with linear or nonlinear properties. In the
linear case, parameters are relatively easy to identify, with a
low associated computational cost and can be easily tuned
to fit the biomechanical characteristics of a specific subject.
However, in LPM where nonlinear viscoelastic elements are
used, the cost of identifying its characteristics may increase,
depending on the applied force or displacement. In [127],
the authors used a piecewise LPM as an analytical tool to
perform a preliminary analysis of vehicle crashworthiness
in order to reduce the time required to assemble and tune
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FEMs and perform a nonlinear finite element analysis in
crash testing. In the proposed LPM, the spring and damping
coefficients are defined as piecewise linear functions of input
displacement and velocity. Lumped parameters nonlinear
models are also present in works such as [128], in which
a one-degree-of-freedom model was applied for analyzing
human body dynamic response during a helicopter landing.
In works such as [129], [130], previous state-of-the-art linear
models were optimized using a genetic algorithm to capture
the nonlinear effects of passengers’ dynamic response when
subjected to vibrations.

In [131], a multibody model of the upper body was de-
signed by connecting a model of the pilot’s arms to a model
of the spine. Such a spine model, as well as the scaling pro-
cedures, was used for studying seat-to-head transmissibility.
This coupled spine-arms model can be used to evaluate the
biodynamic response of the human operator in terms of in-
voluntary motion induced on the control inceptors, including
the related nonlinearities.

Finite element models have been successfully used in
recent research to represent human body behavior during an
impact, often in relation to injury risk prediction and vehicle
safety. The Total Human Model for Safety (THUMS) is a
famous finite element human body model intended for injury
analysis [132]; it has been used in association with a model of
a vehicle’s internal structure, with the purpose of simulating
human body kinematics in response to a large impact in a
car crash. The geometries of the structurally complex human
body parts, including the head, torso, ligaments, joints, and
internal organs, are represented by finite element meshes, and
their impact responses have been studied separately. More-
over, in relation to transport safety, within the context of the
European project "Human model for safety two" (HUMOS2)
[133] human body numerical body models were constructed
in order to create a database able to represent the European
population with high fidelity. Portions of HUMOS2 models
have been used in many research efforts, such as [134]
for which thoracic accidents and [135] for head injuries
in motorcycle crashes. Another example of FEM used to
provide kinematic and kinetic data of the human body in a
computationally efficient way has been proposed in [136] by
the Global Human Body Models Consortium (GHBMC).

VIII. CONCLUSIONS
The presented modeling research efforts of nonlinear dy-
namics in human-machine interaction successfully captured
many aspects of the human learning process, information
processing, and control action. From the classical control-
theory fashion of dual-loop control to the more recent
machine-learning techniques, many advances have been
made in identifying the sources of nonlinearity in human
control behavior and in implementing models able to trans-
fer such ability to the controlled machines. Modeling and
data-driven techniques were presented in a human-centered
way in order to show how they succeeded in representing
different aspects of the human as a controller. For instance,

the decision-making process directed toward achieving an
internal goal is well described by reinforcement learning ap-
proaches, while optimal control models of the neuromuscular
system or biodynamical models are most useful for nonlinear
dynamics deriving from human body actuation districts or
from its coupling with the controlled element. Moreover,
data-driven techniques associated with control systems were
analyzed in relation to nonlinearities that derive from the
controlled element dynamics and/or the external environ-
ment. As proved by the discussed man-machine systems,
the discussed algorithms can be combined to increase the
level of autonomy and the usability of machines even in
complex scenarios such as connected vehicles, automatic
lane changes, teleoperation, or remote control of rotorcraft,
This is done while acting in an environment surrounded by
humans, with consequent potential issues regarding safety
and adding unexpected physical interaction that requires a
level of adaptability, which is typical of human beings and
constitutes one of the reasons that motivated such modeling
efforts. Despite the successes concerning classical control
theory models discussed in the first sections, modern ma-
chine learning frameworks struggle to capture the physiolog-
ical context relying upon the human learning process. Neural
networks and algorithms based on reinforcement learning
or optimal control paradigm still have almost a black-box
approach to what concerns this aspect. Advances in under-
standing the human brain are still a challenge that motivates
many research activities.

References
[1] L. M. Hiatt, C. Narber, E. Bekele, S. S. Khemlani, and J. G. Trafton,

“Human modeling for human-robot collaboration,” The International
Journal of Robotics Research, vol. 36, no. 5-7, pp. 580–596, 2017.

[2] A. Scibilia, N. Pedrocchi, and L. Fortuna, “Human control model estima-
tion in physical human–machine interaction: A survey,” Sensors, vol. 22,
no. 5, pp. 1732–1758, 2022.

[3] P. Franceschi, N. Pedrocchi, and M. Beschi, “Adaptive impedance con-
troller for human-robot arbitration based on cooperative differential game
theory,” Proceedings of the 2022 International Conference on Robotics
and Automation (ICRA), pp. 7881–7887, 2022.

[4] D. T. McRuer and E. S. Krendel, “Mathematical models of human pilot
behavior,” AGARDograph AGARD-AG-188, pp. 1–83, 1974.

[5] M. Bucolo, A. Buscarino, L. Fortuna, and S. Gagliano, “Bifurcation sce-
narios for pilot induced oscillations,” Aerospace Science and Technology,
vol. 106, pp. 106 194–106 199, 2020.

[6] M. Lone and A. Cooke, “Review of pilot models used in aircraft flight
dynamics,” Aerospace Science and Technology, vol. 34, pp. 55–74, 2014.

[7] S. Xu and Y. Wu, “Modeling multi-loop intelligent pilot control behavior
for aircraft-pilot couplings analysis,” Aerospace Science and Technology,
vol. 112, pp. 106 651–106 663, 2021.

[8] S. Han, H. Zhu, Q. Zhong, K. Shi, and O.-M. Kwon, “Adaptive event-
triggered fuzzy positioning control for unmanned marine vehicles with
actuator saturation and hybrid attacks,” IEEE Transactions on Fuzzy
Systems, pp. 1–13, 2023, doi:10.1109/TFUZZ.2023.3243066.

[9] M. Ray, N. Mahata, and J. K. Sing, “Uncertainty parameter weighted
entropy-based fuzzy c-means algorithm using complemented member-
ship functions for noisy volumetric brain mr image segmentation,”
Biomedical Signal Processing and Control, vol. 85, pp. 104 925–104 937,
2023.

[10] T. Miyoshi, S. Tano, Y. Kato, and T. Arnould, “Operator tuning in fuzzy
production rules using neural networks,” [Proceedings 1993] Second
IEEE International Conference on Fuzzy Systems, pp. 641–646, 1993.

[11] S. Dey, N. M. Reang, A. Majumder, M. Deb, and P. K. Das, “A hybrid
ann-fuzzy approach for optimization of engine operating parameters of a

VOLUME 9, 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3284135

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



ci engine fueled with diesel-palm biodiesel-ethanol blend,” Energy, vol.
202, pp. 117 813–117 830, 2020.

[12] W. Shi, Z. Huang, H. Huang, C. Hu, M. Chen, S. Yang, and H. Chen,
“Loen: Lensless opto-electronic neural network empowered machine
vision,” Light: Science & Applications, vol. 11, no. 1, pp. 1–12, 2022.

[13] T. Huang and R. Fu, “Prediction of the driver’s focus of attention based on
feature visualization of a deep autonomous driving model,” Knowledge-
Based Systems, vol. 251, pp. 109 006–109 016, 2022.

[14] O. N. Oyelade, A. E. Ezugwu, M. S. Almutairi, A. K. Saha, L. Abualigah,
and H. Chiroma, “A generative adversarial network for synthetization of
regions of interest based on digital mammograms,” Scientific Reports,
vol. 12, no. 1, pp. 1–30, 2022.

[15] M. A. Konnaris, M. Brendel, M. A. Fontana, M. Otero, L. B. Ivashkiv,
F. Wang, and R. D. Bell, “Computational pathology for musculoskeletal
conditions using machine learning: advances, trends, and challenges,”
Arthritis Research & Therapy, vol. 24, no. 1, pp. 1–15, 2022.

[16] Z. Zhang, S. Cheng, and C. Solis-Lemus, “Towards a robust out-of-
the-box neural network model for genomic data,” BMC Bioinformatics,
vol. 23, no. 1, pp. 1–29, 2022.

[17] M. Rusanovsky, O. Beeri, and G. Oren, “An end-to-end computer vision
methodology for quantitative metallography,” Scientific Reports, vol. 12,
no. 1, pp. 1–27, 2022.

[18] R. Haji Hassani, M. Bannwart, M. Bolliger, T. Seel, R. Brunner, and
G. Rauter, “Real-time motion onset recognition for robot-assisted gait
rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 19,
no. 1, pp. 1–14, 2022.

[19] W. Ma, H. Xue, X. Sun, S. Mao, L. Wang, Y. Liu, Y. Wang, and X. Lin, “A
novel multi-branch hybrid neural network for motor imagery eeg signal
classification,” Biomedical Signal Processing and Control, vol. 77, pp.
103 718–103 735, 2022.

[20] V. M. D’Anniballe, F. I. Tushar, K. Faryna, S. Han, M. A. Mazurowski,
G. D. Rubin, and J. Y. Lo, “Multi-label annotation of text reports from
computed tomography of the chest, abdomen, and pelvis using deep
learning,” BMC Medical Informatics and Decision Making, vol. 22, no. 1,
pp. 1–12, 2022.

[21] W. Bartolomaeus, Y. Boutaib, S. Nestler, and H. Rauhut, “Path clas-
sification by stochastic linear recurrent neural networks,” Advances in
Continuous and Discrete Models, no. 13, 2022, doi:10.1186/s13662-022-
03686-9.

[22] S. Wen, T. Wang, and S. Tao, “Hybrid cnn-lstm architecture for lidar point
clouds semantic segmentation,” IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 5811–5818, 2022.

[23] Y. Dai, Q. Chen, J. Zhang, X. Wang, Y. Chen, T. Gao, P. Xu, S. Chen,
S. Liao, H. Jiang et al., “Enhanced oblique decision tree enabled pol-
icy extraction for deep reinforcement learning in power system emer-
gency control,” Electric Power Systems Research, vol. 209, pp. 107 932–
107 943, 2022.

[24] M. H. Alabdullah and M. A. Abido, “Microgrid energy management
using deep q-network reinforcement learning,” Alexandria Engineering
Journal, vol. 61, no. 11, pp. 9069–9078, 2022.

[25] K. Zhong, Z. Yang, G. Xiao, X. Li, W. Yang, and K. Li, “An efficient
parallel reinforcement learning approach to cross-layer defense mecha-
nism in industrial control systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 11, pp. 2979–2990, 2021.

[26] C. M. Wu, E. Schulz, T. J. Pleskac, and M. Speekenbrink, “Time pres-
sure changes how people explore and respond to uncertainty,” Scientific
Reports, vol. 12, no. 1, pp. 1–14, 2022.

[27] G. Salvendy, Handbook of human factors. John Wiley & Sons, 1987.
[28] R. A. Hess, “Structural model of the adaptive human pilot,” Journal of

Guidance and Control, vol. 3, no. 5, pp. 416–423, 1980.
[29] Hess, Ronald A, “A rationale for human operator pulsive control behav-

ior,” Journal of Guidance and Control, vol. 2, no. 3, pp. 221–227, 1979.
[30] R. Hosman and H. Stassen, “Pilot’s perception in the control of aircraft

motions,” Control Engineering Practice, vol. 7, no. 11, pp. 1421–1428,
1999.

[31] D. T. McRuer, R. E. Magdaleno, and G. P. Moore, “A neuromuscular
actuation system model,” IEEE Transactions on Man-Machine Systems,
vol. 9, no. 3, pp. 61–71, 1968.

[32] S. Baron, D. Kleinman, and W. Levison, “An optimal control model of
human response part ii: prediction of human performance in a complex
task,” Automatica, vol. 6, no. 3, pp. 371–383, 1970.

[33] E. N. Bachelder and B. Aponso, “Human pilot control adaptation: A
physiological interpretation,” AIAA SCITECH 2022 Forum, pp. 2446–
2458, 2022, doi:10.2514/6.2022-2446.

[34] F. J. Valero-Cuevas, H. Hoffmann, M. U. Kurse, J. J. Kutch, and E. A.
Theodorou, “Computational models for neuromuscular function,” IEEE
Reviews in Biomedical Engineering, vol. 2, pp. 110–135, 2009.

[35] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena Scientific, 2012, vol. 1.

[36] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization,
estimation, and control. Routledge, 2018.

[37] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” Proceedings of the 1st Interna-
tional Conference on Informatics in Control, Automation and Robotics,
pp. 222–229, 2004.

[38] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
Proceedings of the 2005, American Control Conference, pp. 300–306,
2005.

[39] W. Li and E. Todorov, “An iterative optimal control and estimation
design for nonlinear stochastic system,” Proceedings of the 45th IEEE
Conference on Decision and Control, pp. 3242–3247, 2006.

[40] Li, Weiwei and Todorov, Emanuel, “Iterative linearization methods for
approximately optimal control and estimation of non-linear stochastic
system,” International Journal of Control, vol. 80, no. 9, pp. 1439–1453,
2007.

[41] K. Zaychik, F. Cardullo, and G. George, “A conspectus on operator
modeling: past, present and future,” AIAA Modeling and Simulation
Technologies Conference and Exhibit, pp. 6625–6640, 2006.

[42] G. H. B. Miranda and J. C. Felipe, “Computer-aided diagnosis system
based on fuzzy logic for breast cancer categorization,” Computers in
Biology and Medicine, vol. 64, pp. 334–346, 2015.

[43] E. M. Dovom, A. Azmoodeh, A. Dehghantanha, D. E. Newton, R. M.
Parizi, and H. Karimipour, “Fuzzy pattern tree for edge malware detec-
tion and categorization in iot,” Journal of Systems Architecture, vol. 97,
pp. 1–7, 2019.

[44] M. Wohler, F. Loy, and A. Schulte, “Mental models as common ground
for human-agent interaction in cognitive assistant systems,” Proceedings
of the International Conference on Human-Computer Interaction in
Aerospace, no. 20, 2014, doi:10.1145/2669592.2669686.

[45] M. Gestwa and L. Grigorie, “Using fuzzy control for modeling the control
behaviour of a human pilot,” Fuzzy Controllers, Theory and Applications,
pp. 297–326, 2011.

[46] G. R. George, New methods of mathematical modeling of human behavior
in the manual tracking task. State University of New York at Bingham-
ton, 2008.

[47] H.-T. Jiang, X.-d. Su, and H. Li, “Dynamic multi-attribute decision
making based on advantage retention degree,” International Journal of
Control and Automation, vol. 7, no. 9, pp. 389–398, 2014.

[48] M. Yazdi, S. Daneshvar, and H. Setareh, “An extension to fuzzy devel-
oped failure mode and effects analysis (fdfmea) application for aircraft
landing system,” Safety Science, vol. 98, pp. 113–123, 2017.

[49] X. Su, Y. Wu, J. Song, and P. Yuan, “A fuzzy path selection strategy for
aircraft landing on a carrier,” Applied Sciences, vol. 8, no. 5, pp. 779–796,
2018, doi:10.3390/app8050779.

[50] S.-H. Na and G.-E. Lee, “Fuzzy fmea for rotorcraft landing system,”
Journal of the Korea Academia-Industrial Cooperation Society, vol. 22,
no. 1, pp. 751–758, 2021.

[51] P. Stewart, D. Gladwin, M. Parr, and J. Stewart, “Multi-objective evolu-
tionary—fuzzy augmented flight control for an f16 aircraft,” Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol. 224, no. 3, pp. 293–309, 2010.

[52] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[53] R. Mori and S. Suzuki, “Neural network modeling of lateral pilot landing
control,” Journal of Aircraft, vol. 46, no. 5, pp. 1721–1726, 2009.

[54] R. Jagacinski, J. Flach, and L. Erlbaum, Control theory for humans:
Quantitative approaches to modeling performance. CRC Press, 2004.

[55] W. Tan, X. Qu, and W. Wang, “Compared with human pilot model of neu-
ral networks and quasi-linearity in frequency domain,” Acta Aeronautica
et Astronautica Sinica, vol. 24, no. 6, pp. 4–12, 2003.

[56] L. Cheng, Z. Wang, F. Jiang, and J. Li, “Adaptive neural network con-
trol of nonlinear systems with unknown dynamics,” Advances in Space
Research, vol. 67, no. 3, pp. 1114–1123, 2021.

[57] Z. J. Viharos and K. B. Kis, “Survey on neuro-fuzzy systems and their
applications in technical diagnostics and measurement,” Measurement,
vol. 67, pp. 126–136, 2015.

12 VOLUME 9,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3284135

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[58] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.
665–685, 1993.

[59] S. Ertugrul, “Predictive modeling of human operators using parametric
and neuro-fuzzy models by means of computer-based identification ex-
periment,” Engineering Applications of Artificial Intelligence, vol. 21,
no. 2, pp. 259–268, 2008.

[60] L.-C. Ying and M.-C. Pan, “Using adaptive network based fuzzy infer-
ence system to forecast regional electricity loads,” Energy Conversion
and Management, vol. 49, no. 2, pp. 205–211, 2008.

[61] M. Z. Abbas, I. A. Sajjad, B. Hussain, R. Liaqat, A. Rasool, S. Pad-
manaban, and B. Khan, “An adaptive-neuro fuzzy inference system
based-hybrid technique for performing load disaggregation for residential
customers,” Scientific Reports, vol. 12, no. 1, pp. 1–14, 2022.

[62] E. Avci and Z. H. Akpolat, “Speech recognition using a wavelet packet
adaptive network based fuzzy inference system,” Expert Systems with
Applications, vol. 31, no. 3, pp. 495–503, 2006.

[63] L.-Y. Wei, T.-L. Chen, and T.-H. Ho, “A hybrid model based on adaptive-
network-based fuzzy inference system to forecast taiwan stock market,”
Expert Systems with Applications, vol. 38, no. 11, pp. 13 625–13 631,
2011.

[64] S. Kordnoori, A. Sharifi, and H. Shah-Hosseini, “Human fall detection
using neuro-fuzzy models based on ensemble learning,” Progress in
Artificial Intelligence, vol. 11, pp. 1–14, 2022.

[65] R. Murray-Smith, “A local model network approach to nonlinear mod-
elling,” University of Strathclyde, 1994, doi:10.48730/me80-tw49.

[66] K. Aghabayk, N. Forouzideh, and W. Young, “Exploring a local linear
model tree approach to car-following,” Computer-Aided Civil and Infras-
tructure Engineering, vol. 28, no. 8, pp. 581–593, 2013.

[67] M. R. Salmanpour, M. Shamsaei, A. Saberi, I. S. Klyuzhin, J. Tang,
V. Sossi, and A. Rahmim, “Machine learning methods for optimal predic-
tion of motor outcome in parkinson’s disease,” Physica Medica, vol. 69,
pp. 233–240, 2020.

[68] H. Iranmanesh, M. Keshavarz, and M. Abdollahzade, “Predicting dust
storm occurrences with local linear neuro fuzzy model: a case study in
ahvaz city, iran,” International Conference on Soft Computing-MENDEL,
pp. 158–167, 2016.

[69] O. Nelles, “Local linear model trees for on-line identification of time-
variant nonlinear dynamic systems,” International Conference on Artifi-
cial Neural Networks, pp. 115–120, 1996.

[70] K. Xu, “Visual scene simulation to civil aviation aircraft approaching and
landing using dual fuzzy neural network,” International Conference on
Network Computing and Information Security, pp. 275–280, 2012.

[71] K. J. Xu, “Decisional autonomy of approach and landing phase for civil
aviation aircraft using dual fuzzy neural network,” Advanced Materials
Research, vol. 476, pp. 936–939, 2012.

[72] K. Xu, G. Zhang, and Y. Xu, “A dual fuzzy neuro controller using genetic
algorithm in civil aviation intelligent landing system,” Advanced Science
Letters, vol. 6, no. 1, pp. 360–363, 2012.

[73] Q.-D. Zhu, H. Li, M.-Z. Yu, Z. Zhang, and X.-W. Jiang, “Landing
risk evaluation of carrier-based aircraft based on bp neural network,”
2012 Second International Conference on Instrumentation, Measure-
ment, Computer, Communication and Control, pp. 1596–1601, 2012.

[74] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[75] G. Nicola, E. Villagrossi, and N. Pedrocchi, “Human-robot co-
manipulation of soft materials: enable a robot manual guidance using a
depth map feedback,” Proceedings of the 31st IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN), pp.
498–504, 2022.

[76] Y. M. da Silva, F. A. Andrade, L. Sousa, G. G. de Castro, J. T. Dias,
G. Berger, J. Lima, and M. F. Pinto, “Computer vision based path
following for autonomous unammed aerial systems in unburied pipeline
onshore inspection,” Drones, vol. 6, no. 12, pp. 410–429, 2022.

[77] A. Scibilia, N. Pedrocchi, and L. Fortuna, “Modeling of control
delay in human-robot collaboration,” Proceedings of the 48th An-
nual Conference of the IEEE Industrial Electronics Society, 2022,
doi:10.1109/IECON49645.2022.9968477.

[78] D. Akash, K. K. Piyush, and D. C. Nitin, “A study to target energy
consumption in wastewater treatment plant using machine learning al-
gorithms,” 31st European Symposium on Computer Aided Process Engi-
neering, pp. 1511–1516, 2021.

[79] X.-D. Li, J. K. Ho, and T. W. Chow, “Approximation of dynamical time-
variant systems by continuous-time recurrent neural networks,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 10,
pp. 656–660, 2005.

[80] R. Chen, X. Jin, S. Laima, Y. Huang, and H. Li, “Intelligent modeling
of nonlinear dynamical systems by machine learning,” International
Journal of Non-Linear Mechanics, vol. 142, pp. 103 984–103 995, 2022,
doi:10.1016/j.ijnonlinmec.2022.103984.

[81] K. Yeo and I. Melnyk, “Deep learning algorithm for data-driven simula-
tion of noisy dynamical system,” Journal of Computational Physics, vol.
376, pp. 1212–1231, 2019.

[82] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama,
E. Uchibe, and J. Morimoto, “Deep learning, reinforcement learning, and
world models,” Neural Networks, vol. 152, pp. 267–275, 2022.

[83] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[84] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[85] T. Zhang, H. Sun, and Y. Zou, “An electromyography signals-based
human-robot collaboration system for human motion intention recogni-
tion and realization,” Robotics and Computer-Integrated Manufacturing,
vol. 77, pp. 102 359–102 374, 2022.

[86] C. Li, P. Zheng, S. Li, Y. Pang, and C. K. Lee, “Ar-assisted digital twin-
enabled robot collaborative manufacturing system with human-in-the-
loop,” Robotics and Computer-Integrated Manufacturing, vol. 76, pp.
102 321–102 330, 2022.

[87] Y. Wang, L. Wang, J. Guo, I. Papamichail, M. Papageorgiou, F.-Y.
Wang, R. Bertini, W. Hua, and Q. Yang, “Ego-efficient lane changes
of connected and automated vehicles with impacts on traffic flow,”
Transportation Research part C: Emerging Technologies, vol. 138, pp.
103 478–103 503, 2022.

[88] R. Self, M. Abudia, S. N. Mahmud, and R. Kamalapurkar, “Model-based
inverse reinforcement learning for deterministic systems,” Automatica,
vol. 140, pp. 110 242–110 255, 2022.

[89] C. Mu, K. Wang, and T. Qiu, “Dynamic event-triggering neural learning
control for partially unknown nonlinear systems,” IEEE Transactions on
Cybernetics, vol. 52, no. 4, pp. 2200–2213, 2020.

[90] G. Nicola and S. Ghidoni, “Deep reinforcement learning for motion
planning in human robot cooperative scenarios,” Proceedings of the 26th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2021, doi:10.1109/ETFA45728.2021.9613505.

[91] J. Nilsson, J. Silvlin, M. Brannstrom, E. Coelingh, and J. Fredriksson, “If,
when, and how to perform lane change maneuvers on highways,” IEEE
Intelligent Transportation Systems Magazine, vol. 8, no. 4, pp. 68–78,
2016.

[92] Y. Du, Y. Wang, and C.-Y. Chan, “Autonomous lane-change controller via
mixed logical dynamical,” Proceedings of the 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pp. 1154–
1159, 2014.

[93] W. Liu, S.-W. Kim, S. Pendleton, and M. H. Ang, “Situation-aware
decision making for autonomous driving on urban road using online
pomdp,” 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1126–1133,
2015.

[94] Y. Ye, X. Zhang, and J. Sun, “Automated vehicle’s behavior decision
making using deep reinforcement learning and high-fidelity simulation
environment,” Transportation Research Part C: Emerging Technologies,
vol. 107, pp. 155–170, 2019.

[95] A. R. Anya, N. M. Rouphail, H. C. Frey, and B. Schroeder, “Application
of aimsun microsimulation model to estimate emissions on signalized
arterial corridors,” Transportation Research Record, vol. 2428, no. 1, pp.
75–86, 2014.

[96] T. Li, J. Wu, and C.-Y. Chan, “Evolutionary learning in decision making
for tactical lane changing,” 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 1826–1831, 2019.

[97] S. Ulbrich and M. Maurer, “Towards tactical lane change behavior
planning for automated vehicles,” Proceedings of the 18th International
Conference on Intelligent Transportation Systems, pp. 989–995, 2015.

[98] L. Jiang, D. Chen, Z. Li, and Y. Wang, “Risk representation, perception,
and propensity in an integrated human lane-change decision model,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12,
pp. 23 474–23 487, 2022.

[99] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,”
IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 624–
637, 1993.

VOLUME 9, 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3284135

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[100] B. P. Murphy and F. Alambeigi, “A surgical robotic framework for safe
and autonomous data-driven learning and manipulation of an unknown
deformable tissue with an integrated critical space,” Journal of Medical
Robotics Research, pp. 2 340 001–2 340 016, 2023.

[101] Q. Gao, J. Li, Y. Zhu, S. Wang, J. Liufu, and J. Liu, “Hand gesture tele-
operation for dexterous manipulators in space station by using monocular
hand motion capture,” Acta Astronautica, vol. 204, pp. 630–639, 2023.

[102] K. A. Szczurek, R. M. Prades, E. Matheson, J. Rodriguez-Nogueira,
and M. Di Castro, “Mixed reality human-robot interface with adaptive
communications congestion control for the teleoperation of mobile re-
dundant manipulators in hazardous environments,” IEEE Access, vol. 10,
pp. 87 182–87 216, 2022.

[103] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M.
Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco et al.,
“Centauro: A hybrid locomotion and high power resilient manipulation
platform,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1595–
1602, 2019.

[104] S. Sirouspour, “Modeling and control of cooperative teleoperation sys-
tems,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1220–1225,
2005.

[105] A. Rashidinejad, S. Nikravesh, and H. Talebi, “Nonlinear bilateral tele-
operation with flexible-link slave manipulator,” Proceedings of the 3rd
RSI International Conference on Robotics and Mechatronics (ICROM),
pp. 284–289, 2015.

[106] S. Sirouspour and P. Setoodeh, “Multi-operator/multi-robot teleoper-
ation: an adaptive nonlinear control approach,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1576–1581, 2005.

[107] A. Ajoudani, N. Tsagarakis, and A. Bicchi, “Tele-impedance: Teleoper-
ation with impedance regulation using a body–machine interface,” The
International Journal of Robotics Research, vol. 31, no. 13, pp. 1642–
1656, 2012.

[108] A. Scibilia, M. Laghi, E. De Momi, L. Peternel, and A. Ajoudani, “A self-
adaptive robot control framework for improved tracking and interaction
performances in low-stiffness teleoperation,” Proceedings of the 18th
International Conference on Humanoid Robots (Humanoids), pp. 280–
283, 2018, doi:10.1109/HUMANOIDS.2018.8625062.

[109] H. Wang, P. X. Liu, and S. Liu, “Adaptive neural synchronization control
for bilateral teleoperation systems with time delay and backlash-like
hysteresis,” IEEE Transactions on Cybernetics, vol. 47, no. 10, pp. 3018–
3026, 2017.

[110] Y. Yang, C. Hua, and X. Guan, “Adaptive fuzzy finite-time coordination
control for networked nonlinear bilateral teleoperation system,” IEEE
Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 631–641, 2013.

[111] H. Lee and H. J. Kim, “Trajectory tracking control of multirotors from
modelling to experiments: A survey,” International Journal of Control,
Automation and Systems, vol. 15, no. 1, pp. 281–292, 2017.

[112] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter
trajectory tracking control,” AIAA Guidance, Navigation and Control
Conference and Exhibit, pp. 7410–7424, 2008.

[113] S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs lq control techniques
applied to an indoor micro quadrotor,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2451–
2456, 2004.

[114] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“Direct method based control system for an autonomous quadrotor,”
Journal of Intelligent & Robotic Systems, vol. 60, no. 2, pp. 285–316,
2010.

[115] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control
of quadrotor uavs: A design trade study with flight evaluations,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1400–
1406, 2012.

[116] M. A. Henson and D. E. Seborg, “Feedback linearizing control,” Nonlin-
ear Process Control, vol. 4, pp. 149–231, 1997.

[117] D. Lee, H. Jin Kim, and S. Sastry, “Feedback linearization vs. adaptive
sliding mode control for a quadrotor helicopter,” International Journal of
Control, Automation and Systems, vol. 7, no. 3, pp. 419–428, 2009.

[118] A. Mokhtari, N. K. M’Sirdi, K. Meghriche, and A. Belaidi, “Feedback
linearization and linear observer for a quadrotor unmanned aerial vehi-
cle,” Advanced Robotics, vol. 20, no. 1, pp. 71–91, 2006.

[119] P. Castillo, P. Albertos, P. Garcia, and R. Lozano, “Simple real-time
attitude stabilization of a quad-rotor aircraft with bounded signals,”
Proceedings of the 45th IEEE Conference on Decision and Control, pp.
1533–1538, 2006.

[120] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode tech-
niques applied to an indoor micro quadrotor,” Proceedings of the 2005
IEEE International Conference on Robotics and Automation, pp. 2247–
2252, 2005.
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