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Abstract. A precise and dynamic visual coverage of a given area is an
essential task in many smart contexts, ranging from civil communities
to military applications. Due to the last years advancement in hardware
miniaturization and e�ciency, area coverage is often performed with a
combination of static and moving devices, such as unmanned aerial vehi-
cles (drones). Drones are useful to cope with the highly unpredictability
and dynamicity of environments, but require speci�c and e�cient solu-
tions toward and e�cient area coverage. In this paper we proposes an
initial work toward a drone-based approach for the task of area coverage.
In particular, we focus our analysis on the following points: (i) decentral-
ized consensus for movement planning, and (ii) the integration of cloud
computing infrastructures and technologies for computation o�oading,
both for image analysis and movement planning.
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1 Introduction

The active monitoring of a geographical area through sensors is a fundamental
and widespread aspect for a wide range of applications including private surveil-
lance, crowd tracking, and public security. Active monitoring can be exploited in
a number of both military and civil applications, such as surveillance of national
borders to control immigration/emigration or controlling the �ow of tourists in
large cities. A core aspect of active monitoring is represented by the task of area
coverage, i.e. the ability to place sensors in order cover the considered area in
an optimal way. Since in many applications the condition of the monitored area
can change abruptly, the best way to place sensors also change over time. An in-
frastructure made of static sensors can be not enough to cope with unexpected
events that can result from the inherent unpredictability of crowd behaviour
and the environment, such as for example a broken camera or unexpected visual
obstacles. In addition, ground sensors takes time to be installed, and therefore
cannot be deployed in an unexpected situation if not foreseen in advance. Also,
the monetary investment for the monitoring of a single event can not be justi�ed
in certain scenarios (e.g. research activities).
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Therefore, a crucial aspect is the degree of adaptability that sensors (e.g.
cameras, temperature, sound, etc..) are able to exploit. In order to cope with
highly unpredictability and dynamicity of coverage activities, recently several ap-
proaches exploits Unmanned Aerial Vehicles (UAVs, informally known as drones)
as a valid option to carry out many di�erent kind of monitoring [15]. The tech-
nological advancements of UAVs rapidly increased in the recent years mostly
due to military reasons, nevertheless most of the technology is also available to
civil and research purposes. Drones can be deployed to di�erent locations on
demand, with a very short notice and without requiring a dedicated static in-
frastructure placed beforehand. Their behaviour can be reprogrammed while in
mission, making them suitable to adapt to fast and unpredictable events within
the same mission.

In this paper we consider the challenge of an active area coverage by means
of a �eet of UAVs. For the purpose of this paper, we assumes UAVs are equipped
with means to communicate to each other and with the sensors necessary for their
mission. The usage of a �eet of drones presents multiple bene�t when compared
to a single UAV in terms of: (i) size of the coverable area, (ii) duration of coverage,
(iii) coverage redundancy. However, a careful orchestration is required in order
to accurately plan the movements of UAVs in order to obtain the best coverage
possible. A straightforward way to organize the movement of UAVs is to employ
a centralized entity (e.g. a server) that continuously collects their position and
generate the new movement plan. However, the e�ectiveness of this solution is
limited, as it su�ers in terms of robustness (what if the server crashes?) and
scalability (the frequency and the number of communication can saturate the
server, which is not able to produce the new movement plans in time). Therefore,
in we advocate a decentralized and distributed approach, in which the drones
self-organize their movement toward an e�ective active area coverage.

Besides the self organization of the �eet, we also draw several considerations
in relation to the utilization of cloud computing technologies and mechanisms
for the image analysis activity of the drones. In particular, we consider the case
in which speci�c image analysis techniques are too computationally heavy to
be executed by drones (e.g due to battery constraint) and it would be more
e�ective to communicate the images to be analyzed to a cloud server which can
return back the results of the computation. We analyze this approach according
to the work already done in the �eld of mobile cloud, in which mobile devices
(typically smarthphones) o�oad their computation to nearby cloud computation
units (cloudlet).

The paper is organized as the following. Section 3 presents the reference archi-
tecture and the envisioned scenario considered in the paper. Section 4 discusses
a preliminary model for the area coverage and its exploitation in a best-of-n
problem formulation. Section 5 elaborates the possible integration of cloud com-
puting technologies for the o�oading of computation in the considered scenario.
Finally, Section 6 concludes the paper.
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2 Related Work

The task of self-organize the movements of a number of entities in a decentralise
fashion is not new, and it might be referred to as �ocking [11]. Generally, such
task can be abstract as a specialized version of distributed consensus, and it
has been tackled in many research �elds, although often with di�erent nomen-
clature and purpose. For example, in the �eld of multi-agent systems, holonic
systems de�ne an organizational model of agents based on self-similarity into
�super-agents� that are seen as single agents from the outside [7]. In peer-to-peer
many approaches rely on self-organization techniques to organize the peers of
the network in overlay for multiple purposes, such as area coverage [3] or in order
to estimate a distribution of network parameters [12].

Recently, decentralized and peer-to-peer �ocking algorithms have been ap-
plied to drone networks with the aim of self-organizing a �eet of drone toward the
completion of complex task. The literature about this topic is very vast; hereby
we provide several pointers to recent results. For example, Vásárhelyi et al. [17]
provides an algorithm solution based on short-term repulsion and long-range
attraction of drones, and it is validated via a numerical simulation. Another re-
cent approach, Yuan et al. [18] proposed a decentralized model predictive control
(DMPC) �ocking algorithm to self-organize the movement planning of drones,
by using the XBee communication technology.

Several recent works speci�cally dealt with some version of the problem of
area coverage and in speci�c application domains. For example, [2] propose the
usage of drones for area coverage in agricultural applications. Rosalie et al. [13]
proposed an ant-colony algorithm paired with a way-points based mobility model
to improve the area coverage of drones. The approach of Schleich et al. [15] is
to maintain a connected network among the drone by exploiting a tree-based
overlay network, as well a mechanism that allows drone to predict positions of
one-hop neighbours in the tree.

Most of the above works do not consider the remaining level of the battery
for the drones in the system when planning for movement or actions. However,
there are few approaches that take batter in consideration for di�erent purposes.
For example, Messous et al. [10] propose an approach that tries to keep network
connectivity taking into account the battery level of the drones in a �eet. Al-
though in a preliminary shape, our approach di�erentiates from the above ones
as it embeds the following features: (i) consideration of battery consumption in
the decentralized modeling for area coverage, and (ii) integration of cloud com-
puting technologies for the o�oading of computation devoted to area coverage
activity.

3 Reference Scenario and Architecture

The envisioned scenario is depicted in Figure 1. In such scenario, groups of
persons move across the considered area. The area is potentially large and can
contains obstacles such as trees or buildings. The area can already be equipped
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Cloud
Datacenter

Fig. 1. The envisioned drone-assisted cloud-based crowd control scenario

with static ground sensors devoted to area coverage that are interconnected via
a wireless or wired network. The typical operations conducted by these sensors
include the estimation of the crowd density, motion and behaviour. However,
an infrastructure made solely of static sensors can be not enough to cope with
unexpected events that can result from the inherent unpredictability of crowd
behaviour and the environment, such as for example a broken camera or unex-
pected visual obstacles. In addition, ground sensors takes time to be installed,
and therefore cannot be deployed in an unexpected situation if not foreseen in
advance. Also, the monetary investment for the monitoring of a single event can
not be justi�ed in certain scenarios (e.g. research activities). Therefore we ad-
vocate a scenario in which sensor-equipped drones complement with the ground
sensor network in order to resolve many of the aforementioned issues. In such
scenario a �eet of drones �ies above the area, each drone connected to each
others and with the network of ground sensors. Drones can be used as highly-
moving computational and storage units, allowing for a dynamic access point
toward remote cloud datacenters. They can be deployed to di�erent locations on
demand, with a very short notice and without requiring a dedicated static in-
frastructure placed beforehand. Their behaviour can be reprogrammed while in
mission, making them suitable to adapt to fast and unpredictable events within
the same mission.

In the light of aforementioned vision, the project focuses on two tightly con-
nected aspects:

� a scalable and decentralized support for drones-to-drones and drone-to-ground
communication, with the aim of disseminate information about both the state
of the sensor and behaviour of the crowd in the drone-assisted area coverage
network.

� an e�ective and QoS-aware orchestration of the computation related to area
coverage in terms of computational resource selection, task management, and
o�oading to remote computational resources, organized by means of the Cloud
Computing paradigm.

An high level overview of a reference architecture for the internal software of
the drone is depicted in Figure 2. On the bottom level of the architecture lies the
drone hardware. We assume drones to be equipped with sensor for manoeuvra-
bility (e.g. GPS, rotors controller, etc..) and image acquisition (e.g. cameras).
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We also assume they are equipped with relatively high battery capacity and
computational power.

The communication manager module will take into account the management
of the drone-to-drone and drone-to-ground communications. Since communica-
tion is a costly operation, a particular care will be taken such that information
dissemination will be done in an e�ective way, maximising the usefulness of infor-
mation sent. The component will also take into account the unreliability aspects
of the communication channels. The information obtained by means of the com-
munication module will feed the local context manager. The context models the
view of a drone about its surrounding, and contains information of other drones,
ground sensor and about the crowd. The information of drones range from their
positions, direction and speed, to battery level and computational capacity.

Architecture of drone

Crowd
Tracking

Movement
Planner

Application Manager

Local Context Manager

Communication Manager

Drone Hardware

Fig. 2. High-level architectural view

An important features of the context is
the exploitation of prediction algorithms
to predict ahead the context, which will
allow the drones to plan in advance their
behaviour so to possibly anticipate or
avoid critical situations. On the top of
the stack, the application manager orches-
trates the computational aspect of the
drones. The computational tasks can be
related to the decentralized organization
of the �eet and area coverage activities.
The movement planner decides the tra-
jectory of the drone considering the local
context, and in such a way to globally op-
timize the area covered by the �eet. The crowd tracking module will employ
image recognition algorithms already existing in literature in order to acquire
information and build models of crowd behaviour. The application manager will
coordinate the computation underlying these modules by deciding whether to
execute the related tasks locally or remotely according to the local context.

4 A Model for area coverage

In general terms, the targeted objective is to cover as much area as possible by
exploiting a �eet of drones, while minimizing battery consumption. The exact
meaning of cover depends on the speci�c application scenario; In this context
we consider an area coverage devoted to crowd control, in which the main task
carried out by drones drones acquire images of a certain area and perform some
analysis with the aim of recognize certain items (i.e. crowds, people, objects).
Therefore, our problem can be formulated as: for a given accuracy associated
with the recognition/classi�cation of the items, we have to �nd/compute a com-
bination of states for the drones that maximizes the surveillance area coverage
while minimizing their battery energy consumption.
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We consider each drone having a state composed by three parameters: (i)
its geographical (GPS) position (x, y), where x and y are linear coordinates; (ii)
the altitude h (distance from the ground), which also specify the area coverage
S; and (iii) energy level of the battery E. The task is then to �nd the proper
combination of the states that would maximize the area coverage for the given
accuracy while minimizing the battery level consumption.

The proposed approach considers to divide the behaviour of the drones in
two phases:

1. A local adjustment phase in which drones applies the necessary changes in
order to respect the given accuracy;

2. A phase in which (i) drones exchange each other possible option plans for
their positioning, and (2) reach a consensus on which plan to apply. This
phase exploit a best-of-n formulation to reach the consensus.

In the following we provide a preliminary analysis and modelling of the two
phases.

4.1 Local adjustments for accuracy

The given recognition accuracy is reached by the drones by operating locally on
two parameters:

� The altitude of the drone h (Figure 3). According to its altitude, a drone can
cover a di�erent portion of an area with a di�erent level of details. A lower
altitude allows to receive more details of the items of interest and, presumably,
to perform a more detailed and precise recognition/analysis of such items.
Nevertheless, in this case the coverage area of the drone decreases together
with the attitude S = πrˆ2, where r is the radius of the coverage circle.
Considering the φ as angle of horizontal �eld of view of the drone to be �xed,
while h changes in time we can derive the area coverage radius as:

r(t) = h(t) ∗ tan(φ
2
) (1)

� The speci�c algorithm used for image recognition. This choice has an impact
on battery consumption due to di�erent complexity of the computation. Nor-
mally, the more accurate algorithm is for the recognition, the more energy
consumption computation has to be executed. Hence decreasing the accuracy
of the recognition can decrease the required energy consumption.

Therefore, we can derive the accuracy of the recognition by the drone as a
function of its attitude and energy consumption. In other words given the re-
quired accuracy and the local state of the battery the drone can compute in what
way to satisfy the accuracy, by: (i) decreasing the covered area; (ii) increasing
the computation complexity of the algorithm increasing battery consumption;
or (iii) applying a combination of both these approaches.

4.2 Best-of-n formulation
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Fig. 3. Area coverage for a drone ac-
cording to its height

Self-organization is a popular research
topic in robot swarm, especially in its
Best-of-n Problem formulation [16]. In
particular, the best-of-n problem refers
to problem of collective decision making
done by a set of agents. According to
Valentini et al. [16] "The best-of-n prob-

lem requires a swarm of robots to make a

collective decision over which option, out

of n available options, o�ers the best al-

ternative to satisfy the current needs of

the swarm". As a consequence, a decision
among the options is taken according to
the concept of majority (i.e. when a suf-
�cient number of agents favour a speci�c
option), which generally depends on the
speci�c application.

Valentini et al. also categorize the
best-of-n problems according to two spe-
ci�c characteristics of an options, namely quality and cost. Both these charac-
teristics depend on the application scenario considered. A best-of-n problem is
then categorized according to the symmetry or asymmetry of both quality and
cost. If in a given problem all the options have the same quality, the n-problem
is symmetric with respect to quality. Otherwise if at least two options have dif-
ferent quality, then the problem is asymmetric. The same reasoning goes for the
cost.

Few assumptions are necessary to frame the active area coverage de�ned in
this paper into a discrete best-of-n problem. The �rst assumption is done by
making discrete the problem of coordinate a set of drones (�ocking). This can
be done by considering the following two factors: (i) limit the area of actions
of drones and (ii) divide this area into a grid of tiles, and the movement of
the drones are de�ned as movement from one tile to another. With these two
assumptions, the �ocking problem goes to continuous to discrete, as the possible
actions (movements) of the drones are �nite. The second assumption is that the
drones have in place the proper protocol an technology (such as XBee [18])
to communicate to each other in order to exchange the computed plans and to
select the one that best satisfy the area coverage problem.

By applying the same criteria used by Valentini et al. we characterize the area
coverage as a best-of-n problem, by associating the quality of a solution with the
amount of area covered (at the given quality) by the �eet, and the cost with the
amount of energy spent by drones in order to provide such coverage. According to
this formulation, both quality and cost are asymmetric. The interaction between
cost and quality can be de�ned as synergic or agnostic: in the former case the
best option has the best quality with the minimum cost, in the latter the best
option results in a tradeo� between cost and quality. In our case the interaction
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between area coverage and energy consumption is synergic, as the best solution
would be the one that maximizes the area coverage while minimize the energy
consumption.

5 O�oading to cloud computing

In the last years, many approaches have dealt with scenario in which computation
is o�oaded from mobile devices to cloud datacenters [6]. The bene�t of such
o�oading is to improve the capacity of mobile and thin devices, usually limited
in terms of CPU, memory and battery life, so that even simple devices can run
complex and demanding applications. Among the many proposals, MAUI [5] and
CloneCloud [4] are based on virtual machine migration and focuses on o�oading
of computation from mobile devices to remote servers at execution time, allowing
the developers of applications to decide which computation can be o�oaded.

In terms of computational resources, Cloud computing could represent an
ideal back-end solution to manage the computation related to crowd tracking
and image processing [9, 8]. However, due to the large amount of data collected,
which needs to be transferred to the cloud, and the inherent dispersion of entities
that performs data collection, it can be infeasible or inconvenient to transfer
the computation toward a large remote datacenter. This is specially true in
out envisioned scenario, as the behaviour of the crowd for the purpose of area
coverage shall be identi�ed fast such to allow the drone �eet to adjust their
position.

This scenario points toward the case in which several ground sensors, or some
powerful drone, assume the role of cloudlet [14], while normal drones the role of
mobile devices. In the cloudlet model, drones would o�oad their computation to
cloudlets, which are relatively small computational units connected with the full
blown remote cloud server. Cloudlets are deployed locally to the area of interest
and often placed in common and crowded areas to achieve physical proximity
with mobile devices. This aspect provides devices with low latency and high
bandwidth connections, thereby allowing an interactive response for demanding
applications.

The approaches de�ned for cloudlet currently developed target mobile de-
vices like smart-phones or laptops. The di�erence with respect to our scenario
is the fact that o�oading from smart-phones does not a�ect the context of the
cloudlets or the devices. Instead, in our scenario the o�oading also a�ects the
behavior of a drone, which in turns can a�ect the whole �eet. In other terms,
the decision whether to o�oad is not only a�ecting the quality of the applica-
tion but potentially a�ects the area coverage scenario as a whole, for example
by modifying the behavior of the other drones in the �eet. Therefore, we plan
to adapt existing or design new distributed algorithms that: (1) orchestrate the
computation also considering the e�ect that o�oading can have in all the enti-
ties related to the crowd tracking, and (2) perform fast and e�ective brokering of
cloudlet resource [1], in order to guarantee the quality of service demands from
the crowd tracking tasks.
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6 Conclusion

The organization of the activities of a �eet of drones is a relevant task in many
of today's smart environment. In this paper, we present several initial consid-
erations about the area coverage, i.e. the activity devoted to the analysis of an
area through image analysis. Speci�cally, we analysed the problem of decentral-
ized consensus for movement plan in a best-of-n problem formulation, and we
reviewed the current trends and approaches for computation o�oading, speci�-
cally for image analysis, in the frame of cloud computing technologies. As future
work, we plan to integrate the analysis provided in the paper into a concrete
proposal, both from a technological and algorithmic viewpoints.
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