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Abstract Video surveillance systems have become an
indispensable tool for the security and organization
of public and private areas. Most of the current com-
mercial video surveillance systems rely on a classical
client/server architecture to perform face and object
recognition. In order to support the more complex
and advanced video surveillance systems proposed
in the last years, companies are required to invest
resources in order to maintain the servers dedicated to
the recognition tasks. In this work, we propose a novel
distributed protocol for a face recognition system that
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exploits the computational capabilities of the surveil-
lance devices (i.e. cameras) to perform the recognition
of the person. The cameras fall back to a centralized
server if their hardware capabilities are not enough
to perform the recognition. In order to evaluate the
proposed algorithm we simulate and test the 1NN
and weighted kNN classification algorithms via exten-
sive experiments on a freely available dataset. As a
prototype of surveillance devices we have considered
Raspberry PI entities. By means of simulations, we
show that our algorithm is able to reduce up to 50%
of the load from the server with no negative impact on
the quality of the surveillance service.
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1 Introduction

Video surveillance is of paramount importance in
areas like law enforcement, military and even for com-
mercial environment. A way to execute the surveil-
lance is to stream the data from the cameras to the
displays of the human operators, who are responsi-
ble to analyze the video. Human resources used in
the field of the video surveillance services are both
costly and not reliable. The person who is supposed
to follow and analyze the surveillance video cannot
keep the concentration for a long time, and can miss
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some important information on the video. Hence, with
the recent progresses in smart technologies, automated
video surveillance, where the video streams are ana-
lyzed automatically, as you can see in the following
surveys [30, 35], gained a lot of interest.

Automated area surveillance addresses the real time
observation of people and objects in a busy envi-
ronment, leading to their recognition and description
of their actions and interactions. Being one of the
most important technique to organize a secure area,
the surveillance smart service problems became an
hot research issue. The most important issues include
tasks like people detection, recognition and tracking;
object recognition, motion analysis, etc [38, 42].

The motivating scenario that we consider for this
work is that of face recognition. The surveillance sys-
tem should be able to recognize faces, and track their
movements in possibly large area (e.g. an airport, a
city district, a campus, etc.), using various cameras
appositively installed. Executing the needed image
processing tasks, for offering this kind of automated
video surveillance in real-time, requires significant
storage and processing resources. The need to pro-
cess big amount of video data represents a common
bottleneck of the automated video surveillance sys-
tems, especially when the number of camera providing
video streams and the number of faces to be simulta-
neously recognized and tracked is large.

The aim of this work is to analyze the issues and
solutions related to resource allocation, for executing
automated video surveillance, in a fully distributed
environment [4, 5]. In particular, we suppose that the
(smart) camera devices themselves can cooperate to
execute the needed faces detection, recognition and
visual analysis tasks. In this work, we study how
the image recognition algorithms can be orchestrated
across several devices so that bottlenecks are reduced
and resource can be managed more effectively.

One of the straightforward approaches for resource
allocation in video surveillance services is to use
client-server model of communication. In other words,
the surveillance devices stream the video directly to a
main powerful server, where the data can be analyzed
[23]. Despite of the effectiveness and simplicity of
such architecture, this approach presents several nega-
tive sides. First, relying all the functionality on a single
server creates a bottleneck for the system security and
reliability. A high rate of the recognition tasks on the

server can lead to delays in the image processing. Sec-
ond, in order to analyze all the video streams coming
from the surveillance devices the target organization
needs to maintain big and costly infrastructure of
servers dedicated only to the surveillance task. More-
over, such a service become too costly for small and
medium size business, which are not able to allocated
so much financial resources only for the surveillance.

This work extends and enhances our previously
published research work [16], where we have pro-
posed a distributed algorithm for load balancing
between Smart Sensing Units for video surveillance
task. The adaptive algorithm distributes, at run time,
the recognition tasks between the resources of surveil-
lance devices and servers. The detection and recogni-
tion tasks are executed locally by surveillance devices,
which exploit both the spatial and temporal topology
of the moving people, to cache and reuse locally parts
of the classification features. Only when devices are
not able to execute the recognition task with the cache,
a recognition request is sent to the server. We extend
the previously proposed adaptive algorithm consider-
ing the overhead of real classification techniques. In
our evaluation we implemented and tested classification
algorithms for face recognition: 1NN and the weighted
kNN classifiers with Local Binary Pattern (LBP)[7].

The paper is structured as follows. Section 2 briefly
describes the background for the classification algo-
rithms we considered in our work. Section 3 pro-
vides the definition of the system model and problem
statement, whereas Section 4 presents the algorithm
for the adaptive camera-assisted person recognition.
Section 5 evaluates the classifiers in terms of classifi-
cation performance and accuracy. Section 6 evaluates
the distributed surveillance solution through simula-
tions and Section 7 offers an overview of the related
work. Finally, we conclude the paper in Section 8 by
discussing the results and the future work.

2 Background

Face identification in images, or frames, coming by
a video source consists of a two steps pipeline: face
detection and face recognition.

Face detection allows a computer to identify human
faces in digital images and video. This task is not triv-
ial due to the fact that human face in video frames is
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usually a dynamic object, with high degree of vari-
ability in its appearance. Different illumination condi-
tions, facial poses and expressions, occlusion, rotation
can affect a face detection algorithm. The problem of
face detection is well presented in the literature and
for a comprehensive survey we refer the reader to
[41].

Face recognition problem today is still a hot research
topics. It is a classification problem in which a new
detected face must be matched against an available
dataset of already labelled faces. In order to efficiently
represent those faces, algorithms are used to extract
facial features. Among these, the Eigenface method
based on PCA [32], the Fisherface method based on
LDA [10] and Elastic Bunch Graph Matching (EBGM)
that approximates a face through a deformable graph
[37] have obtained success and are largely used in
face recognition applications. More sophisticated fea-
tures based on Artificial Intelligence and its new
research fields, such as Deep Learning [31], have
been proposed too. These algorithms achieve great
accuracy but are very computationally demanding.
Thus, in order to meet the requirements of the real-
time applications and of the embedded computing
boards, simple algorithms are required for fast fea-
ture extraction. Among these, the LBPH [2] has been
investigated and is used in the system since it bet-
ter fits the requirement of a dynamic system in which
classifiers can be added with respect to the Fisherfaces
model. The aim of the facial features seen so far is
to let the system to discriminate people. However, a
convenient way to assess, with a certain degree of con-
fidence, if a new unlabelled face belongs to someone
that system already knows is to adopt a classification
approach. This is a recognition task that can be for-
mulated as follows: given a set of labels or classes
{c1, c2, c3, . . . , ch}, a set of already labelled objects
{o1, o2, o3, . . . , on} (belonging to the training set, TS)
and a query q (i.e., an unlabelled object), the problem
is to assign a label to q.

In this paper, we consider the following classifiers
for face recognition: the first nearest neighbor (1NN)
and the weighted k-nearest-neighbor (weighted kNN)
implemented with LBP.

1NN Classifier Given an unknown face q and a set
of known and labelled faces (oi, ci), the 1NN algo-
rithm recognizes q according to the label of the nearest
object belonging to the training set for the query, in

the feature space. The confidence for the response of
the 1NN classifier is evaluated as

c1NN = 1 − d(q, oj )

dmax

(1)

where oj denotes the nearest face to the query q,
d(q, oj ) is the distance of the facial faces q and oj ,
and dmax is a distance used as normalization factor.
In case of ties, different approaches can be followed
such as peeking at random a label among the winners.
The aim of the algorithms for facial features extrac-
tion is to generate patterns that lie near each other for
the same faces and are far away from the features of
different faces.

Weighted kNN Classifier The key idea of the
weighted kNN is to assign a weight or score soi

to an
object oi , according to its position with respect to the
query. This score is assigned to each object belong-
ing to the result set that the kNN would return and
is evaluated as soi

= 1 − d(q,oi )
dmax

. Then, the algorithm
evaluates the sum of this scores z(q, cj ) for the dif-
ferent classes cj present in the result set. In the end,
the label assigned to the query will be the one of the
class that reaches the maximum value. In this case,
the confidence value returned by the algorithm has the
following form:

cwkNN = 1 − z(q, cw2)

z(q, cw1)
, (2)

where cwi
denotes the class that obtained the i-th

higher score in kNN(q). This recognition confidence
can be used to decide whether or not the predicted
label has a high probability to be correct. Another kind
of confidence we analyze is the following:

cwkNN2 =
∑

i soi

k
∀oi ∈ cw1 (3)

This value expresses the probability that q belongs
to cw1 . The term k at the denominator is needed in
order to have a value ranging in [0, 1]. The weighting
schema reduces the probability of ties.

3 System Model and Problem Statement

In our work, we model the geographical area, where
the surveillance system is deployed, as divided into
sectors. A set of Smart Sensing Units (SSUs) are dis-
tributed among the sectors in order to execute the
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video surveillance task (Fig. 1). Such units have vari-
ous sensing, computing, storage, and communication
capabilities. It is important to notice that a SSU is a
logical unit, which does not necessarily correspond
to one single physical sensor. For instance, a SSU
unit can be a smart camera having on board sensing,
computing, storage resources. However, it can also
be composed of a camera connected to a computer.
Moreover, we assume also the existence of a Main
Server (MS) unit in the network. A main server is
a stand alone SSU that is characterized by (theoreti-
cally) infinite computing, storage, and communication
capabilities. It also plays the role of the central server
where the devices send their requests, in case of
client-server modality.

In our work, we distinguish two possible scenarios:
basic and enhanced. In the basic scenario, all SSUs
are connected to the central MS. Moreover, the func-
tionality of SSUs is limited to the video observation
and data streaming to the MS. In the enhanced sce-
nario, on the other hand, all SSUs are connected in a
structured peer-to-peer topology. SSUs can cooperate

with each other in order to execute complex tasks
and build together a rich representation of the con-
text where the infrastructure is deployed. We consider
the peer-to-peer overlay connecting the SSUs to be
fixed. Moreover each of SSUs has the possibility to
contact directly the MS and its geographical neighbor
SSUs. We assume the communication between SSUs
is reliable, i.e., no message is ever lost or corrupted.
Moreover, in the enhanced scenario each SSU has
computational resources and local storage memory,
where it keeps a recognition library. The recognition
library is a collection of recognizers, each specialized
to recognize a certain person. The MS’s recognition
library contains the recognizers for all the recog-
nizable persons in the surveillance area, while the
recognition library of an SSU is basically a local cache
that keeps only a subset of all recognizable persons.

As an illustrative example, let us consider the fol-
lowing scenario, taking place in a geographical area
(the surveilled area) of appropriate size, where a num-
ber of SSUs have been deployed for video surveillance
purposes. Here we consider a person that is moving
in the area. The system should visually recognize the
person in order to evaluate the presence of this person
in the area. One of the straightforward solutions for
area video surveillance is to stream all the data from
the SSUs to the MS for the following processing and
storage. This approach can cause some additional sys-
tem issues. At first, the interested organization needs
to have a powerful server system devoted specially
for the surveillance needs. This server system needs
to be powerful enough to continuously process the
video streaming data that is coming from the SSUs.
The second problem is connected with the delays for
the person recognition, caused by possible server over-
loading and network bandwidth overhead in case of a
high rate of requests for recognition.

In order to tackle these issues, our solution exploits
a distributed architecture for face recognition, where
the detection and recognition tasks are moved to SSUs
when it is possible. We extensively test SSUs in a wide
variety of scenarios with the objective to perform the
most possible computation on the camera themselves
and using optimized strategies of distributed computa-
tion to solve the most challenging resource demanding
tasks. Moreover, we also implemented three classi-
fication algorithms and extensively tested them on a
public available dataset for different scenarios.
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4 Algorithm

In this section, we describe our enhanced algorithm
for distributing the recognition processes on the SSUs.
Each camera in the system keeps the list of its neigh-
bors SSUs, which we name view. In order to improve
the efficiency of the recognition process each cam-
era in the area has associated computational resources
and can locally keep a recognition library that con-
tains a subset of all recognizers for faces. Using a
subset of these local recognizers each camera in the
network tries to recognize the face of the detected
person locally and with a help of neighbor SSUs, with-
out involving the MS. The rationale behind it is that
we reduce the computational and bandwidth consump-
tion impact to the MS. Each entry in the recognition
library is composed of (1) a set of classifiers for
a face, class in the following, (2) the alarm status
(alarm or recognized) and (3) a counter age that indi-
cates the number of active thread cycles passed from
the last time when the corresponding face has been
seen by the SSU. The size of the library is limited
to recognizersLimit according to the available storage
space of a SSU.

Three threads are executed by each of the SSUs:
(1)active thread (Algorithm 1) is responsible for
the active area monitoring, (2)time-out thread corre-
sponds to the timeout event in the face recognition by
neighbors and (3) passive thread (Algorithm 2) pro-
cesses the incoming messages received by an entity.

Every �T , each camera executes the active thread
Algorithm 1. At first, it increases the ”age” of all
known recognizers (increaseAge()) in the library
recognizers. In the next step, a camera processes
the current surveillance area image and extracts the
facial features getVisibleFaces() for the detected per-
sons. During each cycle a SSU selects a subset
selection of recognizers from the local collection
(selectRecognizers). The SSU selects nselection of
recognizers with the lowest age parameter. The choice
of the last viewed face classes allows us to exploit the
spatial and temporal locality of the moving people in
the face recognition. The size of the selection subset
is computed according to the equation:

nselection = Tmax − Tms − Trecl − tdet
ct · nevents

(4)

where Tmax is a predefined maximum allowed face
recognition delay, Tms is the estimated average time

Algorithm 1 Active thread algorithm executed by
SSU

repeat
recognizers.increaseAge();
events ← getVisibleFaces();
selection ← selectRecognizers(recognizers);

foreach face in events do
if alarm ← getStatus(face, selection) then

send(FACEID, face, alarm, view);
startAlarmActivity();
return;

if recognized ← getStatus(face, selection)
then

send(FACEID, face, recognized, view);
return;

if null ← getStatus(face, selection) then
tδ ← setRecognitionTimeout();
reclBuffer.add(face, tδ);
send(ALARMREQUEST, face, null, view);
return;

wait �T;
until;

needed for the MS recognition, Trecl is the estimated
average time period required for the recognition by
the neighbor SSUs, tdet is the estimated time of the
features extraction, ct is the time needed to compare
the extracted features with one class in the recognition
library and nevents is the number of detected faces in
the surveillance area.

For each face in events a SSU executes the recog-
nition algorithm. In case face corresponds to the entry
in recognizers with alarm status, the SSU (1) sends
a notification message type FACEID with an face fea-
tures and the alarm tag to the neighbor SSUs; then
(2) starts predefined alarm activity, for example video
recording and live streaming to the operator displays.
The precise activity to be executed after the trigger-
ing of the alarm strongly depends on the organization
running the surveillance system, and for this reason
this part is not investigated in the paper. Rather we
focus on the detection of the alarm event. In case a
face is recognized, a notification FACEID is distributed
between the neighbor SSUs.

If there is no correspondence in selection, the cam-
era establishes a maximum recognition waiting time
(setRecognitionTimeout()): tδ = t0 +Tmax−Tms− tdet.
Where t0 is the time moment when the face has been
detected in the area, and adds the face features into the
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reclassification buffer reclBuffer. In order to optimize
the resources utilization in the network, before to send
the recognition request to MS, a camera first sends the
recognition request ALARMREQUEST to the neighbors
SSUs.

When the reclassification waiting time has passed
isTimeOut() and the object is still in the reclBuffer, the
camera sends classification request ALARMREQUEST to
the Main Server entityMS and removes the features from
the reclassification buffer (reclBuffer.remove(face)).

At the same time all the SSUs are available to
receive messages from the network. In case a mes-
sage is received, the recipient processes it following
the Algorithm 2. In our protocols we consider three
types of messages: ALARMREQUEST , ALARMREPLY

and FACEID.
The ALARMREQUEST message type corresponds

to the messages containing request for a face clas-
sification. The recipient checks the status of the
received face in the local subset of a recognizers list
(getStatus(face, selection)) and replies ALARMREPLY

the results of the recognition result to the sender.
The ALARMREPLY message corresponds to the

reply to a recognition. If recognition results come
from MS entity, the recipient integrates (integrate
(recognizers, face)) the recognized face and its status
to the local recognizers and sends the face notification
message FACEIDto its neighbors view. Moreover, in
case the received status is alarm the camera initiates
some predefined alarm activity (startAlarmActivity()).
In case the recognition results are received from a
neighbor camera as a reply for the reclassification,
at first the camera increases the counter of replies
received for the considered face in the local reclassifi-
cation buffer reclBuffer. If the reclBuffer contains face
and the received status for the face is null it means the
face has not been recognized by sender. In this case,
if the counter of replies is more or equal to the num-
ber of the camera neighbors SSUs, the camera sends
the recognition request ALARMREQUEST to the MS

and removes the face from the reclassification buffer
reclBuffer (reclBuffer.remove(face)). In this case the
received message means that no one of the neighbor
cameras could recognize the face and the help of the
MS is needed. If received status is not null it means
the face has been recognized by a sender and the cam-
era integrates it to the local recognizers, removes the
face from the reclassification buffer and sends the face
notification message FACEIDto its neighbors SSUs.
In case the received status is alarm, the camera also
initiates some predefined alarm activity.

Algorithm 2 Passive thread algorithm executed by
SSU

on event msg < type, face, status, sender > receive do

if type == ALARMREQUEST then
result ← getStatus(face, selection);
send(ALARMREPLY, face, result, sender);

if type == ALARMREPLY then
if sender == MS then

if status == alarm then
startAlarmActivity();

integrate(recognizers, face);
send(FACEID, face, status, view);

else
reclBuffer.getFace(face).counter + +;

if reclBuffer.contains(face) and
status == null then

if
reclBuffer.getFace(face).counter ≥
view.size then

send(ALARMREQUEST, face, null,MS);

reclBuffer.remove(face);

else
if status == alarm then

startAlarmActivity();

integrate(face, recognizers);
reclBuffer.remove(face);
send(FACEID, face, status, view);

if type == FACEID then
integrate(face, recognizers);

procedure integrate(recognizers, face)
if recognizers.contains(face) then

recognizers.getFace(face).age == 0;
else

if recognizers.size ≥ recognizersLimit then
recognizers.add(face);

else
recognizers.remove(recognizers.getOldest());

recognizers.add(face);

FACEID is a message type used for the face features
broadcasting to the neighbor SSUs. Hence, whenever
a camera receives this type of message it integrates the
received face features to the local recognizers library.

The integrate(recognizers, face) procedure is
aimed to integrate received/observed face features
classes face into the local collection recognizers. In
case the recognizers already contains the face fea-
tures, the associated age is set to 0. Otherwise, In
case the size of the collection has reached the limit
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recognizersLimit the camera swaps the received face
with the one with the largest age. In case there are
vacant places in the collection, the camera simply
adds the received features in the local collection
(recognizers.add(face)).

5 Performance Evaluation of Classification
Algorithms

The problem of recognition using devices with limited
computational capabilities is an hot research topics [6,
14, 22]. In this section, we evaluate the performance
and accuracy of 1NN and weighted kNN classification
Algorithms 2. The results of the tests are used in the
following simulation and evaluation of the distributed
video surveillance algorithm (Section 6).

In order to compare against most recent face recog-
nition techniques, we also performed the experiments
using the weighted kNN algorithm with face fea-
tures extracted using a Convolutional Neural Network
(CNN). We used the 16-layer VGG-Face Deep CNN
[25] provided by the Visual Geometry Group of the
University of Oxford. However, due to the limitations
in the Raspberri Pi resources, the timing for CNN fea-
tures extraction was too high for the purpose of the
distributed approach proposed in this work.

To execute face recognition tests, we used the
extended version of the Yale Database B [20]1. From
the dataset we have taken 350 images for each face.
Among these, 300 are used as test set and the remain-
ing ones are used for the training set (TS) of each
person. We evaluated the performance of two facial
features, LBPH and the Principal Component Anal-
ysis (PCA) algorithm applied on the LBPH. For the
LBPH features comparison, we have applied the Chi-
Square distance [2]. In order to evaluate the dissim-
ilarity measure after PCA algorithm applied on the
LBPH, we apply the Euclidean distance. Concerning
the performance metrics, we consider the accuracy
and labelling rate for the classification algorithms.
Accuracy is defined as the ratio between the number
of correctly labelled samples and the total number of
labelled samples. Labelling rate is defined the ratio
between the number of (correctly or incorrectly) clas-
sified samples and the total executed classifications.

1http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.
html

According to our evaluations, on the Raspberry PI
device the time required by the LBPH feature extrac-
tion is ≈ 30ms and the χ2 distance evaluation between
two features is about 9ms.

5.1 LBPH Evaluation

1NN Classifiers The confidence for the response of
the 1NN classifier is evaluated (1). However, since
the confidence is related to the distance of the nearest
object d(q, oj ), we evaluate the performance of 1NN
classifiers using this distance as the threshold parame-
ter t . In other words, scanning the training set an object
oi will not be considered if d(q, oi) > t .

Figure 2 shows the results of the experiments with
1NN classifiers for different training set sizes (5 and
50 samples per class) and for different values of the
distance threshold t in the range 0 − 40. For increas-
ing values of the threshold t , the classifier is able to
label more faces but leading to a lower accuracy. For
a threshold lower than 20, an accuracy close to one
is achieved. However, for the same threshold and a
higher number of samples in the training set, more
faces can be classified with an increasing accuracy.
For example, if 5 samples for each class are available
in the training set and we use a threshold t = 20,
the classifier is able to label 30% (corresponds to 0.3
labeling ratio on the figure) of faces with an accuracy
of 0.9. If the same threshold is used but the number
of training samples per class is augmented to 50, the
70% of the faces can be classified with an accuracy of
around 0.95. Finally, for higher threshold values, the
classifier labels each face while the accuracy remains
constant since the distance of the nearest object from
the query does not change anymore. Thus, if an accu-
racy higher than 0.9 is required, a threshold lower than
20 must be used.

Figure 3 relates the accuracy and the ratio of
labeled faces considering the number of samples in the
training set for each class. The figure shows that more
faces can be labeled with higher accuracy when the
amount of samples increases. For example, if we want
to be able to label 80% of elements (0.8 on the figure),
and we need high accuracy (suppose 0.9), 50 samples
per class is a good starting point for the training set.

Weighted kNN Classifiers In order to evaluate the
weighted kNN classifiers, we analyze two kind of
confidence metrics: cwkNN1 and cwkNN2 (defined in

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Fig. 2 1NN accuracy and the ratio of labeled faces for different distance thresholds and different training set sizes (from left to right:
5 and 50 samples per class)

Section 2). cwkNN1 is a measure of confidence of the
classifier has about the first and the second class with
higher score among the others. cwkNN2 , instead, con-
veys the probability that q belongs to the class with
absolute higher score (Fig. 4).

The tuning of kopt depends upon the size of the TS.
Table 1 shows the accuracy of the method for differ-
ent combinations of k and TS sizes. For a small TS, a
small value of k gives better performance. If TS grows,
the best k grows as well, until it reaches a maximum
value of 20. Since the accuracy obtained by these k

values is quite the same, we analyze only how the
accuracy and the number of labeled elements change
if kopt = 20, when the confidence cwkNN1 grows from
0 to 1. As we can see on the Fig. 5, the higher is the
required confidence, the higher is the accuracy, but the
lower is the number of labeled elements. For bigger
sizes of TS a higher ratio of elements can be labeled
with higher accuracy for a fixed confidence value.
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Fig. 3 1NN Accuracy vs Labeling rate for different number of
training set samples per class

Figure 4 shows the relationship between the
obtained accuracy and the ratio of labeled elements for
different TS sizes. If we compare Fig. 4 with Fig. 3,
weighted kNN classifier is able to label more objects
for a given accuracy and a fixed TS size.

Finally, Fig. 6 shows how the accuracy and the ratio
of labeled elements change when cwkNN2 is applied.
Note that the meaning of cwkNN2 = 1 is that all objects
of the response set belonging to the winner class cw

are at distance d = 0 from the query. Plots are in semi-
logarithmic scale since for a low confidence a high
accuracy is reached, whereas the number of labeled
faces rapidly decreases. Nevertheless, the confidences
cwkNN1 and cwkNN2 can be combined in order to have
a higher confidence of the response of the classifier.

5.2 PCA on LBPH Feature

Evaluating the LBPH feature on a 100 × 100 pix-
els image is an easy task also for an embedded node.
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Table 1 Accuracy achieved
by weighted kNN algorithm
for different k values and
sizes of TS

�������TS images
k

5 7 10 20 30

10 0,5399 0.54165 0.53734 0.51384 0,5017

20 0,666 0.66861 0.66945 0.66083 0,6509

30 0,7299 0.73425 0.73522 0.7298 0,7206

40 0,7709 0.77458 0.78125 0.78612 0,7761

50 0,8035 0.80809 0.81129 0.81602 0,8108
The best values are in bold

However, the storage used for the TS and the time
spent to evaluate the χ2 distance can still be high for
the feature length we considered. Our goal is to be
increase the efficiency without affecting the accuracy.
Hence, in this section we present the results of the
PCA algorithm applied to LBPH feature in order to
reduce the feature length [1].

In order to compare the features as dissimilarity
function we used the Euclidean distance. In the fol-
lowing, the number of principal components has been
fixed to 256.

1NN Figure 7 shows how the accuracy and the label-
ing rate vary for different TS sizes and distance
thresholds. For a threshold higher than 0.3, the accu-
racy starts to decrease whereas the number of labeled
faces increases. For thresholds higher than 1.3, more
than the 90% (corresponds to 0.9 on the figure) of
faces are labeled and the accuracy is constant. Finally,
Fig. 8 shows the relationship between the labeling rate
and the accuracy obtained for different TS sizes. A
higher number of TS samples allows us to get a higher
accuracy.

These results can be compared with the ones we
described for standard LBPH feature. The comparison
suggests that this method can be applied if accuracy
1 is not required and some misclassification can be
accepted.

Weighted kNN As in the case without PCA, the kopt

value changes when the TS is enlarged with new sam-
ples. Since the variation of the accuracy for k equals
5, 7, and 10 is very low, in this case, we consider how
accuracy and the labeling rate change for kopt = 10.
Figures 9 and 10 show the results of the accuracy
and labeling rate for different confidence thresholds
and TS sizes. These results can be compared with the
weighted kNN algorithm without PCA. Even though
high accuracy can be reached, the labeling rate when
the accuracy is near 1 is very low. On the other side, in
the previous case for weighted kNN on LBPH, when
accuracy 1 is required, the labeling rate is near 0.7.
Despite the heavy space reduction, the weighted vari-
ant of kNN is still able to reach good results and
perform much better then other considered classifiers.
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Fig. 6 Weighted kNN accuracy and the ratio of labeled faces for different confidence thresholds (cwkNN2 ) and training set sizes (from
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6 Evaluation of the Area Surveillance Algorithm

In this section, we first present the mobility model
details and the workload settings we used for the
evaluation. Then, we evaluate the performance of
the described classifiers in a simulated network of
SSUs. The evaluation is based on a simplified net-
work setup and is aimed at analyzing the impact of
(i) the SSUs cache size and (ii) the type of classi-
fiers applied at the SSU side. Finally, we evaluate
the impact of the proposed distributed surveillance
algorithm on the network and MS load. Our simu-
lations rely on the PEERSIM simulator [24], a light
weight simulator widely used in the community of
distributed protocols. To model the SSU hardware,
we have considered each SSU to be equivalent to a
Raspberry Pi device [33].

6.1 Workload Setup and Surveillance Layout

In order to execute the network simulations, we have
used two different system setups. The first, setup 1 in
the following, represents the area covered by a grid
of 8 × 8 SSUs where 28 simulated persons are ran-
domly placed. The system knows only 24 faces so
that 4 of them are unknown. SSUs’ surveillance areas
do not overlap each other but the whole surveillance
area is covered by them. Initially, for each person, ran-
dom starting and end points are chosen. During the
simulation, persons move towards their final destina-
tions by one step at time following the Random Way
Point mobility model [13]. Once they arrive, a new
end point is chosen. This operation is performed ten
times for each person. In order to simulate the captur-
ing of a person’s face by an SSU, we simulate the case

in which a person remains in the same position with a
relative high probability, so to allow the SSU to detect
the face in several sequential frames.

In the second setup, setup 2 in the following,
625 SSUs are uniformly distributed in the area of
250×250 meters, with an average overlapping of area
surveillance with neighbor SSUs of poverlap = 20%.
Hence, each SSUs is responsible for an area of about
10m×10m, where 20% is shared with neighbor SSUs.
The disjoint of the surveillance areas we simulate via
“blind zones” using the probability of the object to be
detected in the assigned to the SSU surveillance area.
At the start of the simulation each SSU has associated
a detection probability that is randomly chosen in the
range pdetection = [0.5−1]. For example the SSU with
0.8 probability for object detection simulates the sit-
uation where the SSU is able to control 80% of the
assign sector and 20% is a blind zone.

Persons in the “surveillance area” move according
to a more complex mobility model, adapted in a pre-
vious paper [15] for the movements of avatars in a vir-
tual environment. In this model, the area has a number
of hotspots equals to nhs (Fig. 11a). The hotspots are
the most attractive places in the area, for example food
court or meeting rooms, so, at any given point in time,
it is expected to find more persons there than in other
places. We consider the exit and entrance of the whole
area to be at the same place, specifically we assume it
to be the point with coordinates (0, 0) on the map.

Each person that enters the surveillance area fol-
lows the same behavior. First, the person chooses a
random number of hotspots to visit and put them
in a queue. Second, it moves towards them, starting
from the first and proceeding in order, removing an
hotspot from the queue once it has been visited. After
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Fig. 7 1NN combined with PCA accuracy and the labeling rate for different confidence thresholds and TS sizes (from left to right:
15 and 50 samples per class)

the queue of the hotspots is empty the person leaves
the surveillance area moving towards the exit point.
The speed of the person movement in the area va

is randomly chosen in a predefined range (Table 2).
Whenever a person reaches an hotspot it (1) randomly
chooses the residence time tpause at the hotspot and (2)
changes its speed to a new randomly chosen value. As
a reference, all the parameters used in the experiments
are listed in Table 2.

For the setup 2, we considered two possible sce-
narios (Fig. 11). In the first scenario (workload A in
Fig. 11b), the population of the area follows a bell-
shaped curve very similar to normal distribution in
which the population start from 0 and reach a maxi-
mum of 800 persons. The second scenario (workload
B in Fig. 11c) exhibits a linear growth of the popula-
tion until the maximum and then keeps the maximum
until the end of the simulation. In our simulations,
we considered the 10% of persons in the area to be
unknown (i.e. associated with alarm tag).
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different TS

6.2 Network Evaluation with Different Classification
Algorithms at SSUs for Setup 1

In Section 5, we have shown that the best results in
terms of accuracy and the percentage of labeled faces
is achieved by the weighted kNN classifier. Here, we
apply the weighted kNN classifier algorithm for the
recognition of incoming persons at MS and evaluate
the effectiveness of SSUs side recognition based on
the following classification algorithms: (i) 1NN, (ii)
weighted kNN and (iii) a combination of 1NN and
weighted kNN. The idea behind the combined algo-
rithm is that 1NN is more robust than weighted kNN
for small cache sizes, whereas the latter performs bet-
ter for greater cache sizes. In the combined algorithm,
when a new face must be labeled, the weighted kNN
is first applied, then we check if 1NN returns the same
label proposed by the weighted kNN. When weighted
kNN is used, a threshold on both confidences cwkNN1 ,
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Fig. 9 Weighted kNN combined with PCA (Accuracy and
Labeling rate) for different training set sizes and k = 10
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Fig. 10 Weighted kNN combined with PCA accuracy and labeling rate for different confidence thresholds and training set sizes (from
left to right: 15 and 50 samples per class), kopt = 10. Plots are in semi-logarithmic scale

ckwNN2 (2), (3) is applied, otherwise the algorithm is
not able to recognize classify faces if cache size is too small.
Finally, note that the confidence in classification
on the MS is higher than the one obtain by SSUs, this
is because the MS has a virtually infinite cache size
and therefore more negative samples.

Figure 12 shows the average number of sent FACEIDand
ALARMREQUEST messages by a SSU for different
classifiers techniques. The average number of ALARM-
REQUEST becomes smaller when the number of
elements in the caches grows regardless of the classi-
fier used. For small cache sizes, in case of weighted
kNN alone, this number is smaller in comparison
with other techniques. This is connected with the
error committed by this type of classifier when the
cache size is small. That is, the new incoming face is
often wrong labeled with one of the classes available
in cache and no ALARMREQUEST is made. The num-
ber of FACEIDmessages sent is comparable for all the
classifiers and mostly depends on the recognition per-
formance of the applied classifier technique (Section 5).

Figure 13 shows the evaluation results for the num-
ber of received, used, and never used person classes in
the cache. As we can see, for bigger cache sizes the
percentage of used and not used classes are compara-
ble. This aspect is important, since the nodes memory
is not wasted. The results suggests a cache size of (at
least) 5 classes to be used.

6.3 Network Performance Evaluation

In order to evaluate the load imposed on the MS
and the performance of the distributed surveillance
system, we executed an extensive simulation of 6
hours using the PEERSIM simulator and the workload
mobility models described beforehand (setup 2). We
evaluate two algorithms: (1) when all the data is trans-
mitted to the MS for the analysis (our baseline) and (2)
the adaptive algorithm described in Section 4.

In the baseline model, all SSUs stream the video
directly to the MS, where the MS extracts the face fea-
tures and recognizes the persons. The baseline curve

Fig. 11 The area hotspots layout and the workload mobility models with maximum 800 persons in the surveillance area
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Table 2 Parameters used in the evaluation

Parameter Value Description

N 0-800 Total number of persons in the area

Texp 6 hours Total simulated time

nhs 15 Number of hotspots in the area

va 0-2 m/s The speed of a person movement between hotspots

tpause 0-50 s Person residence time at the hotspots

Tmax 4, 6, 10, 15 s Maximum allowed recognition delay

ct 45, 135, 360, 450 ms Time needed to compare the extracted features with one class in the recognition library

nSSU 625 (25 x 25) Number of SSUs devices in the area

map 250m x 250m Surveillance area size

unknown 10% Percentage of unknown (alarm tag) persons in the area

poverlap 20 % Overlapping of surveillance spaces of neighbour SSUs

pdetection 0.5-1 Probability of SSUs to detect a person

precognition 0.5-1 Probability of SSUs to recognize a face

Fsize 64 K Size of a vector recognition feature (256*8*8 float)

�T 5 s SSU surveillance area check period

on the Fig. 14 shows the number of recognition the
MS is required to process in 60sec time interval.
Other curves on the figure show the evaluation of the
recognition requests to MS when the enhanced algo-
rithm is applied and under different system parame-
ters, such as Tmax and ct. Before to send the recogni-
tion request to MS, each SSU tries to label the face
locally and with the help of the neighbour SSUs. The
results demonstrate that the enhanced algorithm can
reduce up to 50% of the recognition activity of the MS
unit in peak hours.

The input Tmax parameter allows the system adminis-
trator to indicate the maximum allowed time between
the detection of an object and its actual recognition.
The actual Tmax parameter depends on the scope of
the system and can vary between a couple of seconds
in case of high security areas up to minutes and even

hours. Time interval ct indicates the time needed to
compare the extracted face features with one class of
the cache recognition library. Each class of the cache
is a simulated sample of the face features that char-
acterize a person. Therefore, the time needed by an
SSUs to perform a single face recognition task is given
by the size of the cache selection times ct. A higher
number of the face features in the class increases
the accuracy of the recognition, but at the same time
increases also the ct.

As we showed in Section 5, a sample of 50 fea-
tures is enough to achieve a good accuracy for a face
recognition. Hence, since as SSU, we considered the
Raspberri Pi and based on the comparison time
reported in Section 5 on Fig. 14a, we use ct = 450ms.
As we can see on Fig. 14a, in case of a lower Tmax
the system does not have enough time for the whole

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5  10  15  20

Cache size

FACEID

ALARMREQUEST

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5  10  15  20

Cache size

FACEID

ALARMREQUEST

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5  10  15  20

Cache size

FACEID

ALARMREQUEST

Fig. 12 Average number of FACEIDand ALARMREQUEST messages sent (1NN left, wkNN center and 1NN + wkNN right)



H. Kavalionak et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5  10  15  20

Cache size

classes never used

classes used

classes received

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5  10  15  20

Cache size

classes never used

classes used

classes received

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5  10  15  20

Cache size

classes never used

classes used

classes received

Fig. 13 Average number of used, not used and received classes by nodes (1NN left, wkNN center and 1NN + wkNN right)

algorithm recognition cycle and it is forced to rely
on the MS recognition more often. Instead a higher
Tmax allows a SSU to perform the recognition using
the cache and to receive the replies from the neigh-
bor SSUs. Nevertheless, even in case of low Tmax, the
enhanced algorithm significantly reduces the recogni-
tion load of MS compared to the baseline solution.

Figure 14b shows the influence of ct time inter-
val on the MS recognition load. Even in case of high
accuracy of local recognition and relatively low Tmax,
the load of MS by recognition requests is significantly
lower than the baseline solution. Moreover, lower ct
values further decreases the load imposed on the MS
by the recognition. Figure 15 shows the impact of
the system parameters on the algorithm effectiveness.
Lower values of ct and larger of Tmax significantly
reduce the MS recognition load. One of the straight-
forward way to minimize ct time is to reduce the
accuracy of local recognition algorithm by decreasing
the number of features in the sample. In case fast per-
son recognition is not a requirement, the increment of
Tmax can also reduce the load of the MS.

We also evaluate the actual face recognition delays
in the area. Figure 15 presents the snapshots of the
average delays per SSUs at 1, 3 and 5 hours of the
experiment with workload A. We can observe that the
algorithm timeout restriction is able to guarantee the
100% of recognition in time (Tmax = 10s and CT =
450ms are used).

One of the issues of the network communications is
the risk to overload the network due to many message
exchanges. We evaluate the bandwidth consumption
under different network workloads and system param-
eters (Fig. 16). In our evaluation we consider each of
the face to be described with a vector Fsize =64KB
(256 ∗ 8 ∗ 8 floats).

Figure 16 present the maximum and the average
bandwidth consumption in MB/sec during the time for
the workload A (Fig. 16a) and workload B (Fig. 16b)
with ct = 450ms and Tmax = 10sec. For both
workloads the average bandwidth consumption values
are relatively small, while the maximum bandwidth
consumption at some SSUs reaches the values of
more than 2.5MB/sec. As we can see, the difference

Fig. 14 Main Server recognition requests per 60sec for different system parameters
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Fig. 15 Recognition delay heatmap for a workload A, ct = 450ms, Tmax = 10s

between maximum and average values in the area is
large. This indicates a high heterogeneity in the system
load, that is connected with the presence of hotspots
in the area. The hotspots are more visited than other
places and this causes a high rate of recognition tasks
on the surveillance SSUs. This can also be observed by
the snapshots of the area upload bandwidth consump-
tion that are presented on Fig. 17. The Fig. 17 show
the map of the bandwidth consumption in the system
at 1, 3 and 5 hours of the experiment with the work-
load A. As you can see the most intensive bandwidth
consumption is on the hotspots (Fig. 11a), whereas the
other areas of the map are significantly less loaded.

Figure 16c shows the impact of ct and Tmax parame-
ters on the average bandwidth consumption for a SSU.
As we can see, the higher Tmax and lower ct do not sig-
nificantly influence on the bandwidth load. We explain
it with the fact that since the considered Tmax time
intervals are relatively small, a SSU does not have
enough time for a full scan of the local cache. Hence,
considering the logic of the algorithm, it sends the
outcoming recognition requests to the neighbor SSUs
and eventually to MS. In the peak hours of the simula-
tion, especially for the SSUs controlling the hotspots
areas, the rate of the outcoming recognition requests

to the neighbor SSUs significantly increases. Most of
SSUs have around 8 neighbor SSUs in our simulation
and the outcoming recognition traffic to these neigh-
bor SSUs is at least 8 times higher than the one to
MS. Moreover, the SSU in the system also have to
reply to the incoming recognition requests. Hence, the
strongest impact on the SSUs bandwidth consump-
tion is due to the neighbor SSUs recognition loop in
the algorithm. On the one side, FACEID broadcasting
allows us to increase the probability the face to be
recognized locally by a SSU in the next surveillance
zones. On the other side, as it is shown in the Figs. 17
and 16c, it creates an excessive SSUs bandwidth con-
sumption. However, the FACEID broadcasting can be
reduced by applying existing algorithms for the pre-
diction of person trajectory [36].

The results of our simulation show that in order to
optimize the resources utilization the network of the
surveillance devices should be composed with hetero-
geneous devices. In other words, the hotspots area and
the areas that connect them should be served by more
powerful SSUs or even servers, while the surveil-
lance of other areas (like dark sectors on the Figs. 15
and 17) can be maintained by more economic solu-
tions. Another interesting solution could be to apply

Fig. 16 Bandwidth consumption in Mb/s for Tmax = 10s and ct = 450ms system parameters
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a combined approach of both enhanced and baseline
algorithms. In other words, whenever a SSU reaches
its upload bandwidth consumption limit, for example
in case of too many persons in the surveillance area, it
can start to stream the video directly to the MS.

7 Related Work

There is a vaste literature on video surveillance system
based on distributed cameras, we restrict ourselves to
those works most relevant for ours. For a more exten-
sive review on this subject, we refer to the recent
surveys [30, 35].

The problem of monitoring a large surveillance
space through a distributed face detection and recog-
nition system has been treated in [23]. The work
proposes a novel video Surveillance application using
HDFS and Map Reduce framework that collects video
from multiple cameras from surveillance scenario into
cloud for detection and tracking of persons over space
and time. The proposed architecture, however, does
not rely on smart cameras for the task of face recogni-
tion, but rather on a distributed processing infrastruc-
ture using map-reduce framework over Hadoop.

The idea of exploiting the computation capabil-
ities and the topology of a distributed network of
smart cameras in order to reduce the amount of mes-
saging has been proposed in [38] and [42]. In both
approaches the communication is efficiently handled
using a task-oriented node clustering that partition the
network in different groups according to the pathway
among cameras. The former work, however, is limited
to face tracking, while second one targets collabora-
tive person tracking with a combination of hardware
acceleration and middleware. These works focus on
people tracking rather than recognition and use an
efficient camera clustering protocol to dynamically
form groups of cameras for in-network tracking of
individual persons.

Self-coordination of objects handover in a dis-
tributed network of embedded smart camera using a
knowledge previously detected in neighbor cameras
has been done in [19, 28, 39]. In [34], a P2P multi-
camera system for multiple object tracking is pre-
sented. The data from multiple features are exchanged
between adjacent cameras (with partially overlapping
fields of view) for object matching. This work does
not provide much implementation details, such as

the embedded platform used, programming languages,
etc. The paper [26] presents an agent-oriented mid-
dleware for distributed smart cameras, which supports
collaborative image processing. The work is focused
on dynamic loading/migration of processing tasks
and collaborative work between nodes at the phys-
ical layer. Similarly, in [9], based on self-interested
autonomous agents, the cameras learn a vision graph
describing the spatial relationships between their
fields of view (FOVs). Based on such a vision graph,
cameras reduce their communication without signif-
icantly sacrificing tracking performance. Having the
object detected within its FOV, the camera can try to
get the responsibility to track the object by bidding
for it. This work has been extended in [21], where
six different behavioral strategies were available to
cameras. A similar problem to the one we study is
the re-identification problem, which aims at locat-
ing moving targets or at determining co-occurrences
of events in the FOVs. With this approach, (e.g.,
see [8] and [29]) the topology of a set of disjoint
cameras can be found by analyzing motion patterns
at event co-occurrences. Re-identification problem in
large distributed camera networks is also addressed in
[17]. This work also deal with the general problem of
limited resource management, in which, like us, the
resources are limited by the maximum number of clas-
sifiers and the storage capacity required to store them.
Gheissari et al. [12] present a new approach for the
person reidentification problem over a smart camera
network, based on the fact that people appearance in
public spaces is almost the same in a given tempo-
ral window. Thus, instead of the face or other passive
biometrics, they consider the use of the overall appear-
ance of the individual. In order to do that, the system
is be able to establish correspondence between parts
and generate signatures that are invariant to changes
of illumination, pose and dynamic appearance of
clothing.

Concerning the specific problem of face recogni-
tion in distributed camera networks, [18] described the
design and implementation of a distributed real-time
face recognition system using a network of embed-
ded cameras. However, the system is only partially
distributed, since a base station that acts as central
server is needed to perform the recognition task, while
the cameras only deal with the face detection task.
A Dynamic Bayesian Network based multi-camera
face recognition algorithm is proposed in [3], which
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Fig. 17 Bandwidth consumption heatmap workload A, Tmax = 10s and ct = 450ms

tries the exploit temporal information among adja-
cent frames to establish the person-specific dynamics
to improve the recognition performance. Also in this
work the face recognition is performed in a centralized
fashion, and no spatial information about the camera
location where the face are detected in exploited.

A fully distributed face recognition system is pre-
sented in [11]. In this work authors present a scenario
where each node contains a camera of limited aper-
ture, whose images are matched against a randomly
selected feature of each face in a statically defined
training set. In another similar work [27], a multi-
camera face recognition framework using cameras
that perform recognition cooperatively was proposed.
The main objective of this work was to introduce
a method of exploiting spatio-temporal correlations
between recognitions in different cameras. In both
works, however, the cameras have a complete knowl-
edge of the database used for face recognition, which
poses a real obstacle to scalability. In [40] a distributed
sensor network (DSN) capable of performing reliable
recognition targeted at multiple humans in the indoor
environments is presented. In this architecture, the
cameras do not perform face reconsign autonomously
but rely on a specific node of the DSN.

8 Conclusion and Future Work

In this paper, we propose a distributed camera-aided
protocol for area video surveillance based on image
classification. In order to minimize the classification
load on the main server, recognition tasks take place
on the SSUs when possible. To perform person recog-
nition, a SSU uses the local resources together with

the resources of the neighbor SSUs. The surveillance
devices fall back to the main server when the classifi-
cation cannot be done in the desired time interval.

We have evaluated two different classification algo-
rithms (1NN and weighted kNN) implemented with
LBP. Among the considered classifiers the best per-
formance results are obtained by the weighted kNN
algorithm. Therefore, we have evaluated the load of
MS and network characteristics based on weighted
kNN classifiers applied on SSUs. Our evaluation sim-
ulated the surveillance area by considering a number
of hotspots. The bandwidth consumption of the SSUs
that are responsible for the surveillance of the hotspots
resulted much higher than for the other SSUs. This
suggests to use more powerful devices for the hotpots
surveillance, or to apply a combined approach in which
the system switches to a pure client-server model recog-
nition and streams video directly to the main server
for processing in case of high people concentration at
one surveillance spot. Moreover, a further optimiza-
tion of the bandwidth consumption could be achieved
by applying algorithms for the people trajectory esti-
mations directly inside the SSUs, in order to reduce
the features broadcasting between neighbor SSUs.

Finally, the evaluation shows that partially placing
the recognition tasks on the local resources of surveil-
lance devices can reduce the load on the main server
up to 50%. As a consequence, it is possible to run a
surveillance service by employing less powerful cen-
tralized servers, or, alternatively, a large server can be
re-used for the other tasks in the less busy hours.
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