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Abstract. This paper deals with helical self-organization in current-carrying
toroidal pinches for the magnetic confinement of fusion plasmas. We perform our
study in the framework of 3D nonlinear visco-resistive magnetofluid modelling,
where a large set of simulations is now available. A global picture is derived
about how visco-resistive transport coefficients and magnetic boundary conditions
rule the self-organized helical states for the reversed-field pinch configuration.
Decreasing visco-resistive dissipation causes a transition from steady ohmic helical
equilibria to intermittent states (sawtoothing activity), while selected helical
magnetic perturbations applied at the boundary favor steady global quasi-helical
solutions. The sawtoothing frequency decreases together with visco-resistive
dissipation, while sawtoothing amplitude decreases when applying non-resonant
magnetic perturbations. Simulations of the tokamak configuration allow us to
draw a tight parallelism with reversed-field pinches: a similar role of dissipation
and magnetic boundary conditions on the dynamics of the internal kink mode
is found, with decreasing sawtoothing frequency and amplitude by decreasing
dissipation and by applying suitable helical boundary conditions. Magnetic chaos
healing is the topological feature of the transition from intermittent to quasi-
quiescent helical states in reversed-field pinches. Bundles of Lagrangian Coherent
Structures, LCS, in the weakly stochastic region surrounding the helical core
constitute the skeleton of chaos healing, and behave as barriers to the transport
of magnetic field lines. In this work, they are detected during the whole temporal
evolution and it is proved that they can withstand the nonlinear dynamics even
during sawtoothing activity. Furthermore, we show that LCS are connected to
regions with strong gradients of the connection length of magnetic field lines to
the edge. This provides a further indication of their possible role in the formation
of electron temperature barriers. As a final result it is shown that a reasonable
value of plasma rotation can further enhance the intensity of the dominant helical
mode.
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Helical states in toroidal pinches 2

1. Introduction

This paper discusses self-organized helical states in
toroidal pinches, and edge magnetic fields as a powerful
tool to interact effectively with fusion plasmas. Helical
self-organization happens in all high-current toroidal
pinch configurations such as tokamaks [1, 2, 3, 4] and
reversed-field pinches [5]. It is also observed in non-
linear visco-resistive magnetohydrodynamic (MHD)
model. This work focuses on the two key simulation
parameters that are most involved in the emergence
of 3D quasi-helical states and in mitigating their nat-
ural sawtoothing behaviour. Independently from the
specific configuration, a first parameter is related to
plasma visco-resistive dissipation and defines a transi-
tion between stationary helical equilibria and a cyclical
dynamics. The other parameter is related to seed he-
lical magnetic boundary conditions and controls the
level of intermittency.
The reversed-field pinch (RFP) configuration is the
focus of the paper. For this configuration the visco-
resistive MHD model predicts that the magnetic field
can acquire a helical state in a self-organized manner
[6, 7, 8, 9, 10], a feature later observed in high-current
plasmas in various RFPs devices (a complete list of
RFP devices operating in the world is presented in the
end of Sec. 1.1). More recently, the MHD model has
predicted new ways for interacting with helical self-
organization [11], then validated by experiments [12]
in RFX-mod in Padua, Italy.
Modelling of tokamak-like pinches is also addressed
with the same MHD model. New simulations are de-
scribed which show many analogies between tokamaks
and RFPs: they have a common intermittent dynam-
ics, associated in the tokamak with the internal kink
mode, and they present similar dependence on visco-
resistive dissipation and on magnetic boundary condi-
tions, resulting in similar strategies to deal with saw-
toothing. A dependence of the sawtooth period with
the product of dimensionless resistivity and viscosity is
studied, for both tokamaks and RFPs.
This work also discusses magnetic topology and con-
finement of magnetic field lines in RFP quasi-helical
states. The Lagrangian Coherent Structures (LCS)
technique is used, borrowed from the study of dynam-
ical systems (for a definition of LCSs see the review
papers [13, 14, 15] and the applications in [16, 17]).
LCSs allow the discrimination of regions with different
transport qualities. In this work, a bundle of resilient
LCS are shown to surround the helical core during the
whole dynamical evolution of the configuration, rein-
forcing the magnetic chaos healing effect provided by
the formation of perfectly conserved helical magnetic
surfaces in the core and safeguarding it, especially dur-
ing relaxation events. Moreover we show a clear rela-
tionship between large gradients in connection length

of magnetic field lines to the edge and the presence of
LCS - an important clue to their role in the formation
of internal transport barriers.
Finally, the paper investigates the role of plasma flow
in the emergence of helical states. In fact, we show that
macroscopic plasma rotation, with intensity compara-
ble to the experimental ones, can add further beneficial
robustness to reversed-field pinch quasi-helical states.

This work is structured as follows: in Sec. 2 we
describe the employed MHD model. In Sec. 3 we
focus on the pervasive presence of helical states in
the solution of the nonlinear magnetohydrodynamics
model. In particular, in Sec. 3.1 and 3.2 we describe
the dynamical transition to quasi-helical states in the
RFP, influenced by viscoresistive dissipation and by
helical boundary conditions for the magnetic field. In
Sec. 3.3, we describe by numerical simulations with
decreasing dissipation the emergence of a RFP helical
state with a twist given by helical edge magnetic fields,
with the aim of clarifying the key factors involved in the
spontaneous emergence of quasi-helical states observed
in experiments at high plasma current. In Sec. 3.4, we
explain that at high current we can make the helical
states more quiescent and tune their amplitude by a
suitable choice of the magnetic boundary conditions.
In Sec. 3.5 and 3.6 we highlight similarities with basic
tokamak simulations.
In Sec. 4, we present the studies about magnetic
field line transport in the RFP. There we show how
a resilient bundle of Lagrangian Coherent Structures
(LCS) can hinder the transport of magnetic field
lines and enhance the magnetic chaos healing effect
associated with the formation of quasi-helical states,
in particular the ones based on non-resonant MHD
modes. Finally, in Sec. 5 we describe a result about
the role of a mean plasma rotation. In Sec. 6, we draw
some final remarks.
In the following short section, we present few historical
remarks about helical states in RFPs.

1.1. Historical background

The first theoretical prediction of a helical configu-
ration for the magnetic and plasma current in hot
pinches, and in particular in the RFP, was given in the
framework of the so-called Taylor’s conjecture, which
first appeared in the ’70s [18, 19]. The core of the
conjecture is that, in an isolated and weakly resistive
plasma, magnetic energy relaxes to a minimum value,
while magnetic helicity is conserved. This “relaxation”
theory allows one to: i) obtain a theoretical framework
to explain the experimental observation of toroidal field
reversal at the edge when the pinch parameter Θ > 1.2
(previously not understood) and ii) predict helically
symmetric fields when Θ > 1.56 (see Eq. 6 for a defi-

Page 2 of 21AUTHOR SUBMITTED MANUSCRIPT - NF-103409

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Helical states in toroidal pinches 3

nition of the pinch parameter Θ).
In the following two decades, theoretical work went
beyond Taylor’s conjecture and the quasi-helical self-
organized nature of the RFP fields became apparent
by numerically solving the 3D nonlinear MHD model
[20, 6, 8, 21, 9]. Quite a different picture of the emer-
gence of helical states was drawn: they were identified
as the nonlinear saturation of a symmetry-breaking
MHD instability, directed towards an ohmic equilib-
rium state, and sustained by an electrostatic dynamo
mechanism [22, 23, 24] (a discussion about the validity
of Taylor’s conjecture can be found in [25]).
Later on [26], qualitative comparison between the nu-
merical solution of the 3D MHD model and the fea-
tures observed in high-current RFP experiments was
reached by allowing a non-ideal boundary condition for
the magnetic field. In recent years, the MHD model
continued to offer new insights on the behaviour of
high-current hot plasmas by predicting the possibil-
ity of influencing the twist of the plasma helical self-
organization by seed edge helical magnetic field, a pre-
diction confirmed by dedicated experiments [12] in the
RFX-mod device, in Padua, Italy [27]. Other experi-
mental facilities in which these topics are studied are
the MST device in Madison, USA [28], the KTX de-
vice in Hefei, China [29], EXTRAP T2R in Stockholm,
Sweden [30] and the RELAX device in Kyoto, Japan
[31].

2. Numerical tools to solve the MHD model

The simulations presented here are performed with
the SpeCyl code [21], numerically verified against the
PIXIE3D code [32] with excellent results [33]. SpeCyl
deals with the simple visco-resistive approximation
which combines Faraday law, momentum equation
(viscous Navier-Stokes) and the single fluid resistive
Ohm’s law (in Eqs. 1a,1b,1c) to evolve the magnetic
B and velocity v fields in time t. Plasma density is
assumed to remain uniform and constant, ρ = 1. The
pressure term is also neglected: this approximation
is often used in dealing with macroscopic behaviour
of systems characterized by strong current driven
activity. This yields a model with two parameters:
the dimensionless resistivity η and viscosity ν. The
equations, in dimensionless form, are:

∂v

∂t
+ v · ∇v = J ×B + ν∇2v + SM , (1a)

∂B

∂t
= ∇× (v ×B − ηJ) (1b)

∇×B = J (1c)

∇ ·B = 0 (1d)

Here J represents the dimensionless plasma current
density, and SM represents an ad-hoc momentum
source, used in Sec. 5.

Numerical simulations are performed in cylindrical
geometry with aspect ratio R0/a = 4, where a = 1
is the cylinder radius and the normalization factor for
lengths. Periodic boundary conditions are used for the
poloidal and axial coordinates θ ∈ [0 : 2π], z ∈ [0 :
2πR0], thus allowing a spectral approach. A generic
physical quantity Q(r, θ, z, t) will thus be written as
Q(r, θ, z, t) =

∑
m

∑
nQm,n(r, t) exp i(mθ + nz

R0
), with

m poloidal wave number and n axial wave number. A
wide spectrum of MHD modes validated by previous
simulations (see for example [21, 34]) has been used
with poloidal wave number 0 6 m 6 4. In the
following, we call helical magnetic field with helicity
h a magnetic field whose spectrum consists only of
the B0,0 and of the Bm,hm modes. For such helically
symmetric solutions a helical flux function χ can be
defined by imposing ∇χ · B = 0. Together with χ

we define an effective radius ρ =
√

χ−χmin

χmax−χmin
and

a helical safety factor q(ρ) = dΨtor(ρ)
dΨpol(ρ)

: Ψpol(ρ) and

Ψtor(ρ) represent the poloidal and toroidal flux across
a helical flux surface labelled by ρ, and q(ρ) gives the
number of toroidal turns that field lines perform for
one poloidal turn around the helical magnetic axis.
The relevant time scales of the system are the Alfvén
time τA = a(µ0ρ)1/2B−1

0 with B0 on axis field
(and normalization factor for the magnetic field), the
resistive time τR = µ0a

2σ̃0, with σ̃0 = η̃0
−1 on-

axis electrical conductivity (σ̃0 and η̃0 represent the
corresponding dimensional quantities) and the viscous
time τν = a2ν̃0, with ν̃0 on axis kinematic viscosity.
We define the Lundquist number S = τR/τA =

aB0µ
1/2
0 ρ−1/2σ̃0 = η−1

0 and the viscous Lundquist
number M = τν/τA = avAν̃0

−1 = ν−1
0 .

An interesting feature of the equations emerges
applying a further rescaling of time [10]:

t→ t̄ = (η/ν)1/2t (2)

and thus v → v̄ = (ν/η)1/2v. In this form
the equations can be rewritten in terms of two
new dimensionless parameters, the magnetic Prandtl
number P = τR/τν = S/M and the Hartmann number
H = (τRτν)1/2/τA = (SM)1/2 (inversely proportional
to visco-resistive dissipation):

P−1

[
∂v̄

∂t̄
+ v̄ · ∇v̄

]
= J ×B +H−1∇2v̄ + SM , (3a)

∂B

∂t̄
= ∇× (v̄ ×B −H−1J). (3b)

Such new parameters help categorizing in a simpler
way the different dynamical behaviors of the system,
as will be seen in Sec. 3.6. In particular, when the
inertia term is negligible and/or the Prandtl number is
large, the Hartmann number turns out to be the only
parameter ruling the MHD dynamics.
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Helical states in toroidal pinches 4

Dissipation parameters are not evolved in time and are
radially parametrized as follows. The dimensionless
resistivity η is increased towards the edge to mimic a
decreasing plasma temperature (in a fusion plasma, ac-
cording to Spitzer, η̃ ∝ T−3/2). In the simulations pre-
sented in this paper we used η(r/a) = η0(1+20(r/a)10),
with the caveat that different profiles might produce
quantitative differences in the resulting simulations
(see for example [35]), without changing the general
picture about helical states in the solution of the model.
Viscosity is kept uniform ν(r/a) = ν0, though we plan
to address a study of how to better characterize it in
the near future, considering recent studies like [36, 37].
For a partial discussion of the topic of transport coeffi-
cients, in Appendix A, the characterization of quanti-
ties like resistivity and viscosity is given in the frame-
work of fluid theory, as already presented in [38].
Magnetic boundary conditions are defined as fol-
lows. The edge radial magnetic field is either
zero (the so-called “ideal conducting wall”), or he-
lically modulated through a Magnetic Perturbation
(MP) with poloidal and toroidal wave number given
by (mMP , nMP ). Edge MP is imposed at r =
a with amplitude given by the quantity MP%=
Br(a)mMP ,nMP /Bθ(a)% as a single helical modula-
tion of the radial component of the field given
by Br(a, θ, z) = Br(a)mMP ,nMP exp i(mMP θ + nMP

R0
z).

MPs are imposed at the beginning of the simulation,
by adding to the equilibrium magnetic field a vacuum
field obtained by solving the stationary form of Eqs.1a
with J = v = SM = 0:

∇×B = 0, ∇ ·B = 0, (4)

and the helical boundary conditions. The resulting
profile of the axial component of the magnetic field
in the Fourier space is given by:

bmMP ,nMP
z (r) = εImMP

(
nMP

R0
r

)
(5)

with ImMP
representing the modified Bessel functions

of the first kind. The other two components result from
Eqs. 4: ibmMP ,nMP

r (r) = R0

n ∂r (bmMP ,nMP
z (r)) and

bmMP ,nMP

θ (r) = mMPR0

nMP r
bmMP ,nMP
z (r). The quantity ε

is a parameter chosen so that MP% has the desired
value.
An ad-hoc momentum source SM can be added to the
momentum equation 1a to generate mean flow. In this
work some cases adopt the choice SM = SM ẑ, with
constant SM , to test the impact of a momentum source.
The aim of the present study is to build up the global
picture resulting from a now available extended set
of simulations. We remark that the approximations
here adopted have been used in several different studies
offering useful insights about the major physical effects
observed in RFP experiments, confirming a strongly
current-driven nature of MHD instabilities in the RFP

[39, 40, 41, 42]. Further effects should be considered,
which may improve the quantitative comparison with
the extremely rich dynamics of experimental devices,
such as finite-β, two-fluid effects or the ones associated
with toroidal geometry and with fast ion: in Refs. [43,
44, 45, 46] they lead to similar macroscopic dynamics,
though quantitative differences can be present.

2.1. 1D equilibrium

The simulations start from an axisymmetric unstable
ohmic equilibrium, of the kind described in Ref. [47].
An uniform induction electric field E = E0ẑ is
imposed to sustain the plasma current, with E0/η0

as the fundamental parameter characterizing different
equilibria. Another important parameter is the pinch
parameter

Θ =
Bθ(a)

〈Bz〉
, (6)

which represents the ratio between plasma current
and mean toroidal magnetic field used to confine the
plasma.
Fig. 1 presents the main features of ohmic
axisymmetric equilibria for RFP (first row) and
tokamak cases (second row). In the first row of
Fig. 1 RFP initial equilibrium quantities are plotted
in full lines (E0/η0 = 4.2, Θ ∼ 1.6). After the
unstable equilibrium is perturbed at the beginning
of the simulation, the 3D dynamics provides the so-
called RFP dynamo relaxation, leading to a reversed
edge axial component of the magnetic field (dotted
lines). The basic tokamak simulations considered
have Θ ∼ 0.06, E0/η0 = 0.625, and a resistivity
profile parametrized by η(r/a) = η0(1 + 25(r/a)4)1.5:
these choices uniquely determine a ohmic axisymmetric
equilibrium, unstable to the internal kink mode with
m=1, n=1 (the chosen profile correspond to the
“rounded model” for current density distributions in
Eq. 8 of [48]). The features of tokamak equilibrium
are presented in the second row of Fig. 1.
Let us consider Eq. 1a for the velocity field in
equilibrium condition:

v · ∇v = J ×B + ν∇2v + SM . (7)

Since the inertial term is proportional to η2 through
Ohms law, and is therefore negligible [47], the J ×B
equilibrium term decouples from the velocity terms.
One then gets to balance the viscous dissipation
(∇2v term) and the constant momentum source term
(SM ẑ term) which results in a parabolic profile
of the axial component of the velocity vz(r/a) =
−SM

4ν

(
(r/a)2 − 1

)
. The parameter SM

ν turns out to be
the one governing the amplitude of the resulting mean
plasma flow.
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Helical states in toroidal pinches 5

Figure 1. Radial profiles of the equilibrium magnetic, current density and velocity fields in the RFP cases (top row) and in the
tokamak cases (bottom row). The Bz component of the RFP magnetic field slightly reverses at the edge, giving the name to
the configuration. When a radially constant momentum source is imposed the vz component of the velocity (third column) has a
parabolic profile which gets modified by interaction with the magnetic field, see Sec.5. Magnetic field is normalized to its on-axis
initial value, velocity field is normalized to the corresponding Alfvèn velocity. Dotted lines represent the same quantities after the
relaxation event following a slight perturbation of the initial equilibrium, resulting in the beginning of the 3D MHD dynamics. In
this picture the modulus of all the quantities is plotted.

3. Quasi-Helical solutions of the visco-resistive
MHD model

In this section, we describe the results of an extended
set of simulations of the visco-resistive MHD model
described in Sec. 2. The resulting global picture ex-
tends our previous results, consolidating the impor-
tance of the Hartmann number and the key role played
by edge magnetic perturbations in ruling the helical
self-organization process.
A short outline of our results is:
i) several features of the helical regimes are found to
be ruled by two quantities only, the Hartmann number
and magnetic boundary conditions (seed resonant or
non-resonant MPs);
ii) an increase of Hartmann number produces a transi-
tion towards a “sawtoothing” behaviour in the dynam-
ics of the magnetic field;
iii) a proper choice of MPs paces the “sawtoothing” dy-
namics and stimulates quasi-helical states in between
sawteeth.
In the following we will describe such theoretical find-
ings in detail, and how they resonate with experimen-
tal observations, in particular for helical regimes in the
reversed-field pinch configuration. We will show that
similar rules are valid also for basic tokamak simula-
tions of m=1,n=1 sawtoothing, within the limits de-
scribed in the introduction.

This section is structured as follows: at the begin-
ning we describe the dynamics of couples of RFP sim-
ulations, choosing “extreme” values of the important
quantities, Hartmann number and MP amplitude (Sec.
3.1). Such examples represent the possible qualita-
tive behaviour obtained when spanning the simulations
“parameter space“. Then, quantitative results will be
shown for a larger number of simulations, analyzing the
energy associated with the dominant helical mode ver-
sus the energy of the other MHD modes, an indicator of
the “spectral purity” of the helical solution, often used
also in experimental analyses (Sec. 3.2). Finally two
additional examples will be presented, showing how
the MHD modelling connects with experiments.On the
first the focus will be on showing how helical regimes
are strongly favoured at high Hartmann number/low
dissipation (Sec. 3.3) when suitable tiny helical per-
turbations are present. The second example focuses
on the effect of helical boundary conditions (Sec. 3.4)
showing that non-resonant edge MPs tend to pace the
sawtoothing dynamics.
Then, by discussing a number of new 3D simulations
of tokamak type involving the dynamics of the inter-
nal kink mode analogies between RFP and tokamak
cases will be discussed (Sec. 3.5). As a final part, the
pulsation time of the sawtoothing events observed in
numerical simulations of both the tokamak and of the
RFP is characterized, showing that it can be simply
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Helical states in toroidal pinches 6

described using the Hartmann number (Sec. 3.6).

3.1. RFP helical regimes

In the reversed-field pinch configuration the features of
helical dynamical regimes undergo a transition which is
ruled only by two quantities, visco-resistive dissipation
(Hartmann number) and boundary conditions for the
magnetic field. We start by considering a magnetic
perturbation applied on the m=1, n=-7 mode, which
correspond to the helical twist typically observed in
RFX-mod operation at high current. We first show in
Fig. 2 the four different regimes which can be obtained
making “extreme” choices for these two quantities.
In Fig. 2 we plot the temporal evolution of the
total energy (volume integral) associated to the most
important m=1 helical modes. Consider the helical
states found at low Hartmann number and zero MP
(top left): at t ∼ 0.1τR the stationary helical solution
of the model is made up of a single MHD mode
with m=1, n=-11 (SH Single Helicity states, with
well-defined magnetic surfaces in the whole plasma
volume). This mode is different from the most unstable
ones, which at the very beginning of the simulation
around t ∼ 0.02τR create a 3D sequence of modes
with increasing periodicity number starting from n=-
7, sequence that is typical of the RFP multiple helicity
relaxations. However, at a certain time, the (1,-11)
mode overcomes the competition with the others and
absorbs the energy from the other secondary modes,
which exponentially decay to vanishing amplitude. At
high values of H and zero MP (top right) instead,
a strong competition between MHD modes ends in
the presence of a pulsating regime (MH Multiple
Helicity states, with stochastic magnetic field lines)
intermittently featuring discrete reconnection events
[34], for example at t ∼ 0.035τR. In particular, one
notices that the energy associated to the modes is
two orders of magnitude lower in the high H cases,
where it reaches values compatible with experimental
measurements in the RFX-mod device.
In the second row of Fig. 2, we turn on the helical
boundary condition on the m=1, n=-7 mode with
amplitude MP%= 2%. In the low H and MP-on
quarter (bottom left) we observe that the system
reacts to the new boundary condition by amplifying
to large amplitude the one stimulated by MPs in the
spectrum of helical modes. In the end the m=1, n=-
11 mode remains the most energetic one, while the
m=1, n=-7 mode remains stationary at a finite energy.
Topologically, the final state of the bottom left panel
corresponds to a MH state, with stochastic magnetic
field lines. Additional simulation cases not presented
here, showed that helical states with different dominant
helicities are possible in highly dissipative regimes,
provided a high-enough MP amplitude is applied (the

threshold is around 10% with this value of dissipation).
Finally, in the high H and MP-on quarter (bottom
right) we find a systematic repetition of quasi-helical
states, with a clearly dominating MHD mode which has
the same twist of the applied MPs, creating conserved
magnetic surfaces in the core, studied in Sec.4. Thus,
in the end, the applied MP is successful in overcoming
the other modes thanks to the natural depression at
higher H values of the competing modes. This last
example is the most adherent to the experimental
observations in RFX-mod, as was discussed in [26].
In Ref. [12] another prediction was made, later
experimentally verified: MPs with different helical
twist stimulate a QSH state with their helical pitch.

3.2. Extended analysis of numerical cases

We make the considerations of the previous sections
more quantitative by computing the time average of
the magnetic energy associated to the various MHD
modes involved in the dynamics. We consider a wide
set of approximately 100 MHD simulations with vary-
ing (S, M, MP%, nMP ). We will show the results of a
subset of simulations with nMP = −7: similar results
are obtained considering helical regimes with helicities
close to this one.

Two requirements must be met in order to diagnose
the presence of a QSH or of a SH state:
i) large positive difference between the magnetic en-
ergy of the dominant m=1 mode and the sum of the
energy of other m=1 modes, indicating the presence of
a helical structure. The limit case corresponds to the
absence of m=1 secondary modes (SH);
ii) low magnetic energy of the m=0 MHD modes, in-
dicating a low level of nonlinear interaction between
the m=1 modes (another symptom of the presence of
a dominant helical mode and of the absence of sec-
ondary modes).
Panel a) of Fig. 3 showing the volume energy of m=1
modes for a set of MHD simulations without MPs and
with varying dissipation (each point corresponds to
time-averages of one simulation). We find a positive
energy difference between the dominant mode (pink
full circles in panel a) and the secondary modes (pink
empty circles) only at very low values of H (condition
i). If we check the condition ii) (look at pink pentagons
in panel c) we observe that the energy of m=0 modes
decreases at low Hartmann number. Thus, without
MP long-lasting QSH state can be found only at low
values of H (for the temporal dynamics look at the top-
left panel of Fig. 2). Such states were deeply studied
in the past, for example in Refs. [7, 10]. In particular
it was shown that the dominant helicity in highly dis-
sipative regimes without MPs depends on the value of
Θ [34].
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Helical states in toroidal pinches 7

Figure 2. Solutions of the 3D nonlinear MHD model for RFP cases. Helical states are found at low Hartmann number (top-left)
characterized by a 2D symmetry (SH Single Helicity states, with well-defined magnetic surfaces in the whole plasma volume). In
the bottom-right corner, corresponding to high values of H and using MPs, we find a state with a high level of helical symmetry
(with the same twist of the MPs).

Figure 3. Two shaded regions where QSH states can be predicted by 3D nonlinear visco-resistive MHD modelling: a pink one at
very high dissipation (panel a), with spontaneous 2D helical states, and a blue one at low dissipation only when MPs are turned
on (panel b). The toroidal mode number of the dominant mode is indicated inside some full circles. The behaviour of m=0 MHD
modes, to be compared with previous results in [34] also confirm the presence of these two regions. Intermediate regions (H ∼ 103)
instead do not correspond to helical solutions.

The scaling of the secondary modes’ amplitude in
the first panel of Fig. 3 changes abruptly around
Hc ∼ 3 · 103: this is the signature of a dynami-
cal transition. In the region H < Hc the scaling is
Wm=1
M,sec ∝ H3.1, calling for a reduction of the Hartmann

number to access helical states at very high plasma
dissipation (meaning low plasma current and/or high
plasma density). In the region H > Hc the scaling is
Wm=1
M,sec ∝ H−0.6, calling for an increase of Hartmann

number to reduce fluctuations (meaning high plasma
current and/or low plasma density).
Let us then consider the panel b) (blue dots) of Fig.
3, corresponding to a set of MHD simulations with
MPs on the m=1 n=-7 MHD mode with amplitude
MP%∼4% (such a value is chosen to facilitate the
emergence of QSH states, which occurs even with the

smaller intensity MP%∼2%) and with varying dissipa-
tion. If we check the condition i) we find a positive
energy difference between the dominant mode (blue
full circles in panel b) and the secondary modes (blue
empty circles) only at high Hartmann number. At low
Hartmann number the mode stimulated by the MPs
does not become the dominant one and its role is that
of perturbing the “no-MP“ helical regime creating a
state with two dominant helicities, like in the bottom-
left corner of Fig. 2. This is confirmed by checking the
condition ii) (look at blue octagons in panel c) show-
ing the saturation of the amplitude of the m=0 modes
at low H. Instead, we observe a clear decreasing trend
of the energy of m=0 modes only at high Hartmann
number: this feature, together with the presence of a
single dominant m=1 mode (full blue dots in panel b),
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Helical states in toroidal pinches 8

characterizes the Quasi-Single Helicity states (like the
one in the bottom right corner of Fig. 2).
Thus there are two regions where long-lasting QSH
regimes, i.e. obeying to the two requirements written
before, can be found. Pure and robust and stationary
helical regimes are present at H � Hc and are studied
in [7, 10, 34], where the features of the intermediate
turbulent regimes found at H ∼ Hc are also described.
The regimes detected at H � Hc display the typical
intermittent behaviour observed in RFP experiments.
They were studied in [26, 11].
Though the low-H regimes would represent a sta-
tionary, stochasticity-free option for the operation of
an RFP device, comparison with experimental results
tends to rule out the high-dissipation solution. In fact
a reasonable lower bound for the Hartmann number
value in typical RFX-mod experiments is H > 105 (see
Ref. [38] for an estimate of H in RFX-mod).
In summary, the extended numerical study presented
in this subsection provides a complete picture of the
different helical regimes of the RFP and of the transi-
tion between them. The major conclusion is that there
is just one region where long-lasting QSH state qual-
itatively similar to experimental observations can be
found, i.e. only at high Hartmann number and only
using MPs with the proper amplitude.

3.3. Role of low dissipation in favoring QSH
emergence

As a confirmation of the results presented in the
previous section, here we show additional numerical
results to highlight how QSH states are observed only
under a threshold in plasma dissipation. As shown
above, low dissipation favors the externally stimulated
mode by damping the other modes amplitude: this
allows the mode stimulated by the MPs to overcome
the competition, build up a quasi-helical state and heal
magnetic chaos, as we shall see on the next Sec. 4. The
phenomenon of “QSH emergence at high current / low
dissipation” is observed in RFX-mod experiments (see
Fig.5 of [49]), where QSH states are measured over
a threshold in plasma current and below a threshold
in plasma density. We describe a simulation where
we decrease plasma dissipation (increase Hartmann
number) every 0.2 τR while imposing a stationary,
low amplitude, MP. This is a paradigmatic example
of “emergence of a QSH state at low dissipation/high
current”, which resonates with experimental findings.
Indeed, in the experiments the dominant helicity and
radial magnetic field amplitude at the edge (which is
usually different from zero see Fig. 3 in Ref. [50]) result
from the spontaneous self-organization of the whole
system constituted by plasma and magnetic front-
end (resistive shell, vacuum layer and a rich system
of coils for feedback interaction and/or control). In

the standard operations, the feedback system tries to
nullify the radial magnetic field while in other cases
a finite suitable helical MP is applied on purpose.
Thus, our simulations (featuring an ideal wall at the
plasma and a fixed constant MP) should be considered
a very schematic representation of the real system.
An upgrade of the magnetic boundary condition in
simulation was recently presented in Ref. [51]. In
the following simulation, we keep the ratio between
viscosity and resistivity fixed (P = ν/η = 102,
with η ∈ [10−7 : 10−4] and ν ∈ [10−5 : 10−2]).
A stationary helical MP is imposed with amplitude
MP% = 2% on the non-resonant MHD mode with
mMP = 1, nMP = −6. This represents a difference
with the experiments, where helicity and radial field
amplitude at the edge, result from the self-organization
(except for cases in which the radial component is
forced by the control system). The result of Fig. 4
does not depend on the helicity of the QSH, as long
as it remains in the range −5 ≤ nMP ≤ −10, as
described in Sec. 3.4. Fig. 4 shows in blue the
temporal evolution of the magnetic energy associated
with the mode “stimulated by the MPs” (m=1, n=-6),
while in black we plot the sum of the magnetic energy
associated with the other m=1 modes. We start at
t = 0 from a low value of H = 103. In this highly
dissipative regime, the m=1, n=-11 mode dominates
the spectrum and the MHD mode with the same twist
of the MP does not emerge as the dominant one (blue
line is below the black one). Increasing H at H =
2.5 · 103 allows the n=-6 mode recovering a little more
energy while the energy associated with the other MHD
modes starts decreasing. We observe the appearance
of intermittency: such cycles are characterized by a
temporary QSH formation (when the blue line is higher
than the black one we have the first evidence of a
m=1, n=-6 QSH state) and are commonly observed
in experiments (see, for example. Fig.2 of [49]). When
we exceed a threshold around H ∼ 4 · 103, in the time
interval between 0.4τR ≤ t ≤ 0.8τR, we observe an
increased temporal intermittency of the helical field,
qualitatively similar to the ones most often observed
in RFX-mod experiments for plasma currents around
1.5MA with hydrogen as main gas. The study of the
dynamics at H = 105, which may well be inside the
presently explored values in RFX-mod, indicates the
possibility of a more persistent and quiescent helical
state, with strongly reduced perturbations’ intensity
(compare the final part of the simulation with RFX-
mod data in Fig.9 of [52]). We find that the intensity
of the perturbations decreases following the scaling
bpert ∼ H−0.3 (see Fig.3). Scaling laws from fluid
plasma transport theory indicate that the Hartmann
number is proportional to plasma temperature T (and
thus to plasma current IP ) and to the inverse of plasma
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Helical states in toroidal pinches 9

density n, H ∼ Tn−1 [38]: this clearly resonates with
QSH emergence only over a threshold in plasma current
and under a threshold in plasma density.

3.4. Role of Magnetic Perturbations in mitigating
oscillatory dynamics

MPs represent a useful mean to mitigate/pace the
intermittency often associated with quasi-helical states
formation. We now show that imposing MPs with a
twist non resonant with the safety factor profile (see
Fig. 1) can make the quasi-helical configuration more
quiescent than in the usual resonant cases. We describe
this behavior in Fig. 5a): we show the temporal
behavior of the mode stimulated by the MPs in three
different simulations. In the first, in light blue, we
impose MPs on the mMP = 1, nMP = −9 MHD
mode with amplitude MP%= 2% and we note that the
amplitude of the axial component of the mode b1,−9

z

spans normalized values between 4% and 14% during
its temporal evolution, with a quasi-periodic cycling.
The second time trace is related to a simulation with
MPs on the resonant (1,−7) mode, always with the
same MP%= 2%: here we note a minor excursion in
b1,−7
z and a slightly lower frequency of QSH breakdown

events. The third time trace instead shows an example
of the pacing effect of a non-resonant MP: we made a
simulation imposing MPs on the non-resonant (1, - 5)
MHD mode and we note that the temporal behavior of
the magnetic field is more quiescent than in the other
cases, with a much minor b1,−5

z amplitude span. All
these results can be synthetized in panel b) of Fig.
5. The big-dots indicate that non-resonant modes
(nMP >= −6) are characterized by a less intense
response of the plasma to the applied MP and by
a less wide amplitude span (indicated by the shaded
region) meaning an increased quiescience. As for the
resonant ones (nMP <= −7) we find that the most
intense reaction to the imposed MP is around nMP =
−9, quickly fading away as nMP deviates from this
value: in fact, analyzing the simulations with nMP =
−11 one notices that the amplitude of the dominant
(resonant) mode is equal to the one associated to the
(non-resonant) nMP = −5, though with much wider
amplitude span (indicating intermittency). We also
describe the amplitude of m = 1 secondary modes with
the little dots, which show a structure similar to that
of the dominant helical mode. Summarizing, while
plasma responds less to non-resonant MPs (according
to Fig. 5, panel a) the temporal evolution is more
quiescent than in the resonant case, with rarer QSH-
breakdown events characterized by a lower drop of
amplitude of the dominant MHD mode: building QSH
states upon non-resonant modes (so-called Resistive
Wall Modes [53]) allows obtaining a more quiescent
dynamics [12].

3.5. Analogous tokamak simulations

This part is devoted to tokamak simulations in the
framework of the same 3D visco-resistive MHD model,
with the aim of drawing analogies with the RFP
behavior analyzed in the previous part. Sawtoothing
solutions can be obtained with the visco-resistive
MHD model we are using, as already presented in
Refs.[54, 55, 56], despite the simplicity of the model
which does not take into account physical effects like
heat transport, finite-β or two-fluid effects or those
related to toroidal geometry and fast ions: such
approximated model is already capable of providing
a basic comprehension of experimental observations.
Literature about tokamak sawtooth is vast, consider
the analytical works of Ref. [57] and references
therein and the numerical works in Refs [58, 59, 60,
61, 62]). Sawtooth is known to prevent impurity
accumulations in the core region [63] but also to
lead to neoclassical tearing modes onset [64]. A
set of 3D numerical simulations of the internal kink
mode dynamics with our visco-resistive modelling has
been performed varying plasma dissipation and MPs’
features like in the previous RFP cases. All simulations
start from the tokamak equilibrium described in section
2.1.
Fig. 6 has a matrix structure analogous to that
of Fig. 2 (dissipation is varied in the horizontal
direction, MPs’ amplitude in the vertical). Let us
look at the simulations on the top row, the ones
with no applied MPs. In the tokamak case, high
Hartmann/low dissipation (top-right panel) favors the
oscillatory dynamics, with the on-axis safety factor
periodically crossing the q=1 value and thus triggering
the sawtoothing dynamics of the internal kink mode,
whose energy oscillates in the range 10−7 ≤ WM ≤
10−3. The low Hartmann/high dissipation simulations
on the top-left panel exhibit a stationary behaviour.
The dissipation parameters are S = 104 and M = 104

(H = 104, P = 1) for the high-dissipation case, while
the low-dissipation case in the top-right has S = 106

and M = 103 (H = 3.16 · 104, P = 103).
The bottom row shows the effect of a MPs on the m=1,
n=-1 mode dynamics (other details on the simulations
can be found in [55], Fig.3, 4). An analogy with
the RFP is that a proper amount of MP amplitude
(MP%= 1.5% in this case, or the 0.1% of the total
field at the edge) increases the energy of the m=1, n=-
1 MHD mode, decreases the energy of the other m=1
harmonics and paces the intermittency of the sawtooth
(though the on-axis safety factor still oscillates around
q=1). However, the amount of MP% necessary to
interact with the tokamak helical states is lower than
the corresponding one for the RFP, with an analogous
lower intensity of magnetic fluctuations: this difference
is related to the much stronger magnetic flux with
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Helical states in toroidal pinches 10

Figure 4. In 3D nonlinear MHD simulations quasi helical states with a chosen helical twist (h = 6 in this case) can emerge only
with MP and at low dissipation. This explains the experimental observation from RFP experiments: there, QSH are observed only
when plasma current is increased. In this simulation S and M vary, with constant P = S/M = 102. We also have S = P 1/2H = 10H.

Figure 5. Magnetic Perturbations are a powerful tool to interact with QSH plasmas, i.e. the ones in the low dissipation regime of
Fig. 2. In panel a) we show that we can use MPs with different helicities to direct the self-organization towards a helical state with
the same helical twist as the edge MP. In panel b) we show that more quiescent states can be obtained using low-n MPs with m=1,
corresponding to non-resonant helical regimes. Simulations with S = 105,M = 103.

respect to the plasma corrent in tokamaks with respect
to RFPs.

3.6. Scaling of the “sawtoothing” characteristic time

We dub the characteristic time for both the sawtooth-
ing dynamics of tokamaks and RFPs τsaw, and we com-
pute it by looking for the time intervals between max-
ima of selected physical quantities, like the magnetic
energy associated to the m=1,n=-1 mode for the toka-
mak simulations (see the pictorial definition in the top-

right panel of Fig. 6) or the value of q(a) for the RFP
simulations. We define τsaw as the average of the time
intervals in a single simulation and we compute the re-
lated error δτsaw

.
For the tokamak configuration we have analyzed a
database of simulations with 104 < S < 107 and
103 < M < 106. We then look for a scaling τsaw ∝
SαMβ , which gives α = 0.58± 0.01, β = −0.26± 0.03.
An analogous scaling can be obtained considering a
different couple of visco-resistive dissipation parame-
ters, meaning the couple (H,P ): noting that in the
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Helical states in toroidal pinches 11

Figure 6. Solutions of the 3D nonlinear MHD model for tokamak cases. A clear analogy can be drawn with Fig. 2 regarding the
dynamical features of the simulations: high Hartmann favors sawtoothing, which can be in turn tamed by proper MPs.

rescaled equations time is transformed according to
Eq. 2 (τ → τ̄saw = P−

1
2 τ), this scaling can be

analyzed provided that the value of τsaw is rescaled
as well. We can thus obtain a new scaling which is
linked to the previous one by a simple relation ob-
tained by substituting the definitions of (H,P ) in terms

of (S,M), i.e. τ̄saw ∝ Hα+βP
1
2 (α−β−1). The ad-

vantage of this choice of parameters is that it yields
a clear scaling of the rescaled sawtoothing period as
τ̄saw ∝ H0.32±0.03P−0.07±0.02 which depends mostly on
H, see the blue dots of Fig. 7. Previous work about the
characterization of the sawtoothing repetition time is
available: in [65] a different MHD model is used, indi-
cating a scaling τsaw−V lad1991 ∝ S0.45M−0.20, compat-
ible with the scaling from SpeCyl simulations; strong
dependence on the perpendicular thermal diffusivity
and on the edge safety factor is also found. Another
result consistent with our computation can be found in
[66], where a scaling τsaw−McGuire1979 ∝ S0.40 is given.
Some work on sawtoothing in current-carrying hybrid
tokamak-stellarator devices is found in [67], where the
dependence on the safety factor only is described.

Let us now consider the “sawtoothing” repetition
time in our database of RFP simulations (the same
one used for the statistical analysis of Sec. 3.2).
We compute τsaw only for simulations showing an
intermittent behaviour, i.e. with Hartmann H >
Hc ∼ 3 · 103. From the whole database we obtain
a scaling τsaw ∝ S0.91±0.03M−0.07±0.07. Considering
the rescaled sawtoothing characteristic period we easily
obtain τ̄saw ∝ H0.84±0.07P−0.01±0.04, again showing a
clear dependence on the Hartmann number only.
Quantitative differences are observed between the two

Figure 7. Scaling of the rescaled sawtoothing characteristic
time τ̄saw with the Hartmann number. RFP simulation are
colored in salmon, while tokamak ones in blue.

magnetic configurations under scrutiny: in particular
the increase of the sawtoothing time when decreasing
visco-resistive dissipation is much faster in the RFP
than in the tokamak, H0.84 in the RFP, while H0.32

in the tokamak. The relatively strong dependence of
τsaw on dissipation, already found in [21], may explain
why RFP quasi-helical states are observed to become
more persistent (i.e. with less sawtoothing events)
when increasing current (i.e. decreasing resistivity): in
Fig.5a of [49] a strong dependence of QSH-persistence
is in fact observed with the Lundquist number, which
in turn strongly depends on plasma current.
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Helical states in toroidal pinches 12

4. Topology of quasi-helical states: barriers to
the transport of magnetic field lines

In this section we show that a suitable choice of the
MP spectrum at the edge is an important ingredient
for the attainment of higher magnetic order. We fo-
cus on several aspects of the magnetic field topology
all along two RFP simulations. We discuss Poincaré
plots, Lagrangian Coherent Structures (LCS) compu-
tation and connection length Lc. The studies presented
in this work are performed with the NEMATO field
line tracing code (presented in [68] and numerically
benchmarked in [69]). Few preliminary words about
the LCS technique: it is borrowed from the study of
dynamical systems, can be used to distinguish regions
with different transport qualities. The most important
feature of LCSs is that, for a meaningful finite time
span which characterizes a LCS [16], magnetic field
lines belonging to different regions cannot mix with
each other. The LCS technique allows a more refined
analysis than a simple inspection of a Poincaré map.
As shown in [70, 12], when a Poincaré map suggests
only a stochastic behaviour, the LCS tool highlights
some structures, which we color in blue in the panels
a)-f) of Fig. 9. Moreover, LCSs can be used also in
situations where a Poincaré plot can’t be computed,
i.e. in non-periodical flows [71, 72].
In the following we discuss the “degree” of magnetic
order. Specifically, looking at Fig. 8 panel a), we de-
fine the degree of magnetic order to be high if there is
a large area of the Poincaré plot occupied by conserved
magnetic surfaces or, looking at Fig. 9, if we compute
the presence of well-defined bundles of LCS (plotted
in red), or if we measure a large connection length of
magnetic field lines to the edge (white areas of high
connection length maps on the poloidal sections, plot-
ted in Fig. 9) and if such positive features resist to the
sawtoothing events.

4.1. Poincaré plots of quasi-helical states

The two simulation cases that we consider differ only
with respect to the dominant MHD mode, either a QSH
state with a non-resonant mMP = 1, nMP = −6 helical
twist in the first row or a mMP = 1, nMP = −7 case in
the second, in both cases with amplitude MP%= 2%.
The visco-resistive parameters of the simulations are
S = 106, M = 104. In each case we study a dynamic
cycle starting with the formation of a QSH state (first
column of Fig. 8), continuing with a full development
of the helical state (second column) and ending with
a relaxation of the quasi-helical fields, resulting in the
loss of part of the positive helical magnetic topology
features, as can be seen by the generalized reduction
of the area occupied by conserved magnetic surfaces in

the third column of Fig. 8. Poincaré plots of Fig. 8
are performed on a toroidal surface of section. In the
first row the mMP = 1, nMP = −6 simulation case, in
the second row the mMP = 1, nMP = −7 case. Fig. 8a
shows a core region of conserved magnetic surfaces is
present when the QSH state is forming (green region
in the first row, orange in the second). Surrounding
the core is a stochastic region, whose radial extension
depends on the relative intensity of the dominant
helical mode and its perturbations (grey region). An
edge region with conserved surfaces, related to the
m ∼ 0 character of the edge, is a feature observed
in all the RFPs and providing a barrier to transport
[73, 74].
As a first consideration we notice that the area of
conserved magnetic surfaces in the non-resonant case
is higher than that in the resonant case, both during
the formation of the helical state and its relaxation
to a Multiple Helicity state (last column of Fig. 8):
this was already found in [12], but here the greater
resilience to magnetic chaos is confirmed during the
whole cycle of evolution of a QSH state. The last row
of Fig. 8 depicts the profile of the helical safety factor:
it is interesting to notice that a region of flat q(ρ) is
present only in resonant cases, and that its maximum
extension encloses the conserved orange regions in
panels d) and e) (see dotted pink lines). Another
difference between the first two rows is that in resonant
cases the core-conserved region does not enclose the
cylindrical axis at r/a = 0, while the non-resonant
cases generally do (apart from the relaxation phase).
This may be important for understanding the features
of the electron temperature profiles measured in RFP
experiments, which display clear internal transport
barriers previously put in relation to magnetic chaos
healing and helical q profile [75, 76].
In the following, we consider the features of Lagrangian
Coherent Structures, LCS, and of the connection
length, Lc, during the magnetic field evolution.

4.2. Lagrangian Coherent Structures in quasi-helical
states

Let us now consider the LCSs computed in the two
cycles of QSH states, colored in red in Fig. 9. We
considered just the LCS located in the core, i.e. at
r/a < 0.7. LCS are computed using a finite time
Lz of 4 toroidal turns for each magnetic field line.
The particular choice of the finite time is the result of
a compromise specific to each magnetic configuration
analyzed. Too short an Lz (Lz � Lk, Lcorr, with Lk
the average Kolmogorov length of the system and Lcorr
the correlation length see Sec. VI of [69]) prevents
LCSs to be computed because magnetic field lines are
not followed long enough to put in evidence regions of
fast separation, but allows for shorter computational
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Helical states in toroidal pinches 13

Figure 8. Magnetic topology in terms of Poincaré plots on a toroidal surface of section during the formation of a helical state, and its
relation with the helical safety-factor. In the first line the evolution of magnetic field topology during a cycle of formation/breakdown
of a non-resonant QSH state with nMP = −6 is shown, while the second line shows a resonant QSH state with nMP = −7. In the
third line the helical safety factor for the different cases is shown, and one can notice the reversed-shear typical of resonant helical
states. Safety factor is plotted against a “helical radius” ρ related to the volume contained inside nested helical flux surfaces. The
dashed helical flux surfaces in plots of the second line correspond to the end of the flat safety factor region in the resonant case.

time; too high an Lz (Lz � Lk, Lcorr) prevents
LCSs to be computed because magnetic field lines in
a finite domain decorrelate hiding the regions of fast
separation. Considering a test-particle with the mass
of an electron at a temperature of 700eV (typical of the
RFX-mod experiments) travelling with thermal speed
the chosen Lz corresponds to around 10 Alfvèn times,
i.e. 10−6 s.
From a topological point of view there are no relevant
differences between the LCSs’ shape in the two quasi-
helical states: they tend to encompass the helical core
as it widens during the evolution of the helical state.
A certain degree of difference can be observed in the
presence of more developed bundles of LCSs in the non-
resonant case, panels a)-c) than in the resonant case.
Interestingly, in the latter case the position of a bundle
of LCSs can be correlated with the position of reversed
shear of the helical safety factor profile (see Fig. 8 and
Ref.[75]).
LCSs are observed to evolve on a time scale slower
than the dynamical one, as their shape does not change
significantly between the beginning and the middle of
QSH states in the first two columns of Fig. 9), which
are separated by τdyn ∼ 104 τA. Another important
time scale is the one related to the LCSs’ power of

separating different spatial regions, which lies on a
shorter timescale τsep ∼ 103 τA [12], after which LCSs
become leaky.
An assumption at the basis of our use of the LCS
technique is that the magnetic field line are used a
proxy for the particle trajectories along the lines. It
is our plan to use tools beyond this ansatz to take
into account the behaviour of charged particle in the
magnetic field under scrutiny, like the one described in
Ref. [77].
A complete study of LCSs confinement properties and
their relation to the mechanism of formation of Internal
Transport Barriers (ITBs) in experiments (following
previous studies in [78, 79]) will be presented in the
future.

4.3. Study of the connection length to the edge

An important issue related to LCSs is how much these
structures can confine magnetic field lines. To quan-
tify the magnetic field lines confinement properties of
LCSs, which can’t be argued from a Poincaré plot, as a
first step we compute the connection length to the edge,
i.e. we measure the length Lc that a magnetic field
line starting at (r0, θ0) covers to reach an edge radius
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Helical states in toroidal pinches 14

Figure 9. Red Lagrangian Coherent Structures (LCS) are superimposed to the contour plot of connection length of magnetic field
lines to the edge. LCS are common feature of quasi-helical regimes, and are typically found in bundles. White levels of the contour
plot correspond to the regions where Lc = Lc,max = 105. The red LCSs divide regions with different connection length, highlighting
their role in creating and internal barrier to the transport of magnetic field lines.

taken as a reference for the computation r/a = 0.75.
The results are shown in Fig. 9, where magnetic field
lines have been integrated until a maximum normal-
ized length of Lc,max = 105 (corresponding to a time
of τconn ∼ 105 τA, i.e. much greater than the dura-
tion of a QSH cycle). We observe first that the areas
in white, characterized by Lc = Lc,max, are generally
larger in non-resonant states. We also notice regions
where the connection length drops sharply: these re-
gions are in good correspondence with the presence of
bundles of LCS, another evidence of their role in defin-
ing special regions for the transport of magnetic field
lines. We also note that when the ordering role of the
helical mode fades, in the third column of Fig. 9, a
rich set of topological structures appear connecting the
plasma core to the plasma edge with relatively low con-
nection length. Consider for example the green spots
at r ∼ 0.2, θ ∼ 0 in panel c), which are named “escape
channels” in plasma literature [80, 81]: there, they are
shown to possess a rich fractal structure which may ex-
plain some anomalous values of transport coefficients
in the plasma edge.
As a final point it is important to notice that a “bar-
rier” structure persists even during the reconnection
event (see panels c) and f)). The detailed impact
of these properties on temperature profiles are under
study, both from the numerical and the experimental
point of view: the use of a numerical code for the solu-
tion of the anisotropic heat transport equation [82, 83]
will help determining whether LCSs are responsible for
the high temperature gradients observed in correspon-

dence of Internal Transport Barriers [84], and an anal-
ogous work is ongoing looking at RFX-mod experimen-
tal data.

5. Role of plasma flow in enhancing
quasi-helical states

Plasma rotation is the topic of a vast literature,
because toroidal velocities of tens of km/s are measured
both in tokamaks and RFPs, also in the absence of
direct external momentum input. Among other things,
rotation is involved in a mechanism of reduction of
turbulent fluctuations of the magnetic field [85]. We
refer the reader to [86] for an excellent and complete
review of this subject.
In this section we describe a preliminary assessment
of the interaction between a mean plasma flow and
the helical self-organization process in RFPs. We
performed a set of simulations with S = 105 and
M = 102, imposing a MP on the (1,−7) MHD mode
with amplitude MP%= 2%; simulations of this kind are
located in the top-right corner of the diagram of Fig. 2,
corresponding to the ones with a more experimental-
like dynamics of the magnetic field. The parameter
which measure the dimensionless ad-hoc momentum
source, SM with respect to the dimensionless viscosity
ν, SM

ν is varied in the range −7 · 10−2 < SM

ν <
7 · 10−2, corresponding to an initial maximum velocity
of −1.75 · 10−2 < v0,0

z < 1.75 · 10−2.
As a preliminary result of this study we observe in Fig.
10a) that a moderate intensity of imposed axial flow
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Helical states in toroidal pinches 15

Figure 10. Panel a): addition of external momentum source increases the ratio between dominant and secondary perturbations.
Panel b): the quasi-helical magnetic field interacts with the mean plasma flow by braking it, from its initial equilibrium parabolic
profile (see Sec.2.1) to the final blue radial profiles.

(few percent of the Alfvèn speed, vA ∼ 5000 km/s
in RFX-mod) leads to an enhancement of the helical
state, in form of a modest increase of the energy
associated to the dominant mode together with a clear
decrease of the energy of secondary perturbations,

even in the experimentally relevant region v
(0,0)
z /vA <

0.01 (the ratio between the two quantities increases
of around 25% with these simulation parameters),
independent on the direction of the mean flow. It is
also interesting to note that when a global quasi-helical
state is established the main mechanism of interaction
between magnetic and velocity field is rotation braking.
Fig. 10b) shows the radial profile of the plasma flow
m = 0, n = 0 components at the beginning (solid line)
and at the end (dashed line) of the simulation with
SM

ν = 4 · 10−2 (corresponding to an initial velocity

v
(0,0)
z (t = 0) = 10−2): one notices the strong damping

of the ẑ component of the velocity by the magnetic
field, which is in part converted in a θ̂ component.
The mechanisms behind this interaction are still under
scrutiny.
The expected positive implications on magnetic field
topology have not been studied yet, and will be the
subject of a dedicated work.

6. Summary and final remarks

In this paper we discussed helical self-organization
in current-carrying toroidal pinches for the magnetic
confinement of fusion plasmas, in the framework of 3D
nonlinear visco-resistive MHD modelling.
Two quantities rule the nature of helical states and
the possibility to interact constructively with self-

organization, namely plasma dissipation (Hartmann
number H, the inverse product of resistivity and
viscosity) and helical magnetic boundary conditions
(with chosen intensity and helical twist). A complete
picture of the role of these two quantities in featuring
helical solutions has been given. Such a complete
picture can be summarized in some ideas listed below.
First, there are only two combinations of Hartmann
number and helical boundary conditions leading to
quasi-helical solutions for the RFP: the solutions at
highH, previously connected to experimental results in
RFX-mod [26, 12], and the stationary helical solutions
at low H , still lacking experimental evidence.
Second, it is possible to interact constructively with
a helically self-organized RFP plasma, by lowering
dissipation (i.e. by increasing plasma current in the
experiment) and favoring a selected MHD mode by
modulating appropriately the edge magnetic field (i.e.
by acting on the plasma-edge with a control system).
The fact that a non-resonant helical twist at the edge
can induce a more quiescent dynamics in place of a
sawtoothing one is a positive feature of high H states,
whose exploration already successfully started in RFX-
mod device [12].
Third, the study of the RFP configuration can be
extended to basic tokamak simulations with the same
model: there, sawtoothing behaviour emerges at low
dissipation too, also mitigated by imposing a small
edge magnetic field at the boundary. Though this
modelling does not pertain to advanced tokamak
regimes and significant work is needed to further
improve the predictive capability of numerical tools
(toroidal geometry, finite β effects and the self-
consistent evolution of plasma resistivity through
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Spitzer’s law just to mention the first physical effects
that we’re going to integrate in our modelling tools),
we deem the similarities between tokamak and RFP
helical states useful to deepen the understanding of
basic behaviour of the internal kink mode [87, 61].
Fourth, the sawtoothing period in the simulations
described in this paper is shown to depend on the
Hartmann number only, i.e. on the simple product of
resistivity and viscosity for both tokamaks and RFPs,
a result to be validated experimentally.
In the second part of the paper the magnetic
chaos healing phase associated with the formation
of a quasi-helical state is tackled, highlighting the
special role of low magnetic shear regions in helical
states built upon resonant MHD modes and showing
that non-resonant helical states have generally larger
areas of conserved magnetic surfaces, embracing the
geometrical axis of the configuration. It is presented
for the first time the evolution of bundles of Lagrangian
Coherent Structures responsible for the confinement
of magnetic field lines close to the core of the helical
plasma. LCSs surround the core of helical states
and resist to the sawtoothing events in RFPs, even
when magnetic topology gets less ordered. They are
correlated to sharp gradients in the connection length
of magnetic field lines to the edge, a fact that further
supports the LCSs’ role in the formation of internal
transport barriers. In the future, an analysis of heat
transport taking into account the strong anisotropy
in the thermal conductivity of fusion plasmas and the
presence of magnetic islands and stochastic magnetic
fields is foreseen (using the tools described in Ref.[82,
83]), aiming at clarifying the role of LCS in sustaining
transport barriers evolution - following previous studies
[79, 88] and in the addition to already established
mechanisms of microturbulence suppression caused by
sheared flows [89, 90].
A further novel result presented in this work is that the
positive interaction between edge MPs and the self-
organized plasma can be enhanced by a macroscopic
plasma rotation: a clear energy separation between
dominant helical mode and secondary fluctuations
emerges, leading to possible enhancements in the
dynamics and topology of helical states.
Future numerical work will be dedicated to analyze the
role of a finite pressure gradient and to the effect of a
realistic boundary on the helical self-organization of
the RFP, adding a thin resistive shell and a vacuum
layer between the plasma and the ideal shell where MPs
are applied. Another area of future work is related
to the self-consistent evolution of plasma resistivity
and viscosity through the solution of heat transport
equation with the PIXIE3D code [32]. Experimental
activity to validate our numerical results is planned in
the upgraded RFX-mod2 machine [91], both regarding

the topic of transport barriers formation and the topic
of interaction between helical states and plasma flow.
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Appendix A. Viscosity and resistivity in
plasma fluid theory

The aim of this appendix is to define few quantities
- resistivity, viscosity, adimensional resistive and
viscous Lundquist number, Hartmann number - in
the framework of plasma fluid theory and in terms of
measurable plasma parameters.
Nor the steps involved in the construction of a single
fluid theory from kinetic theory, nor the mathematics
involved in fluid equations closure will be explained
here. We refer to [92] for an explanation of the steps
involved in the construction of a single fluid theory
from kinetic theory, and of the mathematics involved
in fluid equations closure.
A Chapman-Enskog two-Laguerre-polynomial closure
scheme in the case of a magnetized plasma (a
magnetized plasma is defined by Ωiτii,Ωeτee � 1 i.e.
meaning that the ion Larmor radius is much smaller
than a characteristic length-scale. Ωi,e = eB

mi,e
is the

ion/electron cyclotron frequency) yields the following
expressions for resistivity and viscosity perpendicular
to the magnetic field:

η =
me

nee2τei
=

0.12

π3/2

m
1/2
e e2

ε20

Z ln Λ

T
3/2
e

(A.1)

µ⊥ =
3

2

niTi
Ω2
i τii

=
1

8π3/2

m
3/2
p e2

ε20

n2
eγ

3/2 ln Λ

B2T
1/2
i

(A.2)

with τii, τei representing the average time between an
ion-ion, electron-ion collision, Λ the Coulomb loga-
rithm, Ti,e the ion/electron temperatures measured in
eV, Ze is the plasma ions electric charge, ni,e is the
ion/electron particles density, γ is the ratio between
ion and proton mass.
From these definitions and the definition of Alfvèn time
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τA =
a
√
µ0niγmp

B one can then define the resistive and
viscous Lundquist numbers:

S =
µ0avA
η

=
π3/2

0.12

µ
1/2
0 ε20

m
1/2
p m

1/2
e e2

aBT
3/2
e

γ1/2n
1/2
e Z1/2 ln Λ

(A.3)

M⊥ =
avAρ0

µ⊥

= 44.5
ε20

µ
1/2
0 mpe2

aB3T
1/2
i

γn
3/2
e Z1/2 ln Λ

. (A.4)

From these definitions one can estimate the perpendic-
ular Hartmann number:

H⊥ = (SM⊥)1/2

= 45.4
ε20

m
3/4
p m

1/4
e e2

aB2T
3/4
e T

1/4
i

γ3/4neZ1/2 ln Λ
, (A.5)

we get the simplified relation H ∝ Tn−1 used in Sec.
3.3.
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