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Abstract

We present the formal underpinnings of a modelling and analysis framework
for the specification and verification of variability in product families. We ad-
dress variability at the behavioural level by modelling the family behaviour by
means of a Modal Transition System (MTS) with an associated set of variabil-
ity constraints expressed over action labels. An MTS is a Labelled Transition
System (LTS) which distinguishes between optional and mandatory transitions.
Steered by the variability constraints, the inclusion or exclusion of labelled tran-
sitions in an LTS refining the MTS determines the family’s possible product
behaviour. We formalise this as a special-purpose refinement relation for MTSs,
which differs fundamentally from the classical one, and show how to use it for
the definition and derivation of valid product behaviour starting from product
family behaviour. We also present a variability-aware action-based branching-
time modal temporal logic to express properties over MTSs, and demonstrate
a number of results regarding the preservation of logical properties from family
to product behaviour. These results pave the way for the more efficient family-
based analyses of MTSs, limiting the need for product-by-product analyses of
LTSs. Finally, we define a high-level modal process algebra for the specification
of MTSs. The complete framework is implemented in a model-checking tool:
given the behaviour of a product family modelled as an MTS with an additional
set of variability constraints, it allows the explicit generation of valid product
behaviour as well as the efficient on-the-fly verification of logical properties over
family and product behaviour alike.

Keywords: Model checking, Modal transition systems, Temporal logic,

∗Corresponding author
Email addresses: maurice.terbeek@isti.cnr.it (Maurice H. ter Beek),

alessandro.fantechi@unifi.it (Alessandro Fantechi), stefania.gnesi@isti.cnr.it
(Stefania Gnesi), franco.mazzanti@isti.cnr.it (Franco Mazzanti)

Preprint submitted to Elsevier November 27, 2015



Product families, Variability

1. Introduction

Software Product Line Engineering (SPLE) [31, 61] is by now a full-fledged
software engineering approach aimed at developing, in a cost-effective manner,
a family of software-intensive systems by systematic reuse. Individual products
share an overall reference model or architecture of the product family, but they
differ with respect to specific features. A feature is a (user-visible) increment
in functionality of a product. SPLE reduces time-to-market, increases product
quality, and lowers production costs. The common and variable parts of prod-
ucts are defined in terms of features and managing variability is about identifying
the variation in a shared family model to encode exactly which combinations
of features constitute valid products. The actual configuration of products dur-
ing application engineering is then reduced to selecting desired options in the
variability model. Hence, the overall production process is organised so as to
maximise commonalities and at the same time minimise the cost of variations.

Variability modelling and analysis of software-intensive systems traditionally
focusses on structural rather than behavioural properties and constraints. It is
important to model and analyse their variability also at the behavioural level,
in order to provide a form of quality assurance. This was first perceived in the
context of UML 2.0 [46, 69]. Consequently, Modal Transition Systems (MTSs)
were recognised in [40] as a promising model to describe in a compact way all
possible operational behaviour of the products of a product family. In a nutshell,
an MTS [1] is an LTS that distinguishes between admissible (‘may’) and neces-
sary (‘must’) transitions. Following [40], variants and extensions of MTSs were
studied in order to elaborate a suitable formal modelling structure to describe
variability in terms of behaviour, including modal I/O automata [52], variable
I/O automata [55], and MTSs with logical variability constraints [4, 5, 36]. This
triggered a growing interest in modelling behavioural variability, which led to
the application of formal models different from MTSs, but still with a transition
system semantics, including first and foremost the highly elaborated framework
based on featured transition systems [26, 27], but also process-algebraic ap-
proaches [12–14, 42, 45, 67], Petri nets [59], and finite state machines [57]. As
a result, behavioural analysis techniques like model checking [6, 23] became
available for the verification of (temporal) logic properties of product families,
resulting in special-purpose model checkers [15, 16, 25, 32].

In this paper, we focus on one such approach. We present the full formal
underpinnings of a modelling and analysis framework, some of whose aspects
were introduced in [4, 5, 15, 16]. It is based on a specific subset of MTSs, whose
elements are equipped with an additional set of logical variability constraints
expressed over actions. These constraints allow one to capture all common
variability notions known from feature models [43, 49, 63], since it is well-known
that plain MTSs cannot efficiently (in a compact way) model, e.g., the notions of
alternative and mutually exclusive features. Considering the may transitions as
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optional and the must transitions as mandatory, an MTS can be interpreted as a
family of LTSs such that each family member corresponds to a specific selection
of optional transitions. In this way, a single MTS can model a product family
since it allows a compact representation of the family’s behaviour, by means
of states and actions, shared by all products, and variation points, by means
of may and must transitions, used to differentiate among products. A specific
selection of labelled transitions respecting the variability constraints expressed
over action labels, determines possible product behaviour (modelled as LTSs).
In this paper, we formalise this for the first time as a special-purpose refinement
relation for MTSs, which differs fundamentally from classical MTS refinement,
and we show how to use it to formally define and derive valid (i.e., configurable)
product behaviour starting from the behaviour of a product family.

Subsequently, we recall v-ACTL, a variability-aware action-based branching-
time modal temporal logic that was introduced with the sole purpose of reason-
ing over the syntactic structure of MTSs [15]. To this aim, it provides novel
interpretations of some classical modal and temporal operators. In this paper,
we demonstrate a number of results regarding the preservation of specific v-
ACTL properties from family to product behaviour. These results pave the way
for family-based analyses of MTSs, limiting the need for enumerative product-
by-product analyses of LTSs. Based on model-checking techniques for v-ACTL,
we updated the Variability Model Checker VMC [15, 16] in such a way that it
now allows one to perform two kinds of behavioural variability analysis on a
product family modelled as an MTS with additional variability constraints:

1. The actual set of valid product behaviour can explicitly be generated from
the MTS, after which the MTS and the resulting LTSs can independently
be verified against a logical property;

2. A logical property can be verified directly over the MTS, relying on the fact
that under certain syntactic conditions, validity over the MTS guarantees
validity of the same property for all the family’s valid products (LTSs).

Finally, we formally define the modal process algebra that VMC accepts as spec-
ification of an MTS and we illustrate the applicability of the overall framework
and its associated tool by means of an example family of coffee machines.

The paper is based on previous publications (in particular, [4, 5, 15, 16]),
but it contains new material and results. The formal definition of refinement
of MTSs has been completely revisited for the specific purpose of defining and
deriving LTSs modelling valid product behaviour, which has required the intro-
duction of new notions like consistent and valid products. The preservation by
refinement of v-ACTL formulae has been formally defined and proved. The full
syntax and semantics of the high-level modal process algebra used to specify
MTSs in VMC has been defined and the associated set of variability constraints
may now contain any Boolean expression over the action labels.

The paper is organised as follows. After presenting a running product family
example in Section 2, we introduce the modelling framework of MTSs with
additional variability constraints in Section 3. In Section 4, we define the action-
based branching-time modal temporal logic, v-ACTL, for the formulation and
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analysis of behavioural variability in MTSs. The associated model-checking tool,
VMC, for the specification and verification of behavioural variability in product
families modelled as MTSs is described in Section 5. Section 6 discusses related
models and tools and, finally, Section 7 contains some concluding remarks.

2. Running Example of Variability in Product Families

Throughout the paper, we will use a family of (simplified) coffee machines
as running example, variants of which have been used in [4, 5, 8, 12, 14, 16, 17,
19, 27, 28, 36, 37, 42, 59]. It is described by the following list of requirements:

1. Each time a user desires a beverage, initially (s)he must insert a coin: ei-
ther a euro, exclusively in case of coffee machines for the European market,
or a dollar, exclusively in case of coffee machines for the Canadian market;

2. After having inserted a coin, the user has to be offered the option to choose
whether or not (s)he wants sugar in her/his beverage, after which (s)he
has to be offered to select a beverage;

3. The choice of beverages offered by a coffee machine may vary (the options
being cappuccino, coffee, and tea), but every coffee machine must offer at
least one beverage. Furthermore:
(a) tea may only be offered by coffee machines for the European market;
(b) whenever a coffee machine offers cappuccino, then it must offer coffee

as well;
(c) whenever a coffee machine offers coffee, then it either delivers always

espresso or always regular coffee;
4. After the user has chosen her/his beverage, the coffee machine delivers it

and, as soon as the user has taken her/his beverage, the coffee machine
must return in its idle state.

Note that these requirements contain both structural constraints, defining dif-
ferences in configuration (in terms of features) among products, and operational
constraints, defining the behaviour of products through admitted sequences
(temporal orderings) of actions/operations (which implement features). An ex-
ample of the former is the fact that every coffee machine must offer at least
one beverage, but in a Canadian coffee machine this must be either coffee or
cappuccino (and coffee), whereas an example of the latter is that a coin must
have been inserted before a beverage can be chosen.

To illustrate a number of technical definitions, mainly in the next section, we
will use an even more simplistic family of coffee machines that deliver a coffee
upon the insertion of either a euro or a dollar.

3. Modelling Behavioural Variability in Product Families

Similar to earlier approaches based on variants of MTSs [36, 40, 52, 55],
we use MTSs for describing in a compact and abstract way the behaviour of
an entire product family and their underlying model of LTSs for describing
individual product behaviour.

4



Definition 1 (LTS). A Labelled Transition System (LTS) is a tuple (Q,Σ, q, δ),
where Q is a finite and non-empty set of states, Σ is a finite set of actions, q ∈ Q
is an initial state, and δ ⊆ Q × Σ × Q is a transition relation. We sometimes
write q a−→ q′ if (q, a, q′) ∈ δ and we call it an a-transition (from source q to
target q′).

Definition 2 ((full) path). Let L = (Q,Σ, q, δ) be an LTS and let q ∈ Q. Then,
σ is a path from q if σ = q (empty path) or σ = q1a1q2a2q3 · · · with q1 = q and
qi

ai−→ qi+1 for all i > 0 (possibly infinite path); its i-th state is denoted by σ(i)
and its i-th action is denoted by σ{i}.

A state q ∈ Q is reachable (in L) if there exists a path σ from q to q, i.e.,
σ(i) = q for some i > 0.

A state q ∈ Q is final (a.k.a. a sink state) if it is without outgoing transitions.
An action a ∈ Σ is reachable (in L) if there exists a path σ from q such that

σ{i} = a, for some i > 0.
A full path is a path that cannot be extended any further, i.e., it is infinite

or it ends in a final state. The set of all full paths from q is denoted by path(q).

We also say that a state (action) can be reached (occurs) in an LTS if it is
reachable.

An MTS is an LTS with a distinction among admissible (may) and necessary
(must) transitions [53].

Definition 3 (MTS). A Modal Transition System (MTS) is a tuple (Q,Σ, q, δ3, δ2)
such that (Q,Σ, q, δ3) is an LTS (its underlying LTS) and δ2 ⊆ δ3. An MTS
distinguishes the may transition relation δ3, expressing admissible transitions,
and the must transition relation δ2, expressing necessary transitions. We some-
times write q a−→3 q′ for (q, a, q′) ∈ δ3 and q a−→2 q′ for (q, a, q′) ∈ δ2 and we
sometimes call them may a-transition and must a-transition, respectively.

In the sequel, we will refer to transitions in δ3 \ δ2 as optional transitions1.

Note that any transition is thus either a must transition or an optional
transition (and in any case it is by definition also a may transition). For reasons
that will become clear later, we assume that no must a-transition exists if the
set of optional transitions contains an a-transition. This is the assumption of
coherence: an action either is optional or is not.

Definition 4 (must path). Let F be an MTS and let σ = q1a1q2a2q3 · · · be a
non-empty full path in its underlying LTS. Then, σ is a must path (from q1) in
F if qi

ai−→2 qi+1 for all i > 0. A must path σ is denoted by σ2.

Graphically, an MTS is represented as a directed edge-labelled graph, where
nodes model states and edges model transitions; in addition, a small arrow
indicates its initial state. Solid edges model necessary transitions (i.e., δ2) while
dotted edges model optional transitions (i.e., δ3 \ δ2). The edges are labelled

1In [40], these are called maybe transitions.
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with actions that are executed as the result of state changes. A sequence of
state changes and the executed actions is a path in the graph; it is a must path
if all edges involved are solid ones.

Example 1. Figure 1(a) depicts an MTS modelling a simplistic family of coffee
machines: upon the insertion of either a euro or a dollar, a coffee is delivered.
A number of LTSs that can be obtained by step-by-step refining (unfolding) its
optional behaviour are depicted in Figs. 1(b)-1(l). In the sequel we will define
precisely which of these are considered products of this family of coffee machines.

(a) MTS (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1: (a)-(l) A family MTS and some potential product LTSs

3.1. Resolving Variability by Refinement
An MTS thus describes the possible behaviour of a product family, including

variability modelled through optional transitions, i.e., admissible (may), but
not necessary (must) transitions (the dotted edges in Fig. 1(a)). The idea is
that the family’s products, i.e., ordinary LTSs, can be obtained by resolving
this variability. Resolving variability boils down to deciding for each particular
optional behaviour whether or not it is to be included in a specific product. This
leads to the need for a notion of conformance that defines whether the product
behaviour of an LTS conforms to the required family behaviour described by
the MTS or not.
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Traditionally, implementations of an MTS are LTSs that capture the idea
of refining a partial description into a more detailed one, reflecting increased
knowledge on the admissible (but not necessary) behaviour. We know from [40]
that the usual (strong and weak refinement) semantics over MTSs are not ca-
pable of capturing a notion of conformance that is suitable for SPLE. This is
because even if only the observable behaviour is considered, it can still be the
case that MTS behaviour is not preserved consistently throughout LTSs, in the
sense that the decision to include (i.e., implement) optional transitions can vary
from one occurrence to the other (cf. Examples 4 and 5).

In this section, we show how we can nevertheless make use of the classical
notions of refinement and implementation among transition systems in our defi-
nition of a behavioural conformance for MTSs. This conformance relation should
match the SPLE notion that each product of a product family is a refinement
of that family, based on the understanding that an LTS (product behaviour)
conforms to the MTS (family behaviour).

Definition 5 (refinement). An MTS Fp = (Qp,Σ, qp, δ
3
p , δ

2
p ) is a refinement

of an MTS F = (Q,Σ, q, δ3, δ2), denoted by F � Fp, if and only if there exists
a refinement relation R ⊆ Q×Qp such that (q, qp) ∈ R and for any a ∈ Σ and
for all (q, qp) ∈ R, the following holds:

1. whenever q a−→2 q
′, for some q′ ∈ Q, then there exists a q′p ∈ Qp such that

qp
a−→2 q

′
p and (q′, q′p) ∈ R, and

2. whenever qp
a−→3 q′p, for some q′p ∈ Qp, then there exists a q′ ∈ Q such

that q a−→3 q′ and (q′, q′p) ∈ R.

Intuitively, Fp refines F if any must transition of F exists in Fp and every may
transition in Fp originates from F . Obviously, an MTS in which δ3 ⊆ δ2 (i.e.,
δ2 = δ3) is actually an LTS.

Note that an a-transition of an MTS that is present in all its refinements
is by definition a must transition of the MTS. Hence, an a-transition that is
present in some, but not all, of its refinements is a may transition. Obviously,
it cannot be the case that an a-transition (be it may or must) is not present in
any of its refinements.

Since all must transitions are preserved by refinement, so are the must paths.
The symmetric, for paths consisting of only may transitions, is also true.

Proposition 1. Let F and Fp be MTSs such that F � Fp. Then:

1. If σ = q1a1q2a2q3 · · · is a must path of F , then there exists a must path
σp = qp1a1q

′
p2a2q

′
p3 · · · of Fp such that (qi, q

′
pi

) ∈ R for all i > 0;
2. If σp = qp1a1q

′
p2a2q

′
p3 · · · is a path of Fp, then there exists a path σ =

q1a1q2a2q3 · · · of F such that (qi, q
′
pi

) ∈ R for all i > 0.

Definition 5 thus also defines when an LTS is a refinement of an MTS. LTSs
that are refinements of an MTS F are called implementations of F .
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Definition 6 (implementation). An LTS Fp is an implementation of an MTS
F if and only if F � Fp. We will refer to the refinement relation between an
MTS and an LTS as an implementation relation. The set of all implementations
of F is denoted by I(F).

Given an MTS F , the refinement relation induces a preorder over MTSs with
top MTS F , and whose bottom elements are the LTSs that are implementations
of F .

Example 2 (Example 1 continued). The LTSs depicted in Figs. 1(b)-1(k) are
implementations of the MTS in Fig. 1(a). The LTS in Fig. 1(l) is not, because
it does not contain the only must transition of the MTS even though its source
state is reachable.

The implementation relation allows LTSs with unreachable states (as an ef-
fect of pruning may transitions). Since, also for verification purposes, we are in-
terested only in the reachable states representing effectively possible behaviour,
we restrict our attention to implementations without unreachable states. More-
over, the number of implementations is in general infinite, because we can apply
any number of unfoldings (and even duplications) similar to the ones that re-
sulted in the LTS in Figs. 1(g)-1(i). In fact, in [36, 40] it was noted that
refinement need not preserve an MTS’s branching structure.

In the SPLE context, instead, we believe it useful to have a simpler notion
of refinement which always preserves the original branching structure (up to the
removal of unreachable states) of the MTS in the products, corresponding to
the modellers’ intuition, and which gives to the implementations the choice of
just turning dotted edges into solid edges or removing them altogether. Hence,
before removing unreachable states, any implementation has exactly the same
states as the MTS. As we will see shortly, this stricter notion of refinement has
the immediate advantage of leading to a limited set of product behaviour. For
our purposes, the minimal products thus suffice, so we will consider the minimal
of all possible implementations according to strong bisimulation equivalence [58].

Definition 7 (bisimulation). Let L1 = (Q1,Σ1, q1, δ1) and L2 = (Q2,Σ2, q2, δ2)
be two LTSs. We say that L1 and L2 are (strongly) bisimilar, denoted by L1 ∼
L2, if and only if there exists a (strong) bisimulation equivalence B ⊆ Q1 ×Q2

such that (q1, q2) ∈ B and for any a ∈ Σ and for all (q1, q2) ∈ B, the following
holds:

1. whenever q1
a−→ q′1, for some q′1 ∈ Q1, then ∃ q′2 ∈ Q2 such that q2

a−→ q′2
and (q′1, q

′
2) ∈ B, and

2. whenever q2
a−→ q′2, for some q′2 ∈ Q2, then ∃ q′1 ∈ Q1 such that q1

a−→ q′1
and (q′1, q

′
2) ∈ B.

Definition 8 (product). An LTS Fp = (Qp,Σ, qp, δp) is a product of an MTS
F if and only if Fp is the minimal (w.r.t. the number of states) element of one
of the classes of equivalences induced by strong bisimulation over I(F). The set
of all products of F is denoted by Ip(F).
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This definition cuts out the LTSs with unreachable states and with useless
unfoldings and duplications.

Theorem 1. If L is the minimal element of a class of bisimulation equivalent
LTSs, then all its states are reachable.

Proof. Assume that L is minimal and that it has an unreachable state q. Con-
sider the LTS L′ obtained from L by recursively navigating all its transitions.
Then L′ is bisimulation equivalent to L by construction, but by definition it
contains no state corresponding to q. Hence L is not minimal.

Example 3 (Example 1 continued). The LTSs depicted in Figs. 1(b)-1(e), 1(j),
and 1(k) are thus products of the MTS in Fig. 1(a). The LTS in Fig. 1(f) is
not, because it has more elements than the bisimilar LTS in Fig. 1(b). Likewise
the LTSs in Figs. 1(g) and 1(h), which have more elements than the bisimilar
LTS in Fig. 1(e), are not, and neither is the LTS in Fig. 1(i), which is bisimilar
to the smaller LTS in Fig. 1(d).

We adopt the same (often implicit) assumption that underlies the behavioural
variability models based on MTSs [4, 5, 36, 40], I/O automata [52, 55], LTSs [45],
featured transition systems [26–29], and mCRL2 [17] mentioned in Section 1,
viz. an action models a piece of functionality (a feature, if you like). This pro-
vides motivation for the assumption of coherence put forward in the beginning
of Sect. 3, reflecting the fact that a functionality (or, a feature) either is optional
or is not. Now, recall that an MTS models the variability of a product family
through its optional transitions, which need to be resolved to obtain the fam-
ily’s products. This means that it must be decided whether or not an optional
transition of an MTS should occur in an LTS modelling a product.

For our application in SPLE, we need variability to be resolved in a consistent
way, i.e., the choice of ‘implementing’ or ‘not implementing’ a transition in a
product must be consistent throughout the product. This is because it reflects
the fact that a functionality (or a feature) either is or is not present in a product,
independently of its behavioural context. Informally, this notion of consistency
states the following. Given an MTS and an LTS modelling one of its products,
we want that for all actions a, either all or none of the a-transitions in the
MTS occur (i.e., are ‘implemented’) as must a-transitions in its product. Two
illustrative examples follow the formal definition.

Definition 9 (consistent product). Let F = (Q,Σ, q, δ3, δ2) be an MTS and
Fp = (Qp,Σ, qp, δp) be a product of F , i.e., Fp ∈ Ip(F), through the implemen-
tation relation R ⊆ Q×Qp. Then, Fp is said to be consistent (with F) if and
only if for all a ∈ Σ, the following holds:

• if there exist a (q, a, q′) ∈ δ3 and a (qp, a, q
′
p) ∈ δp, with (q, qp) ∈ R and

(q′, q′p) ∈ R, then for all (r, a, r′) ∈ δ3 for which there exists an rp ∈ Qp

such that (r, rp) ∈ R, there must exist an r′p ∈ Qp such that (rp, a, r
′
p) ∈ δp

and (r′, r′p) ∈ R.

The set of all consistent products of F is denoted by Icp(F).
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(a) MTS modelling the family and. . . (b) . . . an LTS modelling one of its products

Figure 2: (a)-(b) Modelling the family of coffee machines and a (Canadian) coffee machine

Example 4 (Example 1 continued). The LTSs depicted in Figs. 1(j) and 1(k)
are not consistent products of the MTS in Fig. 1(a). This can be seen as follows.
First recall that the consistency assumption states that whenever it is decided to
‘implement’ the e-transition in a product, then this has to be done in a consistent
way. In this particular example, this means that whenever the e-transition is
implemented from their initial states, as is currently the case in both products,
then it should also be implemented from the states that are reached after this
action e and the action K have each occurred once, which is however not the
case in Figs. 1(j) and 1(k). The LTSs depicted in Figs. 1(b)-1(e) are consistent
products. In the next section, we will deal with the (undesired) trivial product
in Fig. 1(b) and we will discuss whether the one in Fig. 1(e) is desired.

A convenient result of the consistency assumption is that it makes the num-
ber of products finite. In Example 4, e.g., we have seen that the LTS depicted
in Fig. 1(k) is not a consistent product of the MTS in Fig. 1(a) and the same
obviously holds for any further unfolding of that MTS.

Example 5. Now consider the MTS depicted in Fig. 2(a). It is an attempt
to model all possible (product) behaviour conceived for the example family of
coffee machines from Section 2 in a compact way. Note that it has variation
points to model the choices among the different types of coin, beverage, and
coffee. Moreover, note that the MTS allows each of the beverages to be delivered
either with or without sugar. Without the requirement for consistent product
behaviour, a product that can deliver coffee only without sugar would be allowed.
An example of such an undesired product is depicted in Fig. 3(a): as soon as
the user chooses for a sugared beverage, (s)he has less options than if (s)he had
chosen for an unsugared beverage. The LTSs in Figs. 2(b) and 3(b) instead
model consistent Canadian and European products, respectively.
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(a) LTS of an inconsistent (European) product (b) LTS of a European coffee machine

Figure 3: (a)-(b) Modelling products of the family of coffee machines

In [18], consistency is guaranteed in a different way (and called persistency).
They define so-called parametric MTSs, where it is allowed to choose in a con-
sistent (persistent) way whether or not to implement a transition in a product
by using parameters with a priori fixed (Boolean) values that settle this choice
for the entire product.

3.2. Deriving Products from Product Families
The products of a family modelled by an MTS are thus LTSs that are ob-

tained by resolving the variability inherent to MTSs. In Section 3.1, we have
seen how to resolve this variability by means of semantic definitions based on
refinement that are common in the literature on MTSs. However, for our spe-
cific purpose of applying MTSs in SPLE, an operational syntactic definition
of derivation exists. It is presented in this section and it is the one actually
implemented in our VMC tool that will be discussed in Section 5.

Intuitively, in each LTS modelling a product of an MTS, all must transitions
of the MTS are included, together with a subset of its optional transitions. As
before (cf. Def. 9), we assume that the choice of including an optional transition
needs to be consistent. More formally, a derived product LTS is obtained from
an MTS in the following way: the LTS has the same set of actions and the same
initial state, but it contains a subset of the set of states and a subset of the set
of transitions such that:

1. all its states are reachable from the initial state;
2. all must transitions of the MTS are included in the LTS, except of course

those must transitions whose source states are not reachable in the LTS;
3. for any action a, whenever an a-transition of the MTS is included in the

LTS, then any other (optional) a-transition in the MTS (from a state that
is reachable in the LTS) is also included.

This operational derivation procedure is formalised in the following definition.
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Definition 10 (derived product LTS). Let F = (Q,Σ, q, δ3, δ2) be an MTS.
Then, the set {Pi = (Qi,Σ, q, δi) | i > 0 } of derived product LTSs of F ,
denoted by PF , is obtained from F by considering each pair (Qi, δi), with Qi ⊆ Q
and δi ⊆ δ3, such that the following holds:

1. every q ∈ Qi is reachable in Pi;
2. there exists no (q, a, q′) ∈ δ2 \ δi such that q ∈ Qi;
3. for any a ∈ Σ, whenever (p, a, p′) ∈ δ3 ∩ δi, then for all q ∈ Qi such that

(q, a, q′) ∈ δ3 it must be the case that also (q, a, q′) ∈ δi.

The following example illustrates the reason for the first two requirements in
Def. 10; the need for the third requirement is to guarantee consistency.

Example 6 (Example 1 continued). The set of derived product LTSs of the
MTS in Fig. 1(a) that is generated by Def. 10 consists of the LTSs depicted in
Fig. 1(b)-1(e). Note that the LTS in Fig. 1(f) is not a derived product LTS
of this MTS because it contains an unreachable state, while none of the LTSs
in Figs. 1(g)-1(k) can of course be a derived product LTSs of the MTS since
they contain more states than the MTS. The LTS in Fig. 1(l), finally, is not a
derived product LTS because it does not contain the only must transition of the
MTS even though its source state is reachable.

We now show that Def. 10 is an alternative for the definition of consistent
products (cf. Def. 9).

Theorem 2. Let F be an MTS. The set of all derived product LTSs of F
equals, modulo bisimulation, the set of consistent products of F : PF ' Icp(F)
(i.e., every derived product LTS is the representative of an equivalence class
whose minimal element is a consistent product and, conversely, every consistent
product is equivalent modulo bisimulation to a derived product).

Proof. Let F = (Q,Σ, q, δ3, δ2) and let Fp = (Qp,Σ, qp, δp) be a derived prod-
uct LTS of F .

We start by proving that Fp is an implementation of F , i.e., we prove that
Fp ∈ I(F). From Def. 10 it follows directly that (i) all states that are maintained
in Fp maintain also their outgoing must transitions and (ii) δp may include
further transitions that originally were optional in F . These two statements
correspond to the definition of refinement, which means, since Fp is an LTS,
that we can now prove that Fp is indeed an implementation. First, since a
product of an MTS is the minimal element of the equivalence class induced
by bisimulation over I(F), Fp is bisimilar to a product of F . Subsequently,
requirement 3 of Def. 10 guarantees the consistency of Fp.

On the other hand, suppose that we have a consistent product Fp of F that
is not bisimilar to any derived product LTS of F . This means that the class
of the partition over I(F), induced by bisimulation equivalence, that contains
Fp, contains no derived product LTSs. The implementations of F , due to the
refinement relation, maintain all must transitions and a subset of the optional
transitions. By the consistency requirement, if an optional a-transition is not
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included in a product, neither are all other a-transitions. Hence, an equivalence
class made of consistent implementations can be uniquely characterised by a
subset of the optional transitions of F . Moreover, an equivalence class made
of derived products can be uniquely characterised by its subset of preserved
(included) optional transitions of F , which could not have been chosen in the
derivation process. However, since all pairs of subsets Qi ⊆ Q and δi ⊆ δ2∪ δ3,
respecting consistency, are considered in a derivation, it cannot be the case that
the above subset of preserved optional transitions is not chosen in a derivation.
Hence, every consistent product is bisimilar to an implementation.

From Def. 10, it becomes immediately clear that an MTS has at most 2n

derived product LTSs, where n is the number of differently labelled optional
transitions in the MTS (because each such set of transitions in δ3 \ δ2 labelled
with the same action is either absent or present in a product LTS).

3.3. Modelling Additional Variability Constraints
We have just seen that the MTS depicted in Fig. 2(a) has several variation

points to model the choices among the different types of coin, beverage, and cof-
fee prescribed by the requirements for a family of coffee machines in Section 2.
However, also its underlying LTS (obtained by turning all optional transitions
into must transitions) is a consistent product, even though it satisfies neither re-
quirement 1 nor requirements 3(a-c): a user may alternate the insertion of euros
and dollars, obtain a tea upon the insertion of a dollar, etc. This is inherent to
the use of MTSs for capturing the behaviour of product families: while capable
of faithfully modelling some degree of optional or mandatory behaviour that
may or must, respectively, be preserved in its products (LTSs), an MTS cannot
efficiently model the constraints regarding alternative (neither ‘or’ nor ‘xor’) be-
haviour nor regarding the so-called excludes and requires cross-tree constraints
known from feature models [4, 43, 49]. Such constraints can express the fact
that the presence of a feature (mutually) excludes or, on the contrary, requires
the presence of another feature. Their formal definitions follow shortly. The
reason that plain MTSs cannot efficiently model these constraints in a compact
way resides in the fact that the decision whether to preserve an optional tran-
sition of an MTS in a product (LTS) or not, can be made independently of the
decision whether or not to preserve another optional transition of the MTS, as
is illustrated in the following example.

Example 7 (Example 1 continued). The informal description of the simplistic
family of coffee machines modelled by the MTS in Fig. 2(a) (“upon the insertion
of either a euro or a dollar, a coffee is delivered”) is of course rather vague. The
coffee machine modelled by the LTS in Fig. 1(b) is arguably not an intended
product of the family, but what about the products that allow to insert only
dollars (Fig. 1(c)), only euros (Fig. 1(d)), or to interchange the insertion of
both (Fig. 1(e)): are these to be considered valid products? Most real-world coffee
machines deliver coffee exclusively upon the insertion of one type of coin, e.g.,
euros in Europe and dollars in Canada. Note that a simple constraint requiring
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product LTSs to contain either the $-transition or the e-transition would suffice
(i.e., only the LTSs in Figs. 1(c) and 1(d) would model valid products).

A single MTS, possibly with a new initial state, could of course join the LTSs
depicted in Figs. 1(c) and 1(d), at the cost of duplicating the K-transition, but
this would be highly inefficient and not at all compact in case of a family that
should accommodate separate products for numerous different coins (e.g., $, e,
£, U) and in case of more rich product behaviour (e.g., coffee, tea, cappuccino)
that is for a large part shared among the various products (e.g., sugar, take cup)
but with subtle variations (e.g., pour milk only in case of cappuccino).

In [4, 5] we presented a preliminary solution to cope with this incapacity of
covering all common variability constraints, which we now extend significantly2.
We associate with an MTS modelling a product family a set of variability con-
straints that must be taken into account when deriving the set of product LTSs.
Recall that an action is reachable in an LTS if there is a path in that LTS (i.e.,
starting from its initial state) on which it is executed (occurs).

Definition 11 (variability constraints). Let L = (Q,Σ, q, δ) be an LTS and let
ai ∈ Σ for all i. The following variability constraints on actions from Σ may be
defined over L, for m ≥ 2 and n ≥ 3:

a1 ALT · · · ALT am : precisely one among the actions a1, . . . , am is reachable
in L;

b1 OR · · · OR bm, where bi, with 1 ≤ i ≤ m, is either ai or ¬ ai : at least one
among the conditions on actions a1, . . . , am holds, i.e., bi = ai is reachable
in L or bi = ¬ ai is not reachable in L;

a1 EXC a2 : at most one of the actions a1 and a2 is reachable in L;

a1 REQ a2 : action a2 must occur in L whenever a1 is reachable in L;

a1 REQ (a2 ALT · · · ALT an) : precisely one among the actions a2, . . . , an is
reachable in L if a1 is reachable in L;

a1 REQ (a2 OR · · · OR an) : at least one among the actions a2, . . . , an is reach-
able in L if a1 occurs in L.

Note that ALT can also be expressed in terms of OR and EXC3. Moreover,
since the most recent extension in [8], implemented in VMC v6.2 (cf. Section 5),
allows the ‘OR’ constraint to contain either ai (as before) or its negation ¬ ai,
we can express any Boolean function over Σ in its conjunctive normal form.
We nevertheless choose to keep the specific variability constraints introduced

2In [4, 5] we did not consider the so-called ‘OR’ constraint among actions, nor did we
consider any n-ary constraints or the combined constraints involving ‘REQ’. The possibility
to negate some of the action literals in the ‘OR’ constraint is a novelty that we introduced
in [8].

3For instance, aj ALT ak can be expressed as (aj OR ak) and (aj EXC ak).
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in Def. 11 because they reflect prominent constraint relations in feature mod-
elling [43, 49]. We hope that this eases the uptake of our framework by SPL
practitioners.

We now define which consistent products (derived product LTSs) of an MTS
with an associated set of variability constraints are to be considered valid prod-
ucts of the product family modelled by that MTS.

Definition 12 (valid product). Let F = (Q,Σ, q, δ3, δ2) be an MTS with a
set V of variability constraints (on actions from Σ), and let Pi ∈ Icp(F) be
a consistent product of F . Then, Pi is a valid product of F with variabiliy
constraints V if and only if Pi satisfies all variability constraints in V.

Example 8 (Example 1 continued). Given the MTS depicted in Fig. 1(a) ex-
tended with the set V = {e ALT $} of variability constraints, its only valid
products are the LTSs depicted in Figs. 1(c) and 1(d).

Example 9 (Example 5 continued). For the family modelled by the MTS in
Fig. 2(a), we can now characterise its set of valid products (coffee machines)
as precisely those product LTSs that can be derived from the MTS according to
Def. 9 and satisfy each of the following variability constraints:

1. euro ALT dollar;
2. cappuccino OR coffee OR tea;
3. dollar EXC tea;
4. cappuccino REQ coffee;
5. coffee REQ (pour espresso ALT pour regular).

It is easy to verify that the consistent European product described by the LTS
in Fig. 3(b) satisfies each of the above constraints. Hence, it models a valid
(European) product. Recall from Example 5 that the one in Fig. 3(a) does not.

Summarising, we thus propose to complement an MTS with a set of variabil-
ity constraints in order to obtain a model capable of expressing families of LTSs
and with characteristics that make it suitable for SPLE. Given this behavioural
(semantic) model, we also need a logic that can be interpreted over it to be able
to address the problem of checking properties over product families specified as
MTSs (with additional variability constraints). In the next section, we present
a suitable logic.

4. v-ACTL: A Logic for Expressing and Analysing Variability

In this section, we first present a logic that allows one to reason over MTSs
with variability constraints and which moreover provides a semantics for the
latter, thus allowing us to refine the notion of valid products of an MTS with
an associated set of variability constraints. Then, we study the preservation of
properties from MTSs to their valid products, which results in the identification
of two fragments of the logic which are such that all formulae expressed in them,
and which hold for an MTS, preserve their validity for all valid products (LTSs).
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We introduce variability-aware ACTL (v-ACTL) as a logic, interpreted over
MTSs, in which several logics that we introduced over the years culminate [4, 5].
The result is an action-based branching-time temporal logic for variability in
the style of the action-based logic ACTL [33, 41]. More precisely, next to the
standard operators of propositional logic, v-ACTL contains the classical box
and — by duality — diamond modal operators, the existential and universal
path quantifiers, and the (action-based) F (‘eventually’) and — by duality —
G (‘globally’) operators. Furthermore, for the box, diamond, and F operators,
v-ACTL also contains ‘boxed’ variants; these can be distinguished in a logic over
MTSs by taking into account the specific modality (may or must) of the involved
transitions and paths (e.g., requiring a path to consist of must transitions only).

In particular, v-ACTL is a simplification of the logic available in the VMC
tool that we will present in Section 5 [15] by leaving out the (weak) Until oper-
ators and including directly the F operator. The reason for limiting ourselves
to these two temporal operators in this paper is threefold4. First, the resulting
logic suffices for specifying the additional variability constraints from Def. 11.
Second, it allows a more concise presentation of the forthcoming results on
preservation by refinement in Sections 4.2 and 4.3. Third, it suffices for speci-
fying a considerable number of interesting properties for product families in the
presence of variability.

v-ACTL defines action formulae (denoted by χ), state formulae (denoted by
φ), and path formulae (denoted by π).

Definition 13 (syntax of action formulae). Action formulae are built as follows
over a set A of atomic actions {a, b, . . .}:

χ ::= true | a | ¬χ | χ ∧ χ

Action formulae are thus Boolean compositions of actions. As usual, false ab-
breviates ¬ true, χ ∨ χ′ abbreviates ¬(¬χ ∧ ¬χ′), and χ =⇒ χ′ abbreviates
¬χ ∨ χ′.

Definition 14 (semantics of action formulae). The satisfaction of an action
formula χ by an action a, denoted by a |= χ, is defined as follows:

a |= true always holds
a |= b iff a = b

a |= ¬χ iff a 6|= χ

a |= χ ∧ χ′ iff a |= χ and a |= χ′

4The extended version of v-ACTL as implemented in VMC contains also the least and
greatest fixed-point operators, which provide a semantics for recursion used for “finite looping”
and “looping”, respectively, as in [50], as well as no less than eight versions of the Until operator,
based on combinations of action-based, weak (a.k.a. unless), and ‘boxed’ Until variants. The
latter variants distinguish between may and must versions of the involved transitions and
paths, similar to [ ]2, 〈 〉2, F2, and F2{ }.

16



Definition 15 (syntax of v-ACTL). The syntax of v-ACTL is:

φ ::= true | ¬φ | φ ∧ φ | [χ]φ | [χ]2 φ | E π | Aπ
π ::= F φ | F2 φ | F {χ} φ | F2 {χ} φ

Intuitively, the specificity of the ‘boxed’ variants of the respective classical modal
and temporal operators can be understood as follows:

[χ]φ : in all next states reachable by a may transition executing an action sat-
isfying χ, φ holds;

[χ]2 φ : in all next states reachable by a must transition executing an action
satisfying χ, φ holds;

F φ : there exists a future state in which φ holds;

F2 φ : there exists a future state in which φ holds and all transitions until that
state are must transitions;

F {χ} φ : there exists a future state, reached by an action satisfying χ, in which
φ holds;

F2 {χ} φ : there exists a future state, reached by an action satisfying χ, in
which φ holds and all transitions until that state are must transitions.

Some further operators can be derived as usual. First, 〈χ〉φ abbreviates ¬ [χ]¬φ:
a next state exists, reachable by a may transition executing an action satisfying
χ, in which φ holds. Second, 〈χ〉2 φ abbreviates ¬ [χ]2 ¬φ: a next state ex-
ists, reachable by a must transition executing an action satisfying χ, in which
φ holds. Third, AGφ abbreviates ¬EF ¬φ: in all states on all paths, φ holds.

The formal semantics of v-ACTL is given by MTSs without additional vari-
ability constraints. Recall from Def. 2 that a full path is a path that cannot be
extended any further, i.e. it is infinite or it ends in a final state.

Definition 16 (semantics of v-ACTL). Let (Q,A, q, δ3, δ2) be an MTS, with
q ∈ Q, and let σ be a full path. The satisfaction relation |= of v-ACTL is:

q |= true always holds;
q |= ¬φ iff q 6|= φ;

q |= φ ∧ φ′ iff q |= φ and q |= φ′;

q |= [χ]φ iff for all q′ ∈ Q such that q a−→3 q′ and a |= χ, we have q′ |= φ;

q |= [χ]2 φ iff for all q′ ∈ Q such that q a−→2 q
′ and a |= χ, we have q′ |= φ;

q |= E π iff there exists a σ′ ∈ path(q) such that σ′ |= π;

q |= Aπ iff for all σ′ ∈ path(q) : σ′ |= π;

σ |= F φ iff there exists a j ≥ 1 such that σ(j) |= φ;

σ |= F2 φ iff there exists a j ≥ 1 such that σ(j) |= φ and ∀ 1 ≤ i < j :

(σ(i), σ{i}, σ(i+ 1)) ∈ δ2;
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σ |= F {χ} φ iff there exists a j ≥ 1 such that σ{j} |= χ and σ(j + 1) |= φ;

σ |= F2 {χ} φ iff there exists a j ≥ 1 such that σ{j} |= χ and σ(j + 1) |= φ,

and for all 1 ≤ i ≤ j : (σ(i), σ{i}, σ(i+ 1)) ∈ δ2.

Since its purpose is to reason over the syntactic structure of an MTS, v-ACTL
thus interprets some classical modal and temporal operators in two different
ways, by explicitly considering the may and must modalities of the transitions
and paths of the semantic model of MTSs.

4.1. Analysis in the Presence of Variability
We recall from Section 3.3 that an MTS model of a product family is com-

plemented with a set of variability constraints that an MTS otherwise cannot
capture, i.e., the constraints regarding alternative (both ‘or’ and ‘xor’) behaviour
and regarding the excludes and requires cross-tree constraints of feature models.

It is now possible to give a concise logical characterisation of all variability
constraints introduced in Def. 11 by noting that the ‘reachability of an action a’
in a (product) LTS can be expressed by the formula EF2 {a} true (or simply
EF {a} true, since the interpretation of the ‘boxed’ variant of EF collapses on
the classic interpretation in the case of LTSs). Let { ai | 1 ≤ i ≤ n } be a set
of actions. Then, the variability constraints from Def. 11 can be captured with
the following v-ACTL formulae, with m ≥ 2 and n ≥ 3:

a1 ALT · · · ALT am :
∨

1≤i≤m((EF2 {ai} true)
∧

1≤j 6=i≤m(¬EF2 {aj} true));

(¬)a1 OR · · · OR (¬)am :
∨

1≤i≤m(¬)EF2 {ai} true;

a1 EXC a2 : ¬ ((EF2 {a1} true) ∧ (EF2 {a2} true));

a1 REQ a2 : (EF2 {a1} true) =⇒ (EF2 {a2} true);

a1 REQ (a2 ALT · · · ALT an) : (EF2 {a1} true) =⇒
(
∨

2≤i≤n(EF2 {ai} true)
∧

2≤j 6=i≤n(¬EF2 {aj} true));

a1 REQ (a2 OR · · · OR an) : (EF2 {a1} true) =⇒
∨

2≤i≤n (EF2 {ai} true).

Now that all variability constraints are formalised in v-ACTL, we can refine
the definition of a valid product (LTS) (cf. Def. 12 from Section 3.3). Let
F = (Q,Σ, q, δ3, δ2) be an MTS with a set V of variability constraints expressed
in v-ACTL. Then, the set of all valid products (LTSs) of the MTS F with
variability constraints V, denoted by Ivp(F ,V), is defined as follows:

Ivp(F ,V) = {Pi ∈ Icp(F) | Pi |= φ for all φ ∈ V }
' {Pi ∈ PF | Pi |= φ for all φ ∈ V },

where ' denotes equality modulo bisimulation (cf. Theorem 2).
Figure 4 illustrates the various definitions involved in the stepwise refinement

of an MTS F into LTSs, among which its unique valid product with respect to
the variability constraint V = {a REQ c}.
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Note that since LTSs contain only must transitions, when v-ACTL formulae
are verified over products, the ‘boxed’ operators of v-ACTL simply collapse onto
their classic interpretations.

Apart from verifying variability constraints, we would like to use v-ACTL to
verify (temporal) logic properties of product families and of all their products.
To this aim, however, we note that it is not always easy to interpret the result
of verifying a v-ACTL formula over an MTS, since in general a v-ACTL formula
that is true for an MTS, may be false for some of its implementations, and vice
versa, as the following examples illustrate.

Example 10 (Example 5 continued). The property ‘Whenever a coffee is se-
lected, a coffee is eventually delivered’ can be formulated as:

AG [coffee] AF2 {pour espresso ∨ pour regular} true

Note that we use the ‘boxed’ variant of the classic F operator to express the fact
that eventually coffee is actually poured. As a result, this formula does not hold
for the MTS modelling the family of coffee machines depicted in Fig. 2(a), but
it does hold in the product LTSs depicted in Figs. 2(b) and 3(b), i.e. the above
formula expresses a property that holds for these Canadian and European coffee
machines.

Example 11. Consider the MTSs F and Fp in Fig. 5(a). Clearly F � Fp with
(q, qp) ∈ R. Since there is no must transition from q in F , it is trivially the
case that q |= [a]2 φ. However, from the must transition (qp, a, q

′
p) in Fp and

the fact that q′p |= ¬φ, it follows immediately that qp 6|= [a]2 φ.

(a) F (top) and Fp (bottom) (b) F ′ (c) F ′p

Figure 5: (a)-(c) Counterexamples for preservation by refinement and by live MTS

In the next sections, we will discuss the inheritance of analysis results from
families to products. We study under which conditions a v-ACTL property
that is true for an MTS is also true for its product LTSs, and likewise for
the preservation of properties that are false. The final aim is to achieve a
specific type of family-based verification [66]: once a property is verified for
a family model, one knows that the result also holds for any of its product
models, without the need to explicitly verify the property over the products
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(as opposed to product-based verification, in which every product has to be
examined individually). The above examples provide some intuition for the
reason why, in general, it might not be the case that the result of a v-ACTL
formula is preserved from an MTS to its product LTSs. Hence, we need to look
for fragments of v-ACTL for which such preservation results do exist.

Already in [5], it was noted that the refinement relation is similar to the
well-known notion of simulation between LTSs, and hence the classical result
of preservation of the universal fragment of CTL by simulation [24] can be
reused for v-ACTL. In the following two sections, we precisely define the various
fragments of v-ACTL that are preserved and by which kind of refinement.

4.2. Preservation of Properties by Refinement
In this section, we will define a fragment of v-ACTL with the following

characteristic: all formulae expressed in it that hold for an MTS preserve their
validity for all refinements of that MTS, and hence, in particular, for all its valid
product LTSs.

Definition 17 (preservation by refinement). A v-ACTL formula φ is said to
be preserved by refinement if for any two MTSs F and Fp such that F � Fp,
we have that whenever F |= φ, then Fp |= φ.

We now introduce some fragments of v-ACTL and then demonstrate that
they are preserved by refinement.

Definition 18 (syntax of v-ACTL2). The fragment v-ACTL2 of v-ACTL is
defined as follows:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ]φ | 〈χ〉2φ | EF2φ | EF2 {χ}φ |
AF2 φ | AF2 {χ} φ | AGφ | ¬ψ

where

ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉ψ | EF ψ | EF{χ} ψ | ¬φ

Note that v-ACTL2 consists of two parts. The first fragment (v-ACTL+) is
such that any formula expressed in it that is true for an MTS F is also true
for all MTSs Fp such that F � Fp. The second fragment (v-ACTL−), which
in v-ACTL2 appears negated, is such that any formula expressed in it that is
false for an MTS F is also false for all MTSs Fp such that F � Fp.

Theorem 3 (preservation by refinement). Any formula φ of v-ACTL2 is pre-
served by refinement.

Proof. Let F and Fp be two MTSs such that F � Fp. We show via structural
induction on φ that for a pair of states q of F and qp of Fp, with (q, qp) ∈ R,
we have that whenever q |= φ, then qp |= φ:

• false and true are trivially preserved by refinement.
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• if φ, φ′ are preserved by refinement, then obviously so is φ ∧ φ′.

• if φ, φ′ are preserved by refinement, then obviously so is φ ∨ φ′.

• if φ is preserved by refinement, then so is [χ]φ.
Indeed, if q |= [χ]φ, then in all next states q′i in F , reachable by a may
transition executing an action satisfying χ, φ holds. By the definition of
refinement, only a subset of these states will have a corresponding state
q′pi

in Fp, reachable by a may transition from qp, such that (q′i, q
′
pi

) ∈ R.
However, by induction any such state will satisfy φ, which implies that
qp |= [χ]φ.

• if φ is preserved by refinement, then so is 〈χ〉2 φ.
Indeed, if q |= 〈χ〉2 φ, then there exists a next state q′ in F , reachable by
a must transition executing an action satisfying χ, in which φ holds. By
the definition of refinement, there must exist a corresponding state q′p in
Fp, reachable by a must transition from qp, such that (q′, q′p) ∈ R, which
hence satisfies φ. It follows that qp |= 〈χ〉2 φ.

• if φ is preserved by refinement, then so is EF2 φ.
Indeed, if q |= EF2 φ, then there exists a must path from q to a state q′
in F in which φ holds. By the definition of refinement and Proposition 1,
it follows that there exists a must path from qp to a state q′p in Fp such
that (q′, q′p) ∈ R and q′p satisfies φ. Hence qp |= EF2 φ.

• if φ is preserved by refinement, then so is EF2 {χ} φ.
The argument is similar to the previous case.

• if φ is preserved by refinement, then so is AF2 φ.
Indeed, if q |= AF2 φ, then either there is no transition from q, which
means that there is no transition from qp either and thus qp |= AF2 φ, or
all paths from q are must paths, each of which contains a state q′i in F
in which φ holds. By the definition of refinement and Proposition 1, all
of these states will have a corresponding state q′pi

in Fp, reachable by a
must path from qp, such that (q′, q′pi

) ∈ R and each q′pi
satisfies φ. Hence

qp |= AF2 φ.

• if φ is preserved by refinement, then so is AF2 {χ} φ.
The argument is similar to the previous case.

• if φ is preserved by refinement, then so is AGφ.
Indeed, if q |= AGφ, then either there is no transition from q, which means
that there is no transition from qp either and thus qp |= AGφ, or all the
states q′i in F satisfy φ. In the latter case, by the definition of refinement,
only some of these states q′i will have a corresponding state q′pi

in Fp,
reachable from qp, such that (q′i, q

′
pi

) ∈ R. However, by induction any
such state will satisfy φ and hence qp |= AGφ.
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Finally, the preservation of a negation ¬ψ follows from the fact that for any two
MTSs F and Fp such that F � Fp, after all, Fp is a subgraph of F (after all, by
definition no transitions are added during refinement). As a result, existential
formulae concerning reachability, like those expressible in v-ACTL−, cannot be
true in Fp while false in F . Hence, if q |= ¬ψ, then qp |= ¬ψ.

Hence, formulae that are expressed exclusively with operators from the frag-
ment v-ACTL2 of v-ACTL are preserved by refinement according to Def. 17. A
formula preserved by refinement is obviously also preserved by implementation,
and by the product relation, defined in Section 3.1, which means that Theorem 3
can also be applied in the specific application of our theory of MTSs in SPLE. In
that case, the verification result of a v-ACTL2 formula over an MTS continues
to hold for all its products (LTSs), thus allowing family-based verification.

Example 12 (Example 5 continued). The property ‘Whenever a cappuccino is
selected, milk is eventually poured’ can be formulated as:

AG [cappuccino] AF2 {pour milk} true

Since this v-ACTL2 formula holds for the MTS modelling the family of coffee
machines depicted in Fig. 2(a), Theorem 3 implies that it also holds for all its
(valid) products, i.e., including the ones represented by the LTSs depicted in
Fig. 3. Note that it trivially holds for the valid product depicted in Fig. 2(b).

The following example shows that the contrary does not hold: if a v-ACTL2

formula holds for all products of an MTS, there is no guarantee that it holds
for the MTS.

Example 13. Consider the MTS in Fig. 6(a) and all its products in Fig. 6(b),
i.e., not necessarily consistent. The property ‘If action b occurs, then also action
a occurs’ can be formulated as:

EF {b} true =⇒ EF {a} true, i.e., (¬EF {b} true) ∨ EF {a} true (1)

It is clear that this v-ACTL formula holds for all products of the MTS. However,
Formula 1 is not a v-ACTL2 formula (due to EF {a}). If we want to verify
the above property over the MTS and be able to draw conclusions for all its
products, then we need to specifically consider the modalities of the MTS and
use the ‘boxed’ variant of the action-based F operator, i.e.,

(¬EF {b} true) ∨ EF2 {a} true (2)

However, this v-ACTL2 formula does not hold for the MTS, while it does hold
for all products. Note, moreover, that Formula 2 actually formalises a rather
different property than the one above, viz. ‘In no product an action b occurs, or
in all products an action a occurs’.

Furthermore, we note that a set of valid products (modelled by LTSs) can be
derived from different MTSs satisfying different properties, as the next example
shows. This is particularly evident in the presence of variability constraints.
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(a) An MTS. . . (b) . . . and all its products (LTSs)

Figure 6: Counterexample for bottom-up ‘preservation’

Figure 7: Alternative MTS modelling the family of European and Canadian coffee machines

Example 14 (Example 5 continued). With respect to the variability constraints
listed in Example 9, the alternative MTS depicted in Fig. 7 generates exactly the
same valid products as the MTS depicted in Fig. 2(a). However, the latter is
a much more compact, abstract model. As usual, abstraction comes at a price:
the v-ACTL2 formula

[euro] ¬EF {dollar} true

holds in the alternative MTS of Fig. 7, but not in the original one of Fig. 2(a).
This formula obviously does hold in all valid products of these MTSs.

For quite larger product families (think, e.g., of a family of coffee machines
accommodating numerous different coins, as sketched in Example 7), the alter-
native modelling of Fig. 7 is not a viable alternative. In such cases, the trade-off
between abstraction and accuracy would probably result in favour of abstraction,
thus preferring efficient family-based verification on a compact, abstract MTS
over something close to product-based verification on a large, detailed MTS.

24



Figure 8: Two MTSs with live sets of actions

4.3. Preservation of Properties by Live MTSs
In this section, we will define a wider fragment of v-ACTL with the following

characteristic: all formulae expressed in it that hold for an MTS preserve their
validity for all valid product LTSs of that MTS. Recall from the definition
of a valid product in Def. 12 that this means that we specifically consider the
variability constraints associated ith the MTSs. This wider fragment of v-ACTL
is preserved by all valid products if the MTS is ‘live’, in the sense that every
path is infinite.

We now formally define live MTSs based on live sets of actions and live
states, after which a result similar to Theorem 3 is shown to hold, but this time
taking the possible variability constraints associated with an MTS into account.

Definition 19 (live states). Let F = (Q,Σ, q, δ3, δ2) be an MTS, with an
associated set V of variability constraints, and let q ∈ Q. Then, the state q is
live if one of the following holds:

• there exists a q′ ∈ Q such that q a−→2 q
′, for some a ∈ Σ, or

• the set of actions Γ ⊆ Σ for which there exists a q′ ∈ Q such that q a−→3 q′,
for some a ∈ Γ, contains a live set of actions,

where a live set of actions is defined as follows:

• if V contains at least one of the following type of constraints, with { ai |
0 ≤ i ≤ n, n ≥ 2 } ⊆ Σ:

a1 ALT · · · ALT an

a1 OR · · · OR an

then { ai | 1 ≤ i ≤ n } is a live set of actions.

This definition implies that a live state of an MTS does not occur as a final
state in any of its products. Consider, e.g., the MTS F and F ′, with set V ′ of
variability constraints, in Fig. 8. Obviously, a and b form a live set of actions
due to the presence of the variability constraint a ALT b in V ′. Hence, it is
easy to see that the states p and p′ are thus live states of the MTSs F and F ′,
respectively, and that these are indeed not final states in any valid product LTS
of these MTSs.

We can now lift the notion of liveness to MTSs.

Definition 20 (live MTS). An MTS F is said to be live if all its states are
live.
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We now have that if an MTS is live, then both the MTS and all its valid
products have only infinite full paths (note that this is not the case for the MTSs
in Fig. 8). This allows us to provide a version of preservation by refinement that
is limited to live MTSs and valid products (cf. Def. 17).

Definition 21 (preservation by live MTS). A v-ACTL formula φ is said to be
preserved by live MTS if for a live MTS F with variability constraints V, we
have that whenever F |= φ, then Fp |= φ for all valid products Fp ∈ Ivp(F ,V).

Next, we define a slightly wider fragment of v-ACTL by adding to v-ACTL2

the (possibly action-based) AF construct (“always possible”), after which we
demonstrate that these are preserved by live refinement.

Definition 22 (syntax of v-ACTLive2). The syntax of v-ACTLive2 of v-ACTL
is defined as follows:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ]φ | 〈χ〉2 φ | EF2 φ | EF2 {χ} φ |
AF φ | AF {χ} φ | AF2 φ | AF2 {χ} φ | AGφ | ¬ψ

where

ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉ψ | EF ψ | EF{χ} ψ | ¬φ

Theorem 4 (preservation by live MTS). Any formula φ of v-ACTLive2 is
preserved by live MTS.

Proof. Let F be a live MTS with variability constraints V and let Fp ∈ Ivp(F ,V).
Then by definition F � Fp. We show via structural induction on φ that for
a pair of states q of F and qp of Fp, with (q, qp) ∈ R, we have that whenever
q |= φ, then qp |= φ. We inherit all clauses of Theorem 3 for standard preser-
vation by refinement (if a formula is preserved by refinement, it is obviously
preserved by live MTS). Hence, the following two clauses complete the proof:

• if φ is preserved by live MTS, then so is AF φ.
Recall that a live MTS has only infinite full paths (as all its states are live).
Indeed, if q |= AF φ, then all (infinite) paths from q contain a state q′i in
F in which φ holds. By the definition of refinement and Proposition 1, the
(infinite) paths from qp are a subset of those from q and by the liveness of
the MTS, for any valid product this subset cannot be empty. Moreover,
any path from qp in this subset thus contains a state satisfying φ. Hence
qp |= AF φ.

• if φ is preserved by live MTS, then so is AF {χ} φ.
The argument is similar to the previous case.

The following example shows a v-ACTLive2 formula that is (thus) preserved
by live MTS, but, in general, not by MTSs that are not live.
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Figure 9: Counterexample for preservation by MTS in case the MTS is not live

Example 15. Consider the MTS F in Fig. 9 (left). It is easy to see that
p |= AF {c} true. Now consider all its (valid) products Ivp(F ,∅) = Ip(F) =
{Fp1 ,Fp2 ,Fp3 ,Fp4}, depicted to the right of F in Fig. 9. Note that Fpi , for
i ∈ {2, 3, 4}, is live, while Fp1 is not. In fact, we see that pi |= AF {c} true, for
i ∈ {2, 3, 4}, whereas p1 6|= AF {c} true.

The next example provides some intuition for the fact that even for the
specific case of live MTSs, it is in general still not the case that all v-ACTL
formulae are preserved. All we know is that formulae that are expressed exclu-
sively with operators from the fragment v-ACTLive2 of v-ACTL are preserved
by live MTS.

Example 16. Consider the MTSs F ′ and F ′p in Figs. 5(b) and 5(c). Clearly
F ′ � F ′p with (q, qp) ∈ R. Since there exists a path in F ′ on which φ always
holds, namely, qaq′dq′′′eqaq′ · · · , it is clear that q |= EGφ. In F ′p, however, no
such path exists as any (infinite) path contains the state q′′p in which φ does not
hold. Hence, qp 6|= EGφ.

For the specific application of our theory of MTSs in SPLE, the result pre-
sented in Theorem 4 is an improvement over that of Theorem 3, since it allows
family-based verification in a larger number of cases (because formulae that are
preserved may now also contain AF constructs5).

So far we have seen that if an MTS is live, the validity of a v-ACTLive2
formula (i.e., a v-ACTL2 formula plus AF constructs) is preserved in all valid
products. However, the liveness of the states of the MTS is actually relevant
only for the preservation of the validity of the evaluation of the AF constructs,
since the preservation of the validity of the other v-ACTL2 operators does not
depend on the liveness property of states of the MTS (cf. Theorem 3). A so-
called lazy , on-the-fly evaluation of a v-ACTLive2 formula may be carried out by
evaluating a fragment of the original formula over a fragment of the state space
of the MTS. A lazy evaluation of a formula evaluates subformulae only when
their truth value is actually needed, which in case of Boolean connectives like
or and and means that the truth value is returned as soon as the correct value
is known (a.k.a. short-circuit or minimal evaluation). Moreover, the logical or
and and connectives are evaluated in a specific order (e.g., from left-to-right)

5An AF construct is any of the constructs AF φ, AF {χ}φ, AF2 φ, or AF2 {χ}φ allowed
by the syntax of v-ACTL (cf. Def. 15).
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and reachability operators like Fφ first evaluate φ in the current state and
then recursively evaluate the remainder of the path(s) in a specific order. For
instance, it is clear that whenever φ evaluates to true in φ ∨ ψ or to false in
φ ∧ ψ, then there is no need to evaluate ψ.

Therefore, requiring the whole MTS to be live (in order to preserve the
validity of a formula over all its valid products) is in many cases a much stricter
than necessary assumption. It would indeed be sufficient to require the liveness
of all the states that are actually used by the recursive evaluation of the AF
constructs. Consequently, it could be a task of the model checker, while it is
evaluating the AF constructs, to check also the liveness of the states used for this
operation, and to report at the end of the evaluation whether the result for the
v-ACTLive2 formula can be trusted to hold for all valid products (in which case
we say that the MTS is sufficiently live with respect to this formula). This is
precisely what is being done by our model checker VMC, that is presented in the
next section. Hence the notion of sufficiently live MTSs is formula-dependent
and tool-dependent (another tool might choose to expand some other parts of
a formula first).

The next example illustrates this reasoning by providing three cases in which
a v-ACTLive2 formula with an action-based AF construct is preserved from an
MTS to all its valid products (LTSs), even though the MTS is not live.

Example 17 (Example 15 continued). Consider the MTS F1 in Fig. 10, with
the associated set V = {a ALT b} of variability constraints. Even though the
MTS is not live (because its final states are not live) and Theorem 4 thus cannot
be applied, the v-ACTLive2 formula AF {c} true needs to be evaluated only in
live states of F1. Since F1 |= AF {c} true, the fact that the MTS is thus
sufficiently live with respect to this formula implies that also P |= AF {c} true
for all valid products P of F1 (i.e., F1

p1
and F1

p2
depicted in Fig. 10 immediately

to the right of F1).
Now consider the MTS F2 in Fig. 10. Given the absence of a variability

constraint, the initial and final states are not live and also F2 is thus not a live
MTS. However, given the v-ACTLive2 formula ([a] 〈c〉2 true) ∨ AF {d} true,
the AF construct is not actually evaluated because of the laziness of the choice
operator. Only the first alternative is actually evaluated to conclude that F2 |=
([a] 〈c〉2 true)∨AF {d} true. Hence the formula ([a] 〈c〉2 true)∨AF {d} true is
preserved by all valid products according to the fact that this MTS is sufficiently
live with respect to this formula, since no states are actually used by the AF
construct, i.e., P |= ([a] 〈c〉2 true)∨AF {d} true for all valid products P of F2.

Finally, consider the MTS F3 in Fig. 10(right). In this case, only the source
and target states of the c-transition are live. Hence, neither F3 is a live MTS.
However, for the v-ACTLive2 formula [a] AF {e} true, the state space fragment
over which the AF construct is actually evaluated is live. Hence, this MTS is
sufficiently live with respect to this formula and the formula [a] AF {e} true is
thus preserved by all valid products. Since F3 |= [a] AF {e} true, it follows that
P |= [a] AF {e} true for all valid products P of F3.

In the next section, we present the model-checking tool VMC [15, 16] in
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Figure 10: Preservation by sufficiently live MTSs

which the specification and verification framework discussed so far has been
implemented. Its most recent version automatically notifies the user of the
preservation of a model-checking result (from a family model to its products),
whenever VMC is used to verify a v-ACTL formula over an MTS to which one
of the preservation results from this section applies, i.e., either Theorem 3 or 4
for formulae expressed in v-ACTL2 or v-ACTLive2, respectively, or the latter’s
extension to sufficiently live MTSs6.

5. VMC: A Tool for Modelling and Analysing Product Families

The framework developed in the previous sections has been implemented
in a tool, whose usage is analysed in this section. For issues concerning the
implementation of the model-checking algorithms and for architectural details
we refer the reader to the appropriate tool papers [15, 16].

VMC is a tool for the modelling and analysis of behavioural variability in
product families. It is the most recent product of the KandISTI family of
model checkers [10] that have been developed at ISTI–CNR over the past two
decades, including FMC [41], UMC [9], and CMC [38]. Each of these allows
for efficient verification, by means of explicit-state on-the-fly model checking, of
functional properties expressed in a specific action- and state-based branching-
time temporal logic derived from the family of logics based on ACTL [33], the
action-based version of CTL [22]. The shared model-checking engine underlying
these model checkers has been highly optimised, as a result of which millions of
states can now be verified in a few minutes. The on-the-fly nature of this family
of model checkers means that in general not the whole state space needs to be
generated and explored. This feature improves performance and allows one to
partially verify also finite fragments of infinite-state systems. Furthermore, the
family of model checkers offers advanced explanation techniques, such as the
step-by-step illustration of counterexamples, which is particularly useful when
model checking branching-time formulae.

6The preservation results for sufficiently live MTSs also hold for several operators from the
aforementioned extended version of v-ACTL that is implemented in VMC, including the least
and greatest fixed point and (action-based and/or weak) Until operators.
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The most recent advances of VMC (implemented in v6.2) concern an exten-
sion of its input language to a modal process algebra sustaining modal synchro-
nisation operators (discussed below), value-passing communication (not treated
here, cf. [11]), n-ary variability constraints and the possibility to negate actions
in the ‘OR’ constraint allowing to express any Boolean function over the ac-
tions in its conjunctive normal form (reported in Section 3.3), and, finally, a
thoroughly revised version of the supported v-ACTL logic with user notifica-
tions in case a family-based analysis result is guaranteed to be preserved by all
products (reported in Section 4.3).

5.1. Modelling Product Families with Process Algebra
MTSs are not suitable to directly specify the behaviour of a complex system,

possibly consisting of several components. In such cases, it is better to describe
the system in an abstract high-level language that is interpreted over MTSs. The
abstract syntax of the input language of VMC is based on the process algebra
paradigm: each process represents a basic component of a possibly distributed
system, and each system is thus defined inductively by composing the processes.
Information on the modality of the transitions (may, must) must also be consid-
ered in the syntax of the process algebra used to specify the MTS. Our choice
is to model it as a special additional parameter associated to the basic actions
of the algebra. As a result, we consider a CSP-like process algebra in which the
parallel composition operator synchronises all selected common actions (possi-
bly with different modalities) of the processes involved in the composition. This
is different from the CCS-based approaches in [14, 42, 45, 56]7.

Definition 23 (syntax of the VMC input language). Let A be a set of actions,
let a ∈ A, and let L ⊆ A. Processes are built from terms and actions according
to the abstract syntax:

N ::= [P ]

[P ] ::= (K = T )∗ P

P ::= K | P /L/ P

T ::= nil | K | A.T | T + T

A ::= a | a(may)

where [P ] denotes the complete system and K is a process identifier from the
set of process definitions of the form K = T .

If L = ∅, then we sometimes write P //P . The set {M,N, . . .} of systems
is denoted by N and the set {P,Q, . . .} of processes is denoted by P.

A process can thus be one of the following:

nil : a terminated process that has finished execution;

7Actually, VMC now accepts also value-passing in this process algebra, introduced in [11].
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K : a process identifier that can be used to model recursive sequential processes;

A.P : a process that executes action A and then behaves as P ;

P +Q : a process that non-deterministically chooses to behave as either P or Q;

P /L/ Q : a process formed by the parallel composition of P and Q that syn-
chronously executes actions in L and independently executes (interleaves)
other actions.

Note that parallel composition may only occur at the top-level of a VMC speci-
fication (i.e., a system consists of a parallel composition of sequential processes).
Also note that VMC distinguishes must actions a and optional actions a(may).
Each action modality is treated differently in the rules of the operational seman-
tics over MTSs. Recall that, in an MTS, we depict must transitions (i.e., δ2) by
solid edges (−→) and optional transitions (i.e., δ3 \ δ2) by dotted edges (99K).

Definition 24 (semantics of the VMC input language). The operational se-
mantics of a system N ∈ N is described by the MTS (N ,A, N, δ3, δ2), where
δ3 and δ2 are defined as the least relations that satisfy the set of transition rules
and axioms in Figs. 11 and 12.

(sys2)
P

a−→ P ′

[P ]
a−→ [P ′]

(sys3)
P

a
99K P ′

[P ]
a

99K [P ′]

(act2)
a.P

a−→ P
(act3)

a(may).P
a

99K P

(or2)
P

a−→ P ′

P +Q
a−→ P ′

(or3)
P

a
99K P ′

P +Q
a

99K P ′

(int2)
P

`−→ P ′

P /L/Q
`−→ P ′ /L/Q

`/∈L (int3)
P

`
99K P ′

P /L/Q
`

99K P ′ /L/Q
`/∈L

(par2)
P

a−→ P ′ Q
a−→ Q′

P /L/Q
a−→ P ′ /L/Q′

a∈L (par3)
P

a
99K P ′ Q

a
99K Q′

P /L/Q
a

99K P ′ /L/Q′
a∈L

(par23)
P

a−→ P ′ Q
a

99K Q′

P /L/Q
a

99K P ′ /L/Q′
a∈L

Figure 11: The operational semantics of the input language of VMC in SOS style, with a, ` ∈ A

P +Q ≡ Q+ P P /L/Q ≡ Q/L/P
P + (Q+R) ≡ (P +Q) +R P /L/ (Q/L/R) ≡ (P /L/Q) /L/R

P ≡ P + 0 P ≡ P [Q/K ] whenever K = Q

Figure 12: Structural congruence relation ≡⊆ P × P

As usual, inference rules are expressed in terms of a (possibly empty) set
of premises (above the line) and a conclusion (below the line). The reduction
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relation is defined in Structural Operational Semantics (SOS) style (i.e., by in-
duction on the structure of the terms denoting a process) modulo the structural
congruence relation ≡⊆ P × P defined in Fig. 12. Considering terms up to a
structural congruence allows one to identify different ways of denoting the same
process and the expansion of recursive process definitions.

From the inference rule par23 in Fig. 11, it can be concluded that the synchro-
nisation of a(may) with a results in a(may). This is the common interpretation
of synchronisation for MTSs [1]. Note, finally, that, when restricted to must
actions (i.e., LTSs), the rules for action prefixing, non-deterministic choice, and
parallel composition collapse onto the standard ones.

The complete definition of a product family in VMC now consists of two
parts: a system specified in the process algebra of Def. 23 together with a
(possibly empty) set of variability constraints specified according to Def. 118.
VMC thus hides the formulation of these variability constraints in v-ACTL
(cf. Section 4.1) from the end-user.

Example 18 (Example 5 continued). The family of coffee machines modelled
by the MTS in Fig. 2(a) and the variability constraints listed in Example 9 can
be specified in VMC as depicted in Fig. 13.

Figure 13: Specification of the family of coffee machines in VMC

In this example, the system part or process model (i.e., without the con-
straints) can be seen as the natural encoding of the graph (MTS) of Fig. 2(a),
with the process terms corresponding to the nodes of the graph. In general,
however, more complex process models can be obtained by parallel composi-

8Besides the variability constraints of Def. 11, VMC accepts aj IFF ak as a shorthand for
(aj REQ ak) ∧ (ak REQ aj).
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tion. The validity of properties expressed in v-ACTL over a product family are
verified directly over such a model, without considering variability constraints.

5.2. Generating Valid Products from Product Families
In [5], we defined an algorithm to automatically derive all valid product

LTSs of an MTS model of a product family and an associated set of variability
constraints. We recently implemented an improved version in VMC, considering
that any Boolean expression over actions can be provided through its conjunc-
tive normal form. The underlying idea is to construct the set of valid products
by incrementally unfolding the initial MTS according to the modality (may or
must) of the transitions into a set of intermediate LTSs, while continuously veri-
fying the coherence of these partial products with respect to the constraints and
with respect to the consistency assumption. During unfolding, any intermediate
LTS which is incompatible with the constraints or inconsistent is immediately
discarded. This approach proved to be rather effective and so far the generation
of all valid products never was a bottleneck for verification, but we admit that
the scalability to more realistic problems of nearly industrial size was so far not
investigated. Clearly, product generation has a worst-case complexity that is
exponential with respect to the number of differently labelled optional transi-
tions in the MTS (cf. Section 3.2). However, in practice the theoretical upper
bound of 2n is significantly reduced (sometimes exponentially) by the presence
of variability constraints (think, e.g., of a ALT b or a EXC b for an MTS with
optional transitions labelled with a and with b).

Example 19 (Example 5 continued). The variability constraints apparently
reduce the number of at most 27 consistent products (cf. Section 3.2) to 13 valid
products. This can be concluded from Fig. 14, which shows the result of asking
VMC to generate the products. For each product, the action labels of all may
transitions that have been preserved (as must transitions) in that product’s LTS
are listed. Clicking one of these products, VMC loads it and opens a new window
with the product’s process model9. The result of doing so for product 6, i.e., the
European coffee machine depicted in Fig. 3(b), is shown in Fig. 15.

5.3. Analysing Product Families with VMC
In this section, we illustrate two kinds of analyses that VMC can perform

upon loading the specification of the family of coffee machines given in Exam-
ple 18.

First, the most efficient way to verify a property of a product family with
VMC relies on the feasibility of performing the verification directly on the MTS
modelling the family (i.e., to perform a family-based analysis). Indeed, we
implemented the results presented in Section 4.3 (i.e., Theorems 3 and 4 and

9At this point, with all variability resolved, the opened window actually shows the model
loaded in an instance of the aforementioned KandISTI family’s FMC model checker.

33



Figure 14: Products of the family of coffee machines generated by VMC

Figure 15: A product of the family of coffee machines generated by VMC

the notion of an MTS being sufficiently live with respect to a formula) in VMC
such that VMC v6.2 now automatically notifies the user whenever the result of
a formula verified over an MTS is preserved for all its valid products.

Figure 16 shows the result of verifying the v-ACTLive2 formula

AG [ sugar ] AF {pour sugar} true (3)

over the MTS. It expresses the property: It is always the case that whenever
sugar is chosen, eventually sugar is poured. We see that Formula 3 is true. VMC
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moreover reports that this result is preserved by all the valid products that can
be generated from the MTS by considering also the variability constraints. This
is because, even though the MTS is not live, it is sufficiently live with respect
to Formula 3. The reason that the MTS is not live is due to the fact that the
source state of the may transitions labelled with pour espresso and pour regular
is not live.

Figure 16: Formula 3 verified by VMC over the family of coffee machines

Figure 17, on the other hand, shows the result of verifying the v-ACTL
formula

AG ( (¬ 〈sugar〉2 true ) ∨ ( 〈no sugar〉2 true ) ) (4)

over the MTS10. It expresses the property: It is always the case that whenever
sugar can be chosen, also no sugar can be chosen. To see this, recall that
(¬ 〈χ〉2ψ) ∨ (〈χ′〉2ψ) ≡ (〈χ〉2ψ) =⇒ (〈χ′〉2ψ). We see that also Formula 4
is true. However, VMC furthermore reports that this result is not necessarily
preserved by all the valid products that can be generated from the MTS by
considering also the variability constraints. In fact, Formula 4 is not a v-ACTL2

formula, since ¬〈χ〉2φ is not part of v-ACTL2.
It is interesting to note, however, that a similar property to the above can

easily be verified by the v-ACTL2 formula

AG ( (¬ 〈sugar ∨ no sugar〉 true ) ∨ ( ( 〈sugar〉2 true ) ∧ ( 〈no sugar〉2 true ) ) )

that holds for the MTS and thus also for all its valid products.

10As will be explained in Section 5.4, VMC actually translates this v-ACTL formula in the
ACTL formula depicted in Fig. 17 and interprets it on an L2TS encoding of the MTS.
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Figure 17: Formula 4 verified by VMC over the family of coffee machines

A limit of our approach is that the kind of verification VMC offers does
not take all the additional variability constraints associated with the MTS into
account. The model checker is only influenced by the definitions of live sets of
actions induced by the constraints, but not by the full semantics of the latter.
Therefore, properties still exist (also expressed in v-ACTLive2) that hold for
all valid products of an MTS, but which might not hold for the MTS (cf. the
examples in Section 4). Conversely, any property which holds for just the valid
products (i.e., there is at least one not valid product for which it does not hold),
might not hold for the MTS.

Another limit concerns the logic’s applicability, which does not allow one
to verify certain interesting properties specific to product families by family-
based verification. It would, e.g., be nice to be able to verify for a family that
a certain property ϕ holds for all products that eventually execute an optional
action b (i.e., support a certain feature), but this kind of property is not among
those that can be expressed in v-ACTL2 and evaluated in VMC. Obviously,
this property can be expressed in (v-)ACTL (viz. EF {b} true =⇒ ϕ) and
evaluated in VMC over an MTS, but its outcome will not allow one to draw any
conclusions concerning its validity for the products of the MTS. To do so, one
needs to resort to a separate product-by-product verification of this property,
which brings us to the second analysis possibility offered by VMC.

The second, in general less efficient, way to verify a property of a product
family with VMC exploits the possibility to first generate all valid products
of the family (i.e., the finite set of consistent products satisfying all variability
constraints) and then verify a property on each of these (i.e., to perform an
enumerative product-based analysis). In this case, the logic does not even need
to consider variability (since the formula is evaluated on the product LTSs),
and thus we can make use of the extended version of v-ACTL mentioned in
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Section 4, i.e., including various fixed-point and Until operators [15].
As illustrated in Fig. 14, product generation in VMC results in a list of all

valid products (13 in this case, cf. Example 19) of the product family (i.e., this
time taking also the variability constraints into account). As said before, for
each product, VMC also lists the action labels of all may transitions that have
been preserved (as must transitions) in that product’s LTS.

Figure 18: Formula 5 verified by VMC over all products of the family of coffee machines

Next to the list of all valid products, Fig. 18 moreover shows the result of
verifying the (v-)ACTL formula

[dollar ] EF {cappuccino} true (5)

over each of these products. It expresses the property: Upon the insertion of
a dollar, it might be the case that eventually a cappuccino can be chosen. Note
that Formula 5 does not hold for all the products. This is obviously due to
the fact that cappuccino is an optional feature in our family of coffee machines.
Since Formula 5 is not part of the v-ACTL2 fragment of v-ACTL, from an SPLE
point of view it makes no sense to verify it over the MTS, but when checked
over the set of valid products one can precisely observe those products for which
it holds and those for which it does not. In the next section, we will moreover
see that verification with VMC is very efficient.

Obviously, we could now use the product-based analysis offered by VMC to
verify also Formula 4 over all valid products. If we were to do so, then VMC
would actually show that the formula’s result is preserved by all valid products
that can be generated from the MTS.

5.4. Implementation Details
VMC’s core contains a command-line version of the model checker and a

product generation procedure, both stand-alone executables written in Ada
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(easy to compile for Windows, Linux, Solaris, and Mac OS X) and wrapped
with a set of CGI scripts handled by a web server, facilitating a HTML-oriented
graphical user interface and integration with other tools for LTS minimisation
and graph drawing. Its executables are available upon request. VMC is publicly
usable online at http://fmt.isti.cnr.it/vmc.

Like the other model checkers of the aforementioned KandISTI family (FMC,
UMC, and CMC), the VMC model-checking framework is based on the notion
of a Doubly-Labelled Transition System (L2TS) [34] as the underlying abstract
semantic computational model. An L2TS is an extension of an ordinary LTS in
which not only edges but also states can be associated with (parametric) labels.
Moreover, in the L2TSs that we consider, edges can be associated with sets of
labels. These characteristics allowed us to define and implement the on-the-fly
logical verification engine on the abstract L2TS in a way that is completely in-
dependent from the details of the underlying computational model (either based
on UML state machines, as in FMC and UMC, or on a process calculus, as in
CMC and VMC). It is the task of the specification language and computational
model to define what kind of information is to be mapped from the ground in-
ternal structure of the computational model onto the abstract type of labels in
the L2TS. Since an MTS differs from an LTS only by distinguishing two possible
kinds of transitions, viz. admissible (may) or necessary (must) transitions, this
aspect can easily be encoded in an L2TS by extending the labels on the transi-
tions with information about the modality of the edge (e.g.,

{b,may}−−−−−→ instead of
b

99K, cf. Fig. 19).
The logical verification engine of the KandISTI model-checking framework

has no problems analysing the L2TS derived from an MTS, and the additional
logical operators specific to v-ACTL can easily be defined through translations
into the classical ACTL operators. In Fig. 19, e.g., we show how a v-ACTL
formula over the MTS representation of a small process can be interpreted over
an L2TS in plain ACTL. Recall that this ‘boxed’ variant of the classical diamond
operator of Hennessy-Milner logic requires that a next state exists, reachable by
a necessary (must) transition labelled with action a, in which true holds.

//

a

��

b
// T = a.T + b(may).nil //

{a}

��

{b,may}
//

〈a〉2 true 〈a ∧ ¬may〉 true

Figure 19: From a v-ACTL formula and an MTS representation (left) of a process (middle)
to a corresponding ACTL formula over the L2TS interpretation (right) of the MTS / process

If the MTS contains no optional transitions, which we recall to be admissible
(may) transitions that are not necessary (must) transitions, then the encoding
of the MTS in VMC becomes precisely the standard encoding of an ordinary
LTS (with no need for state labels).
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As we have seen in Section 5.3, in VMC the propositional connectives ¬, ∧,
∨, and =⇒ need to be written as not, and, or, and implies, respectively,
while the must operators [ ]2, 〈 〉2, F2, and F2{ } may either be written as [ ]#,
〈 〉#, F#, and F#{ }, respectively, or translated in plain ACTL as mentioned
before.

Model checking v-ACTL formulae (without the fixed-point operators) over
MTSs is achieved in VMC with a worst-case complexity that is linear with
respect to the size of the state space and the size of the formula.

6. Related Models and Tools

There are a few other approaches to modelling and analysing (by means
of model checking) the behavioural variability in product families, which we
describe and compare next.

6.1. Featured Transition Systems
By far the most elaborated and closely related approach is the one developed

on top of Featured Transition Systems (FTSs) [25–29, 32]. A common trait of
FTS and MTS approaches is that the behaviour of an entire product family is
modelled in a single compact transition system from which the valid products
can be obtained through a notion of refinement. Formally, an FTS is an L2TS,
with an associated feature diagram, and such that each state is labelled with an
atomic proposition, while each transition is labelled with an action and — in
the improved definition from [29] — an associated feature expression (a Boolean
formula defined over the set of features) that must hold for this specific transi-
tion to be part of the executable product behaviour. Hence, an FTS models a
family of LTSs, one per product, which can be obtained by projection (i.e., all
transitions whose feature expression is not satisfied by the specific product’s set
of features are removed, as well as all states and transitions that because of this
become unreachable). An MTS, on the other hand, has no associated feature
diagram, but it has an associated set of variability constraints (expressed over
action labels rather than over features) that each product must satisfy. These
constraints, moreover, can express any Boolean function over the action labels,
thus including all standard type of constraints that may be modelled by means
of a feature diagram (expressed in terms of actions, though).

Comparisons of the FTS and MTS models underling these approaches have
appeared throughout the literature. In [5], we demonstrated the need to equip
MTSs with an additional set of variability constraints to be able to filter out
those products among their refinements that are not valid and be left with all and
only their valid products, which in case of FTSs is taken care of by inspecting
the associated feature diagram. Recently, in [8], we presented an automatic
technique to transform FTSs into MTSs with associated variability constraints,
the crux being a transformation from variability constraints expressed in terms
of features to variability constraints expressed in terms of actions. Finally,
in [19], the expressiveness of FTSs and MTSs (and PL-LTSs, the semantic model
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of PL-CCS [45]) in terms of their sets of definable products is investigated,
after which testing equivalences are explored. It is shown that MTSs are the
least expressive, FTSs the most, and PL-LTSs lie strictly in between the two.
However, only MTSs without associated variability constraints are considered.
Indeed, we know from [8] that once MTSs with additional variability constraints
are considered, then they are at least as expressive as FTSs.

6.2. Model Checkers for FTSs
We now discuss a number of dedicated FTS model checkers. In [28], an

explicit-state model-checking technique, i.e., progressing one state at a time,
was defined to verify LTL properties over FTSs. It provides a means to check
that whenever a behavioural property is satisfied by an FTS modelling a product
family, then it is also satisfied by every product of that family, and whenever
a property is violated, then not only a counterexample is provided, but also all
products violating the property. Hence, all products of a family are verified at
once. Moreover, in [28], classical local model checking, as implemented in VMC,
is extended to exhaustive model-checking algorithms that continue their search
after a violation was found. This allows one to return a set of violating and
a set of satisfying products upon the verification of an LTL property. In [29],
this approach was improved by using symbolic model checking, examining sets
of states at a time, and a feature-oriented version of CTL. We now discuss the
specific tools that came out of these approaches in more detail.

SNIP [25] is a well-maintained model checker for product families modelled
as FTSs and specified in fPromela, which is an extension of the Promela input
language of the well-known SPIN model checker [47]. Features are declared in
the Text-based Variability Language (TVL) and are actually taken into account
by SNIP’s model-checking algorithm for the verification of properties expressed
in fLTL (feature LTL) interpreted over FTSs, e.g., to verify a property only over
a subset of a family’s valid products. Unlike VMC, SNIP is a command-line
tool with no graphical user interface and no possibility to generate and explore
product behaviour. Moreover, it was built from scratch, while VMC profits
from numerous optimisation techniques that were implemented over the years
in KandISTI. SNIP, however, treats features as first-class citizens, with built-in
support for feature diagrams, and it implements (exhaustive) model-checking
algorithms tailored for SPLE.

Furthermore, SNIP has recently been re-engineered and the resulting tool
suite ProVeLines [32] supports discrete as well as real-time models, various
types of computations, and advanced feature notions. Unlike KandISTI, it is
the specific model-checking engine that changes, while all tool variants share
the same common input language fPromela.

The symbolic FTS model checking of [29], on the other hand, was imple-
mented as a prototypical extension of the NuSMV model checker [21] with a
fully symbolic algorithm for fCTL (feature CTL). Product families are still
modelled as FTSs, but this time they must be specified in fSMV, which is a
feature-oriented extension of the input language of (Nu)SMV that was indepen-
dently developed in the context of research on the renown problem of feature
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interaction [60]. In contrast with SNIP, a counterexample is produced only for
the first violating product found.

6.3. Variants of MTSs for SPLE
We now briefly discuss some further variants based on MTSs which have

been used for modelling and analysing behavioural SPL models. Again, we
focus on analyses by means of model checking.

In [40], an algorithm was defined to check conformance of LTSs against
MTSs according to a given branching relation, i.e., to check conformance of the
behaviour of a product against that of its product family. It is a fixed-point
algorithm that starts with the Cartesian product of the states and iteratively
eliminates pairs that are invalid according to the given relation. The algorithm
was implemented in the MTS Analyser (MTSA) [35], which is a tool built on
top of the LTS Analyser (LTSA). Next to checking whether or not a given LTS
conforms to a given MTS according to a number of different branching rela-
tions, it supports the modelling and analysis of MTSs specified in an extension
of the process algebra FSP (Finite State Processes). It then allows 3-valued
FLTL (Fluent LTL) model checking of MTSs, with admissible(may), neces-
sary (must), and optional transitions, by reducing the verification to two FLTL
model-checking runs on LTSs. It is known from [20] that model checking any
3-valued temporal logic is no more expensive than model checking the corre-
sponding 2-valued temporal logic, meaning it can be performed using existing
model checkers. Hence, like VMC, MTSA is an extension of a tool for LTSs, but
unlike VMC, MTSA is a general-purpose MTS analyser that does not provide
specific features for the generation and verification of product variability.

In [36], (Generalised) Extended Modal Transition System ((G)EMTS) were
introduced to deal with so-called multiple optionality constraints in SPLE, i.e.,
constraints that impose any valid product implementation to contain at least,
at most, or exactly one (k) out of n features. This is done through the use of so-
called hypertransitions, which are transitions that still have a single source state,
but a set of target states. Each hypertransition thus effectively models a set of
transitions. The notion of a GEMTS generalises that of a Disjunctive Modal
Transition System (DMTS) [54] as well as that of a 1-selecting Modal Transition
System (1MTS) [39]. Their differences lie in the refinement semantics of the
hypertransitions. In a DMTS, the refinement semantics requires that at least
one of the transitions of a hypertransition must be implemented. In a 1MTS,
this disjunctive choice is transformed into an exclusive choice: precisely one of
the transitions of a hypertransition must be implemented. Finally, a GEMTS
allows two types of hypertransitions, each with its own refinement semantics:
those that require at least k-of-n transitions to be implemented and those that
require at most k-of-n transitions to be implemented. Note that the source states
of all hypertransitions with a semantics that requires at least one transition to
be implemented, are by definition live. A more detailed comparison, including
a hierarchy that compares the expressiveness of each of these variants of MTSs
with hypertransitions, is presented in [37].
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Variable I/O automata were introduced in [55] to model product families,
together with a model-checking approach to the verification of the conformance
of products with respect to a family’s variability. This is achieved by using vari-
ability information in the model-checking algorithm (while exploring the state
space, an associated variability model is consulted continuously). Properties
expressed in CTL are verified by explicit-state model checking. Like modal I/O
automata [52], variable I/O automata extend I/O automata with a distinction
between may and must transitions. While [52] can be viewed as one of the first
attempts at describing SPLs in a behavioural fashion, in [52], the focus was
on configuring products by configuring an abstract variability model composed
of modal I/O automata in such a way that the selected configuration can be
refined to configurations of each of the smaller components modelled as modal
I/O automata.

6.4. Process-algebraic SPL Approaches
In [12–14, 42], a high-level feature-based modelling language for product

families was developed. Like VMC’s input language, it is a process-algebraic
language, but process execution is constrained by a store that regulates (dy-
namic) product configuration; its most recent version supports the specification
and analysis of probabilistic models of product families and quantitative con-
straints. An implementation in the executable modelling language Maude [30]
allows formal analyses that range from consistency checking (by means of SAT
solving) of product configurations to LTL model checking of product behaviour,
whereas a combination with the distributed statistical model checker Multi-
VeStA [64] allows one to estimate the likelihood of specific configurations and
behaviour of a product family by means of statistical model checking [51].

Finally, in [17], the formal specification language and toolset mCRL2 [44] is
exploited for the modelling and analysis of product families. Its parametrised
data language allows one to model and select valid product configurations in the
presence of feature attributes (as in ProVeLines) and quantitative constraints
(as it happens with the approach in [12, 13]). Moreover, its industrial-strength
and actively maintained toolset allows one to efficiently verify product behaviour
by model checking properties in the modal µ-calculus with data, in combina-
tion with advanced built-in minimisation techniques and a modular verification
method developed to exploit feature-based factorisations of product families.

The above approaches all verify an abstract model of a product family. There
are, however, also numerous SPL analysis approaches that operate directly on
the source code. Also in this case, it often happens that existing tools for
software model checking are adapted to deal with variability. Examples include
an adaptation of ProMoVer [65] with variability annotations [62] for Java and
the SPLverifier [2, 3] tool chain built on Java PathFinder [68] for Java and
CPAchecker [7] for C code.

For further details and for other model-checking approaches in SPLE, we
refer to the excellent survey [66] which covers not only SPL model checking, but
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also type checking, static analysis, and theorem proving and which distinguishes,
besides product-based and family-based analyses, also feature-based analyses,
which are not relevant to our approach given that features are only implicitly
present as actions in our model.

Finally, as a reviewer noted, the generation of valid products from an MTS
with variability constraints which, as described in detail in Section 5.2, are
obtained by adapting the MTS in a consistent way with respect to the v-ACTL
formulae expressing the variability constraints, has some commonalities with
recent work on maximal synthesis for Hennessy-Milner logic [48], in which L2TSs
are adapted in the least possible way in order to satisfy a formula in Hennessy-
Milner logic. This is done in a so-called maximally permissive way, retaining the
most possible behaviour under simulation, by means of unfolding the original
model with respect to the depth of the synthesised formula.

7. Conclusions

We have presented the theory underlying our framework for the modelling
and analysis of behavioural variability in product families, parts of which have
been introduced in [4, 5], in full detail. Similar to other approaches based on
MTSs [40, 52, 55], FTSs [26–29], and mCRL2 [17], our approach is based on
the assumption that the behaviour of a family of products can be specified in a
compact behavioural (LTS-based) model of a set of products modelled as LTSs.

In our setting, the family model is specified in a process-algebraic language
with a semantic interpretation as MTS, together with an additional set of vari-
ability constraints (on actions). Properties to be verified (by means of efficient
on-the-fly model checking) are formalised in v-ACTL, a special-purpose logic
that allows one to specifically take the modality of transitions (labelled with
actions) into account. Given an MTS model of a product family, the framework
supports both family-based analyses, based on a number of results on the preser-
vation of properties (expressed in the v-ACTL2 and v-ACTLive2 fragments of
v-ACTL) from an MTS to its set of product LTSs, as well as product-based anal-
yses, upon the generation of all valid product LTSs from the MTS. Moreover,
all these features are implemented in a tool that also allows MTS/LTS visu-
alisation, minimisation, etc., as we have illustrated in the case of our running
example.

For a future version of VMC, we consider the development of a feature that
allows a user to specify a property that is supposed to hold on set of products
(LTSs) in plain ACTL (i.e., without distinguishing may and must transitions),
which is then implicitly translated in the corresponding v-ACTL2 formula and
verified over the MTS model of these product LTSs.

There is an obvious trade-off between enumerative product-based analysis
with highly optimised model checkers originally developed for (single) product
engineering, like SPIN, NuSMV, and mCRL2, and family-based analysis with
dedicated SPL model checkers, like SNIP and the aforementioned extension of
NuSMV. In fact, according to [25], SPIN generally outperforms SNIP due to
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SPIN’s many optimisations (e.g., partial order reduction). VMC combines el-
ements of both analysis strategies. For properties expressed in v-ACTL2 or
v-ACTLive2, VMC, with its linear worst-time complexity with respect to the
number of states of the MTS, clearly outperforms SNIP, which is still linear
with respect to the size of the generated state space, which, however, may be
exponential with respect to the number of features of the FTS. For general v-
ACTL properties, this largely depends on the size of the product family (i.e., its
number of features), but it should be noted that VMC considers variability con-
straints expressed in terms of actions of MTSs, while SNIP considers variability
expressed by feature models.

In the future, we intend to perform a quantitative evaluation of the expressiv-
ity, complexity, and scalability of our approach. The most important challenge
in this direction is to experiment VMC on a more realistic case study, preferably
of industrial size. To be able to do that, we intend to enrich the input process
algebra of VMC with advanced data types (not just integers as in [11], but also
tuples, sets, lists, etc.), which calls for a more complex underlying computa-
tional model. We also plan to extend the framework with support for other
specification notations (such as, for instance, UML state machines, which are
already supported by the FMC and UMC members of our KandISTI family of
model checkers). A more high-level specification language is a prerequisite to
be able to affront industrial case studies. Since fPromela can be used to specify
FTSs in SNIP, the model transformation from FTSs to MTSs with variability
constraints that we recently presented in [8] might turn out to be useful in this
respect.
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