
Position-Based Tensegrity Design

NICO PIETRONI, CNR-ISTI
MARCO TARINI, CNR-ISTI and Univ. Insubria
AMIR VAXMAN, Universiteit Utrecht
DANIELE PANOZZO, New York University
PAOLO CIGNONI, CNR-ISTI

Fig. 1. (a) An input mesh; (b) The derived graph; (c) Edges are divided into struts and cables of a pure tensegrity structure; (d) Stable shape after form-finding;
(e) Simplified, and still stable, shape after removing redundant cables; (f) The fabricated model.

We propose a novel framework for the computational design of tensegrity
structures, which are constructions made of struts and cables, held rigid
by continuous tension between the elements. Tensegrities are known to
be difficult to design—existing design methods are often restricted to us-
ing symmetric or templated configurations, limiting the design space to
simple constructions. We introduce an algorithm to automatically create
free-form stable tensegrity designs that satisfy both fabrication and geo-
metric constraints, and faithfully approximate input geometric shapes. Our
approach sidesteps the usual force-based approach in favor of a geometric
optimization on the positions of the elements. Equipped with this formu-
lation, we provide a design framework to explore the highly constrained
space of tensegrity structures. We validate our method with simulations and
real-world constructions.

CCS Concepts: • Computing methodologies →Mesh models;

Additional Key Words and Phrases: Tensegrity, Architectural Geometry

This work is partially supported by the PRIN project “DSURF” (2015B8TRFM), NSF
CAREER award (1652515), and a gift from Adobe Research.
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3130800.3130809.

ACM Reference format:
Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo
Cignoni. 2017. Position-Based Tensegrity Design. ACM Trans. Graph. 36, 6,
Article 172 (November 2017), 14 pages.
https://doi.org/10.1145/3130800.3130809

1 INTRODUCTION
A tensegrity structure consists of a set of disjoint struts, tied together
by cables connecting the endpoints of the struts and nothing more.
The term tensegrity is a portmanteau of “tensional” and “integrity”
and it refers to the integrity of a stable structure balanced by struc-
tural elements carrying pre-tension (cables) or pre-compression
(struts) forces. These structures are known for their desirable aes-
thetic and structural qualities, which are explored in architecture
and art. Their perceived lightness, where the heavy elements (struts)
are held together only by a net of a few cables, is the distinct visual
feature of these structures. Tensegrities are lightweight, while en-
joying solid mechanical stability. Moreover, no welded joints are
required, as struts are only connected through cables, facilitating
fabrication. Notable examples are the Kennet Snelson’s [Needle
Tower 1968] and the [Kurilpa Bridge 2009] in Brisbane (see Fig-
ure 2). The structural principle is also known to exist naturally in

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130809
https://doi.org/10.1145/3130800.3130809

172:2 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

Fig. 2. Notable examples of Tensegrity structures. Left: the Kennet Snelson’s
Needle Tower, Image courtesy of F Delventhal (CC BY 2.0). Right: the Kurilpa
Bridge in Brisbane, Image courtesy of Andrew Sutherland (CC BY-SA 2.0).

Fig. 3. On the right: a simple exam-
ple of a prism in tensegrity; struts are
represented by thick lines, and cables
by thin lines; struts exert compression
forces (red arrows), and cable tension
forces (blue arrows). These internal
forces alone keep the structure in equi-
librium, and balance out any external
force.

muscle, tendon, and bone structures, and therefore inspires artists
and engineers to creative design by way of biomimicry.
Despite the interest from both art and engineering communi-

ties, tensegrity structures are difficult to devise, and are rarely used
in novel designs. The space of possible configurations is discrete
and highly-constrained, and it is difficult to create original models
that are both visually interesting and structurally valid. Existing
computational attempts are limited to conservative variations on
stock examples, or to assembling such examples together [Gauge
et al. 2014]. Known approaches, based on force-densities [Zhang and
Ohsaki 2015], can be used for simple models, but produce unsatisfac-
tory results for complex models (Figure 4), due to large differences
between the optimized shape and the designer’s intent.
We introduce a novel automatic framework to design tensegri-

ties, inspired by a classical formulation for stable structures. Our
framework achieves desired structural and user-defined properties,
by optimizing directly on the spatial positions of the endpoints of
the elements in the tensegrity. As such, we sidestep the need to
explicitly estimate forces, or consider equilibrium conditions. This
leads to an efficient algorithm, that can be used for different chal-
lenging design tasks, including initial connectivity setup of valid
tensegrities, shape approximation, and connectivity simplification.
Our system enables designers to explore the space of tenseg-

rity structures, without having to rely on predefined patterns. We
demonstrate its practical relevance by designing multiple complex
tensegrity structures and assembling two of them. We validate our
algorithm by testing our designs with a digital simulation under
random loads. Finally, we demonstrate the flexibility of our method,

δ = 0.34, ∆ = 0.48 δ = 0.06, ∆ = 0.09

δ = 0.27, ∆ = 0.59 δ = 0.04, ∆ = 0.07

initial stabilized with stabilized with
(non stable) adaptive FDM Position-Based (ours)

Fig. 4. Comparison of form-finding methods on two simple examples; δ and
∆ are the average and maximum displacement of vertices (expressed as a
fraction of the bounding box of the structure). Even when the adaptive Force-
Density method [Zhang and Ohsaki 2006] obtains a stable configurations,
the resulting shape may considerably differ from the input.

by applying it to the design of scaffolds for practical tensegrity con-
struction, and for the removal of torque and tension from traditional
truss structures.

2 BACKGROUND AND OVERVIEW
A pure tensegrity structure (or just “a tensegrity”) is a set of disjoint
struts (sometimes “bars” or “rods” in the literature) that are tied
together by a set of cables, connected only between their endpoints.

The main structural requirement of a tensegrity structure is sta-
bility. Intuitively, the structure is stable when it resists attempts to
be deformed, behaving as a single rigid object. The basic principle
of a tensegrity is that the structure does so by relying on only two
types of internal forces: tension forces from cables, and compression
forces from struts (Figure 3). Any combination of external forces
(such as gravity) must be canceled out by these internal forces.

The structure does not rely on any other internal force tomaintain
its shape. In particular, a cable will oppose no force if compressed;
symmetrically, we do not need to assume that struts offer any re-
sistance to elongation (even if this is the case for many choices of
real-world materials). Likewise, there is no reliance on the resis-
tance of struts or cables to bending, torsion, or external forces in
any direction but along their length; the joints between struts and
cables do not offer any opposing force to any attempt to change
their angles. These assumptions are imposed from practical con-
siderations about real-world realizations [Zhang and Ohsaki 2015].
For example, a cable realized with a metallic wire would be able to
sustain a large load when tense, but would offer almost no resistance
to compression, bending, or twisting.
Furthermore, we assume perfect inextensibility (resp., incom-

pressibility) of cables (resp., struts). That is, we assume that even
for negligible elongation from their initial rest length, cables would
respond with tension forces that are enough to negate any external

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:3

force (and likewise for compression of struts). In other words, cables
and struts are modelled as asymmetric springs with extremely large
“spring constants” (the ratio between the magnitude of the response
force and the elongation). We note that this assumption is fully
justified for a wide range of real-world materials, like steel cables,
which exhibit very high Young’s moduli. For example, a 1 m steel
cable with 4 mm section diameter will elongate of only a few tenths
of a millimeter in response to a tension force of 1000 N. Under these
assumptions, our framework may safely ignore internal forces or
pre-stress, which greatly simplifies the design and simulation of
tensegrities. While tension forces should be accounted for during
assembly, we experimentally show that for steel cables, like the ones
used in the two models in Fig. 5, this is not required: their extension
under load is negligible with respect to the actual fabrication errors
experienced when preparing the elements.

2.1 Rigidity and Stability
Historically, both rigidity and stability have been formally mod-
eled in many different ways, such as [Connelly 2013; Connelly and
Whiteley 1996], emphasizing several subtle differences. The reader
is referred to [Whiteley 1984] for an exhaustive treatment of the
general case, and [Roth and Whiteley 1981] for a seminal discus-
sion on the specific case of tensegrities. We briefly summarize the
concept we use in our paper in the following.
A tensegrity structure is (locally) rigid [Recski 2008; Roth and

Whiteley 1981; Whiteley 1989] when it cannot be continuously
deformed without violating the physical constraints we discuss
above. That is, every deformation attempts to either elongate cables
or compress struts. This type of rigidity is deemed local as it is
characterized by continuous deformations.

A structure is termed stable [Roth and Whiteley 1981] when any
combination of external forces acting on the vertices is canceled by
internal forces, i.e., an equilibrium is held with any load of external
forces. This implies that a system is not only in an equilibrium,
but also in a strict (local) minimum of a potential energy, rather
than just a saddle or a maximum. Much of the recent past literature
concentrates of enforcing stability directly (see Section 3).
Although stability is generally a stronger property than (local)

rigidity, under our assumptions, the two are equivalent [Roth and
Whiteley 1981;Whiteley 1984]. This equivalence is the main premise
of our work: we propose a novel and practical frameworkwhere only
(local) rigidity is explicitly sought, and stability as a consequence.
This framework consists in a set of efficient algorithms to test and
enforce stability, through rigidity. Subsequently, such algorithms
allow us to directly optimize for connectivity, and accommodate
custom constraints and desiderata, leading to the interactive design
of stable tensegrity structures. As such, our entire framework is
based on manipulating positions, rather than forces. In computer
graphics, methods that purely manipulate positions are often termed
“position-based” [Müller et al. 2007], and we thus term our approach
Position-Based Tensegrity Design.

3 RELATED WORK
Computational design is an active discipline that is transforming
architecture, industrial prototyping, and art. It allows a designer to

Fig. 5. Two physical tensegrity models constructed from our designs using
60mmwide stainless steel tubes and 4mmwide steel cables. Left: a spherical
design featuring 7 struts, which is a non-trivial asymmetric variation of
the popular icosahedron-based 6 struts tensegrity. Right: realization of the
design shown in Figure 7-(b); see also Figure 14 and the attached video.

focus on the aesthetics of the design; all other practical consider-
ations and constraints, such as feasibility, stability, cost, assembly
sequence or material usage are taken care of by an algorithm in
the background. This algorithm must in turn produce a shape that
deviates as little as possible from the one carefully prescribed by
the designer. It is not surprising that many computational design
techniques have been developed as interactive tools in the graphics
community, which specializes in modeling and rendering 3D geome-
try. In particular, dramatic progress has been achieved in the optimal
design of architectural models [Whiting et al. 2009, 2012], masonry
structures [de Goes et al. 2013; Liu et al. 2013; Panozzo et al. 2013;
Vouga et al. 2012], wire assemblies [Miguel et al. 2016], structures
composed by interlocking planar pieces [Cignoni et al. 2014; Hilde-
brand et al. 2012; Schwartzburg and Pauly 2013], modular elements
[Skouras et al. 2015], or planar tessellations [Bouaziz et al. 2012;
Liu et al. 2011; Pietroni et al. 2015; Tang et al. 2014]. The design of
tensegrity structures received little attention so far in the graphics
community, with only one work [Gauge et al. 2014] to date. How-
ever, they solve a reduced problem, where they interactively design
structures by assembling multiple tensegrity components together
into one larger structure. On the other hand, the problem received
ample coverage in the mechanical engineering and architectural
community, as summarized below, which has been motivated by the
many perceived structural benefits of tensegrities. We should dis-
claim that these structural qualities were deemed debatable within
this community, e.g., in [Hanaor 2012].
Designing sound tensegrity structures is a challenging problem

comprising both discrete and continuous parts: the discrete part,
connectivity design, determines how struts and cables are joined
together, while the continuous part, usually referred as form-finding,
optimizes the positions of their endpoints in space, to enforce static
properties and other constraints. Form-finding and connectivity
design for generic and complex tensegrity structures is largely an
open problem. In the following, we discuss how the most relevant
works in the mechanical engineering community attempted these
two challenges. For a more complete review, see [Juan and Tur 2008].

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:4 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

Working with force densities is the common property of all these
works, while our approach favors a purely geometric approach.

Force Density methods. In traditional approaches, cables and struts
are modeled as asymmetric springs, and are assumed to exist in a
prestress equilibrium of tension and compression forces, respectively,
regardless of any external forces (like gravity). External forces are
assumed to be negligible in magnitude, compared to internal forces.
A force density (force per length unit) is explicitly assigned to the
linear elements of the structure, by solving a system for static equi-
librium. Forces are aligned to the linear elements, and expressed as
scalars: negative scalar represent tensions, and positive scalars repre-
sent compression. As such, the signs of the assigned force densities
also determine the identity of the specific element, whether strut or
cable. A structure is in static equilibrium when all the internal forces
cancel out (ignoring external forces). Stability is then characterized
by looking at the potential energy stored in the springs at this equi-
librium state. However, a state of equilibrium (zero gradient of the
energy) does not imply that the energy is at a strict minimum; it
could be at a maximum, an inflection, or a non-strict minimum. By
analyzing and imposing conditions on the Hessian of the potential
energy, these possibilities are ruled out, and configurations that are
the minimum of the energy are then denoted as super-stable. Unfor-
tunately, it is computationally intensive and difficult to enforce and
test such conditions on the Hessian. In our framework, we instead
employ a well-known relation of stability from rigidity, that allows
us to work with the positions of the elements alone. See Section 4
for details. Our work is the first computational method that uses
these well-known position-based conditions to design tensegrity
structures, bypassing these computationally challenging Hessian
conditions altogether.

For clarity and brevity, we refer to stability (see Sec. 4.2) in lieu of
what traditional force-based methods (e.g., [Tibert and Pellegrino
2011; Zhang and Ohsaki 2006, 2007]) denote as super-stability, since
tensegrity structures that are only in an unsteady equilibrium are
not useful for any practical purpose.

Form Finding. Different form-findingmethods for tensegrity struc-
tures have been investigated by the mechanical engineering com-
munity; a systematic review is in [Tibert and Pellegrino 2011]. One
of the conventional approaches for finding an equilibrium config-
uration is to find a set of force-density values that ensures a valid
spatial configuration. Examples are the adaptive force-density meth-
ods described in [Estrada et al. 2006; Zhang and Ohsaki 2006]. These
solutions are purely algebraic, and lead to effective algorithms that
can deform struts and cables from an initial configuration into a sta-
ble configuration. However, they can introduce arbitrarily large de-
formations, deviating significantly from an initial prescribed shape.
This makes them difficult to use in the paradigm of computational
design. Our formulation sidesteps modeling forces, preferring a di-
rect geometric approach that leads to much smaller displacements
and superior user control (Figure 4). Our algorithm offers direct
control over the approximation from a given shape, and obtains
results that reflect the designer input much better.

Connectivity Design. The problem of finding the connection pat-
terns of a struts and cables so that they could fit a given shape is the

central requirement for creatively designing tensegrities. In [Tachi
2013], the authors present an approach that generates a tensegrity of
a given polygon mesh surface using a direct face-by-face conversion
driven by a predefined pattern; the positions of the nodes of this
structure are then optimized to obtain an equilibrium state through
a two-step optimization of both node coordinates and force densities.
A modular approach was introduced in [Gauge et al. 2014], where
the authors present an interactive system to design tensegrities by
combining a predefined set of simple basic tensegrity blocks.
In [Paul et al. 2005], a genetic algorithm was used to create the

connectivity pattern by evolution. They encoded the initial positions
of the vertices, and the connectivity patterns, as the genotype. [Lobo
and Vico 2010] followed a similar approach, but explored the use
of more compact genotypes that can allow faster evolution. The
genetic approach was also used in [Gan et al. 2015], where both the
connectivity matrix and the prototype force density vector are gen-
erated by an evolutionary approach, starting only from the number
of nodes. A different evolutionary approach was presented in [Rief-
fel et al. 2009] where the authors propose a search technique based
on an L-system genotype to grammatically grow a graph represent-
ing tensegrity structure. In practice, none of these approaches offer
any feasible way to control the shape of the generated structure,
and therefore are not well-suited to support the design process like
our approach. Moreover, due to the intrinsic exponential nature of
genetic exploration, these approaches either have been tested only
on very small examples (less than 10 struts for the first three genetic
papers) or they generate (in the words of authors) semi-regular and
repetitive structures [Rieffel et al. 2009].
The approach for connectivity finding that is the most relevant

to the one we use in our framework is in [Ehara and Kanno 2010].
Their input is a pin-jointed structure with the specified locations of
nodes, and sufficiently many candidate edges to be labelled as either
cables or struts. The authors compute a labelling where they maxi-
mize the number of struts to adhere to the equilibrium condition
of the nodes. In addition, they adhere to the constraint of being a
tensegrity, i.e., no two struts share a node. Then, they solve a second
ILP problem to remove redundant cables, in a way that does not
compromise the stability. While we share some similarities in the
objectives and inputs, our approach is considerably different. We
introduce a form-finding step, and therefore do not need to solve
the tensegrity problem in its full generality merely by connectivity
finding. This decoupling allows us the freedom of catering to a wider
set of objectives and constraints in the structure, through our ILP
minimization process (see Section 5.1), and of including complex
criteria in the design specification, such as the avoidance of specified
regions of the space, the imposition of a minimal distance between
struts, and others.

Global Rigidity. Our work adopts the characterization of stabil-
ity from local rigidity. A much stronger structural requirement,
which is sometimes addressed in related work, is global, rather than
local, rigidity. In its general definition, a graph or a structure is
globally rigid when it admits only one embedding that satisfies the
constraints defined on the lengths of the elements, i.e., if it is not
possible to disassemble it and then reassemble it, connecting the

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:5

elements in the same topological way, in any different spatial con-
figuration. Recently, new conceptual tools have been introduced to
study and test global rigidity [Gortler et al. 2010], including ones
specifically for tensegrities [Connelly 2013], where the constraints
are defined as inequalities rather than equalities. Although it has
important applications, global rigidity is not a strict necessity for
structural design, and it is much more difficult to test or enforce; it
might even needlessly limit the design space. Therefore, we concen-
trate on the weaker, and more feasible, property of local rigidity.

4 DESIGNING TENSEGRITY STRUCTURES
We present a flexible framework for the design of tensegrity struc-
tures. Given an input shape, and an auxiliary set of practical geomet-
ric constraints, both prescribed by a designer, our pipeline computes
a stable tensegrity structure that approximates the intended shape
as much as possible, while adhering to the constraints.

Input shape. The designer can prescribe the input shape in several
ways: (1) provide a triangle mesh, that should contain the tensegrity
structure in its interior, or (2) provide a point cloud, and an accom-
panying collision mesh, to signal the algorithm to keep certain areas
free from struts and cables (Figure 12.a). The vertices of the mesh,
or the points of the cloud, are used as the initial endpoints to the
struts, and fed to our pipeline as seed vertices.

Geometric constraints. In many design scenarios, a tensegrity
must adhere to auxiliary geometric constraints other than stability.
These constraints can be quite general, like minimal distances be-
tween elements, coplanarity of a subset of the elements, and more.
We describe them in detail in Section 5.4.

Pipeline. Given the input and the constraints, our pipeline pro-
ceeds as follows (Figure 1):

(1) Use Connectivity Finding to initialize a tensegrity struc-
ture with a set of struts and redundant cables connecting
the given seed vertices (Section 5.1).

(2) UseConstrained FormFinding to enforce stability, while
simultaneously adhering to the auxiliary geometric con-
straints (sections 5.2 to 5.4).

(3) Perform Structure Simplification to remove redundant
cables (Section 5.5).

4.1 Internal Representation of the Structure
We model a tensegrity structure as a set of n nodes P = {p1 . . .pn },
representing the endpoints of the struts T = {t1, t1, t3 . . . }, and a
set of cables C = {c1, c1, c3 . . . } connecting them. Each node pi is
represented by its position pi = (xi ,yi , zi). Each strut in T and
cable in C is denoted by an unordered pair of node indices (i, j).
Node positions P implicitly determine the physical rest length of
the elements (struts and cables): this length (i, j) is defined by the
Euclidean distance between the two corresponding nodes pi ,pj ∈ P .
We call P = {p1 . . .pn } the shape of the structure. The space

of possible shapes is a 3n dimensional vector space. The distance
between two shapes Q and P is measured as the squared L2 norm
between the endpoint positions |Q − P |22 .

Connectivity Constraints. For a triplet (P ,T ,C) to represent a pure
tensegrity structure, all struts need be isolated from each other;
therefore, each node in P must belong to exactly one strut in T
(implying n to be even). There is a single element at most between
any pair of nodes, meaning that the sets T and C must be disjoint
(i.e. we disallow the superposition of a cable and a strut).

4.2 Stability from Rigidity
We use the well-known characterization of local rigidity (e.g. [Con-
nelly and Whiteley 1996; Roth and Whiteley 1981; Whiteley 1984]),
which is purely geometric, defined solely with the positions of the
endpoints and the connectivity, and without explicitly accounting
for forces or energy. Specifically, this bypasses the need to associate
sign-constrained, scalar force-density values to each strut and cable.

Given two sets of cables and struts T and C , we say that shape Q
is dominated by P , denoted as Q ⊆̇P , if and only if the positions in Q
do not prescribe any cable to be longer, nor any strut to be shorter,
than it is in P :

|qi − qj |2 ⩽ |pi − pj |2 ∀(i, j) ∈ C
|qi − qj |2 ⩾ |pi − pj |2 ∀(i, j) ∈ T

(1)

intuitively,Q ⊆̇P means that we could physically construct structure
(Q,T ,C), with nodes in positions Q , but with cables C and struts T
having rest-lengths as dictated by P , and that would abide to the
principle of incompressibility of struts and inextensibility of cables.
For (P ,T ,C) to be locally rigid, we need ensure that no Q with

Q ⊆̇P exists in a neighborhood of P . More formally, a structure
(P ,T ,C) is stable if and only if any shape Q in an open neighbor-
hood of P , such that Q ⊆̇P , is congruent (i.e., isometric) to P ; note
that the inequalities are then strict equalities.
An important observation is that this geometric condition is

much stronger than just requiring that no single node can be relo-
cated continuously around its current position, while the rest of the
nodes are kept fixed; we also require that no subset of nodes can be
simultaneously relocated into new positions near their current po-
sitions (unless this amounts to a global isometry). Examples of such
movements include the rigid movement of just one strut (without
elongation or shortening), or a situation where multiple, but not all,
struts perform a coordinated movement (i.e. a mechanism). In our
setting, we need to forbid any such movement as well.

5 PIPELINE STAGES
The stages of our pipeline alternate between discrete and continuous
optimizations, to handle different aspects of the highly-constrained
tensegrity design problem. Given an input shape from the designer,
we generate a initial, non-stable guess for the connectivity of the
tensegrity (Section 5.1). We define a stability testing algorithm (Sec-
tion 5.2) and subsequently use it to guide the form-finding process
(Section 5.3), which optimizes the positions of struts and cables
without changing the connectivity. Auxiliary geometric constraints
(Section 5.4) are used in the form-finding step to provide the de-
signer with an extended control over the result. Finally, the structure
is simplified, removing all redundant cables that do not contribute
to the stability, making the structure as lightweight as possible
(Section 5.5).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:6 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

5.1 Connectivity Finding
Our first step creates a graphG = (P ,E), encoding the initial connec-
tivity of the tensegrity, and devises the initial tensegrity structure
(P ,T ,C) from it, by labelling edges E as either cables or struts.

Initialization. Recall that we admit two types of inputs: point
clouds (with collision meshes to describe forbidden zones), and
triangle meshes (which restrict the tensegrity to their interior). We
assign the set P to be either the points of the cloud, or the vertices of
the mesh. In the former case, we assign E according to the k-nearest
neighbors of every vertex (k = 16 for the presented examples). In the
latter, we connect two vertices if there is a path of up to h polygonal
edges connecting them (h = 4 for the presented examples).

Pruning forbidden edges. The initialization can create edges that
pass through the prescribed forbidden zones. For triangle meshes,
we prune edges that pass outside of the mesh. For point clouds, we
prune those that intersect the provided collision mesh.

Assignment of struts and cables. Our next challenge is to partition
the edges E into the disjoint sets of strutsT and cablesC . We need to
adhere to the connectivity constraints of Section 4.1, therefore our
search space is that of all maximal matchings: for n vertices there
are exactly n/2 disjoint edges that are chosen as T , and all others
can be conservatively labeled as cables C . Note that this introduces
many cables, most of which might not be necessary for stability:
these cables are removed at the end of the pipeline (Section 5.5).
In addition to the connectivity constraints, we need to chose an

assignment ofT andC that favors stability. In general, no admissible
choice results directly in a stable (P ,T ,C) structure (as we empiri-
cally verified by exhaustively testing all possibilities for 100 random
graphs of 8 nodes). Even when one such choice exists, finding it
would be a difficult combinatorial problem. Fortunately, at this stage
we are only looking for an initial graph that can likely be morphed
into a stable structure in next stages (Section 5.3). We thus decouple
the problem of finding P from this step, where we only focus on T
and C .

Selecting T . We use an Integer Linear Programming (ILP) for-
mulation to address the matching problem. We associate a binary
variable vi j in {0, 1} to each edge (i, j), where vi j = 1 if the edge is
a strut, and vi j = 0 if it is a cable.

Connectivity constraints (Section 4.1) are enforced asn hard linear
constraints for each node:

∀i :
∑
j,i

vi j = 1. (2)

The following linear constraints are added, to favor stability and
to follow aesthetic or structural requirements:
(1) Cutting planes.We observe that, in any stable structure, any

plane that bisects the seed vertices into two non-empty sets
must be crossed by at least one strut. Otherwise, it would im-
possible to prevent “squeezing” of the structure perpendicularly
to the plane, and thus the structure cannot be made stable (see
Figure 6a–b). We sample a number of random planes pk , and
for each plane that partitions the seeds into two non empty
sets, we find the set of edges Ep crossing that plane. We add an
additional constraint to the ILP: ∀(i, j) ∈ Epk ,

∑
vi j ≥ 1.

(2) Avoiding struts on boundary. Another practical observation
is that struts are rarely helpful for stability if they are tangential
to the external surface, because they can only oppose com-
pression forces. We enforce this by disallowing edges on the
convex-hull to be labeled as struts.

(3) Minimal strut-to-strut distance. To avoid collisions, and for
aesthetic purposes, we ensure a minimal distance between struts
(Figure 6b–c). This will also be enforced in geometry optimiza-
tion stages later, but we impose this in the initial configuration
(so that smaller geometric displacements will be necessary later).
Given two edges (i0, j0) and (i1, j1) whose distance is below a
fixed threshold (we use 1/100 of diagonal of bounding box), we
impose that at most one of them can be a strut:vi0, j0 +vi1, j1 ≤ 1.

(4) Symmetries. Optionally, we can also add symmetry constraint
to impose the struts to be selected coherently with the class of
equivalence of the chosen symmetry (see Figure 7). For example,
if edge (i0, j0) is in a reflectional symmetry with (i1, j1) , we
impose vi0, j0 = vi1, j1 .

Next, we associate a coefficient si j ∈ R∗ to each edge (i, j), denot-
ing the likelihood of (i, j) to be a strut (again, after either structural
of aesthetic considerations), and then solve:

vi j = arдmax *
,

∑
i
vi jsi j+

-
(3)

Every choice of likelihood coefficient si j leads to visually different
structures, and this is the main aesthetic parameter of our method
(Figure 6). We propose four such choices:
(1) Minimal length.Minimizing length of struts with si j = − ���pi − pj

���
leads to lighter designs (Figure 6e).

(2) Maximal length. By choosing si j =
���pi − pj

���, we promote
longer struts. As such, structures tend to appear more heavyset
(Figure 6d).

(3) Normal orientation. We estimate the “normal” to a node by
averaging the normalized directions of its incident edges. We
give higher si j values to edges that are more oriented with
the normals at their nodes. Hence, si j = |de · ni | + ���de · nj

���
where de is the normalized direction the edge, and ni ,nj are
the normals at incident vertices. The effect is that struts tend
to cross through the volume more directly, rather than being
tangent to the structure (Figure 6c).

(4) Random. Assigning random si j values is another interesting
option, which allows to explore the large solution space, as well
as breaking undesirable symmetries (Figure 12a–c).

5.2 Stability Testing
We next introduce a procedure to determine if a given structure
(P ,T ,C) is stable (Section 4.2). Assume P is unstable, i.e. not locally
rigid [Roth and Whiteley 1981]. This means that there exists an
infinitesimal displacement of nodes of P toward state Q , such that
Q ⊆̇ P , and Q is not congruent to P . In our approach, we explicitly
search for such a displacement. Our search is guaranteed to find
one solution, if any exists. Therefore, we can declare our structure
as stable if the search fails.
This is, strictly speaking, too strong a condition: a locally rigid

structure could still permit an infinitesimal displacement, as can

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:7

Normal Orthogonality Maximal Length Minimal Length

(a) (b) (c) (d) (e)

Fig. 6. Examples of Connectivity Finding results, for three different choices of likelihood criterion, as reported on top. (a) only Connectivity constraints are
enforced; (b) Cutting-Planes constraints are added—three planes violating this constraints are shown in (a); (c-d-e) Minimal Strut-to-Strut Distance constraint
added—violations of this constraint are circled in (b).

non symmetric symmetric

Fig. 7. Stable structures obtained with and without rotational symmetry
constraint during the initialization (above: top view; below: side view).

be easily verified with specifically designed examples1; however,
such examples are rare in practice, and we found that this does not
impact the usability of our method.
We model this displacement as a set of per-node displacement

vectors D = {δ1 . . . δn }, describing the deformation qi = pi + t · δi ,
which is infinitesimal when t → 0.

Factoring out isometries. Global isometries are trivially permitted
transformations, so we need to first factor them out. For that, we
limit the search to displacements that preserve the center of mass
and the angular momentum of the structure. Any arbitrary distri-
bution of masses can be assumed for this purpose: we just assume

1 Consider the following structure: only four nodes A,B,C,D that are perfectly aligned
on a line; cables connect AB, BC, and CD; struts connect AD and BC (for the sake of
this example, we allow BC to be connected by both, against our constraints); the con-
figuration is actually rigid, yet an isolated rotation of BC around its center corresponds
to an admissible infinitesimal displacement, as B and C initial movement is orthogonal
to any cable or strut.

a constant mass to be concentrated at each node. In mathematical
terms, we only look for displacements D fulfilling:∑

i δi = (0, 0, 0)⊺∑
i δi × (pi − b) = (0, 0, 0)⊺, (4)

where b is the averaged positions of all nodes in P . Similar formula-
tions appear in, e.g., [Kilian et al. 2007]. Any arbitrary displacement
is composed of a displacement fulfilling (4), a global translation, and
a displacement field inducing a rotation around some axis passing
through b. The only isometric displacement fulfilling (Equation 4) is
the null displacement.

Searching for infinitesimal displacements. We are looking for non-
zero displacementsD that neither elongate cables, nor shorten struts,
as per Equation 1. If we find one, then the structure is not stable.
For this, the following well-known conditions (e.g.[Connelly and
Whiteley 1996; Roth and Whiteley 1981; Whiteley 1984]) on D must
hold:

(pi − pj)
⊺ (δi − δj) ⩽ 0 ∀(i, j) ∈ C

(pi − pj)
⊺ (δi − δj) ⩾ 0 ∀(i, j) ∈ T .

(5)

Putting together equations (4) and (5), we get a system of linear
inequalities, concisely represented as:

Mx ⩾ 0, (6)

where x is a column vector of 3n unknowns x = {δ1,δ2 . . . }, and
M is a sparse matrix with |T | + |C | (for Eq. 5) +4 (for Eq. 4) rows.

The space of solutions of Equation 6 is either only the origin, or
an unbounded hyperpyramid-shaped convex polytope centered at
the origin. We seek a non-zero solution, using an adaptation of LP,
as detailed in the following paragraph; if no such solution exists,
then the tensegrity is found to be stable. As a side effect to detecting
non-stabilty, we produce a permitted displacement D, which is a
crucial component in the following form-finding step.

Solving for Equation 6. Linear Programming (LP) is a well estab-
lished method for solving Equations of the type 6; it is known to be
extremely efficient in practice [Gamrath et al. 2016]. Unfortunately,
we cannot use LP in a straightforward manner, as we do not possess
a linear objective function, which is a requirement. Clearly, just
asking the distance of x from the origin to be maximized (in order
to produce a non-zero solution, if it exists), cannot be expressed

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:8 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

as a linear, or even convex, objective function. Instead, we adopt a
simple but effective randomized algorithm which works robustly in
practice.
We produce a random n-sized objective vector g (for goal), and

we solve a pair of LP problems, maximizing (g⊺x) and (−g⊺x) inde-
pendently. If either problem returns an unbounded growth direction
d, this d is our non-zero solution for (6); otherwise, we know there
is no such solution.
The rationale is as follows: it is obvious that, if the origin is

the only solution of (6), that both problems should produce the
origin as the optimum. Suppose that, conversely, some non-zero
solution s does exist. If (g⊺s) > 0, then the first objective function
is unbounded from above, under (6), and LP returns an unbounded
growth direction. If (g⊺s) < 0, then the second objective function
will be unbounded from above. The only other case is when (g⊺s) =
0 exactly, which, in any dimension, has a vanishing probability for
a randomly chosen vector g. This virtually never occurs in practice.
Note that we do not assume either g or −g to be direct solutions of
(6) (in most cases, neither is).

5.3 Form-Finding
Given an initial, and unstable structure (P0,T ,C), we wish to find a
stable structure (P ,T ,C) that is close to the original solution. That
is, d (P , P0) ⩽ τ for some user defined tolerance τ .

Algorithm. The algorithm is iterative, producing a sequence of
shapes Pi , starting from P0. Each iteration i comprises the following
steps:

(1) Test: is Pi stable (Sec. 5.2):
1.a: if so: end process with success, return Pi .
1.b: else: a morphing Di is produced from the stability test
(Sec. 5.2).

(2) Deform: Pi+1 = Pi +sDi , for some scalar s > 0 (see below).
(3) Test: is |Pi − P0 |2∞ ⩽ τ

3.a if so: i ← i + 1 , goto 1.
3.b else: end process with Failure.

Depending on the input, form-finding can either terminate with a
success, when the sought stable configuration is found, or a failure,
which is the only possible outcome when no stable configuration
exists within the required tolerance τ . Although we cannot guaran-
tee this algorithm to always succeed if there is a solution, it works
well in practice (see Sec. 6).

We offer the following intuitive explanation for this result: usually,
Pi+1 ⊆̇Pi . While this is guaranteed only for a sufficiently small s (in
rare cases, for no strictly positive value of s), it is approximately true
(i.e. most of the Equations 1 are fulfilled) for a much larger set of
values. The relationQ ⊆̇P can be understood as “Q is tighter than P”,
because cables are not longer, and struts are not shorter in Q than
in P , making Q more restrictive than P . The iterative process, then,
tends to be a progressive tightening of the structure, which is carried
on until the tolerance is exceeded (3.b), or no further tightening is
possible (1.a). The latter condition is equivalent to stability.
Ideally, in phase 1.b, we prefer to use solutions for Equation (6)

that are in the interior of the feasible space, rather than close on its
boundary. Unfortunately, our LP-based solver (Sec. 5.2) will produce
solutions that are exactly on the boundary. A simple countermeasure

is to repeat step 1 for a small number (in our experiments we used
4) of randomly generated g1..4. For each, we solve the LP problem
(Section 5.2), and average the solutions (because the feasible space
is convex, this yields a valid solution). In this way, the produced
solution Di tends to be in the interior of the feasible space.

The two parameters of this algorithm are the tolerance τ and step
size s . Using a smaller s requires more steps, but produces a smaller
overall displacement with respect to P0. For all our experiments, we
used τ = 0.2l and s = 0.002l , where l is the length of the diagonal
of the axis-aligned bounding box. The Form-Finding procedure
requires an average of 10–20 iterations in our experiments.

Connectivity Revision. When the form-finding procedure returns a
failure, it is a strong indication that the provided connectivity cannot
be converted into a stable tensegrity without significant changes in
its shape. Our strategy in this case is to revert to the connectivity-
finding step, and bias it towards finding a better starting point,
and subsequently redo the form-finding. We bias it by adding a
set of auxiliary constraints c = {c1, c2, . . .}, and alternating macro-
iterations between connectivity finding and form-finding, as follows.

For amacro iterationm, and given a selection of strutsT that failed
to reach stability in the previous macro iterationm−1, we begin with
a solution where all cables of the graph are equipped with dummy
coincident struts (temporarily violating connectivity constraints).
Let TD be the set of dummy struts added for the configuration T .
This produces a structure that is trivially stable, due to the excess
of struts.
Then, we start removing the dummy struts one by one, and col-

lecting them in an initially empty setTR . At every removal, we do a
form-finding step, until one fails to reach stability (which is bound
to happen before all struts in TD are removed, otherwise T would
not have failed). When we obtain the first failing configuration,
we know that at least one of the removed struts in TR is crucial
for the form-finding to reach stability. Thus, we add an additional
constraint to the ILP solver in the connectivity finding step, that
requires that at least one of TR must be a strut:

cm :=
∑

(i, j)∈TR

vi j ⩾ 1 (7)

Macro iterations are repeated until form-finding returns a success.
We exemplify this in Figure 8.

Final affine correction. The stability of tensegrity structures is
invariant under affine transformations [Roth and Whiteley 1981;
Zhang and Ohsaki 2015]. We exploit this to make the final result
P more similar to P0: when form-finding succeeds in finding P , we
compute the best-fitting affine transformation A3×3 by solving the
following quadratic least-squares problem:

argmin
A

|P0 −A(P) |
2
2 , (8)

and substitute P with A(P). Note that no translational component
needs be included in A3×3, since our algorithm factors out rigid
motions and preserves the center of mass. An example of the effect
of the affine correction can be observed in Figure 9.

Discussion. Form-finding is the central step of our pipeline, and
it dramatically simplifies the design of stable tensegrities. Equipped

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:9

initial step 1 step 2 step 3 final step

Fig. 8. Exploring the space of possible connectivities that leads to a stable configuration after 11 steps. For each step, the set c of additional hard constraints is
shown in Red, while the green strut is the one inserted in the stepm + 1 to accommodate the constraint cm defined on a previous step.

δ = 0.11, ∆ = 0.14 δ = 0.06, ∆ = 0.09
(a) (b) (c)

Fig. 9. The effect of affine correction: (a) The tensegrity before form-finding;
(b) Stable tensegrity without affine correction step; (c) Stable tensegrity
with affine correction step; refer to Fig. 4 for the meanings of δ, ∆.

with it, the other steps are exempt from providing exactly stable
configurations. Empirically, we found that form-finding succeeds for
a wide variety of initial structures of many shapes (e.g. Fig. 11 and
many other thought this article), with little visual difference between
the original configuration P0 and the final result P . That in itself
brings out an important insight: stable and unstable configurations
can appear visually similar and can be difficult to discriminate by
visual inspection alone (see for example Figures 1, 4, 9, or 13); this
is one reason why tensegrity structures are especially difficult to
design manually.

5.4 Geometric Constraints
This step complements the form-finding, by making the tensegrity
structure adhere to auxiliary geometric constraints on a given stable
configuration P , while maintaining stability. Our position-based
framework can easily accommodate any constraint that can be
expressed as a geometric condition on the position of the nodes.
This is intended mainly to recover geometric conditions that are lost
by the form-finding. We therefore assume that the sought conditions
are approximately satisfied in the initial structure.

Algorithm. We employ an alternating algorithm: constraint pro-
jection, where we directly enforce the constraints on P , while mini-
mizing the total squared amount of applied displacement. This is
followed by a form-finding step (Section 5.3) to recover stability.
The process is repeated until convergence, i.e. until the constraints-
projected structure is stable prior to the form-finding step. While
this process is not guaranteed to converge, we empirically found it

to do so in less than 5 iterations in all our experiments (Figure 10).
We can accommodate the following classes of constraints:

(1) Minimal distance, enforced between pairs of struts.
(2) Coplanarity of a subset of nodes, which can be useful for

mounting a flat panel on top of them (Figure 10e).
(3) Original face-shape preservation: this is achieved by finding

the best rigid alignment of the original face geometry to the
current one (Figure 10f).

(4) Forbidden zones: the struts and cables are moved out of the
forbidden zones prescribed by the designer in Section 5.1 (Figure
12a).

These constraints are imposed using a local-global approach, in
the manner of [Bouaziz et al. 2012].

5.5 Structure Simplification
In this step, we remove all redundant cables from a stable structure,
while keeping it stable.

Algorithm. Starting from a stable structure, we tentatively remove
cables one after the other. After each removal, we test the structure
for stability. If the structure is then unstable, the cable is labeled
as indispensable and returned to the structure, and never tested
again during the simplification. This means that each cable needs
be tested for removal only once. Note that the removal of cables
cannot violate any connectivity constraint (Section 4.1).

The removal order may significantly affect the final result, as the
removal of one cable can make another cable indispensable. We
adopt a simple strategy, based on valency: at each step, we test for
removal the unlabelled cable with the largest number of surviving
adjacent cables. Ties are resolved in favor of the longer cable. In our
experiments, this leads to balanced structures with little clutter.

Discussion. Compare Figure 1 (d) and (e) for an example of a
simplification process. This step allows us to use structures with
an excess of cables in all previous steps; this eases the search for
valid connectivites, and increases the robustness of the form-finding,
since it increases the solution space. In this way, we are exempt
from the otherwise difficult task of identifying the exact cables
required tomake the structure stable before the form-finding. On the
other hand, the simplification step is time consuming. To ameliorate
performances, we adopt the following two improvements.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:10 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

γ = 0, Γ = 0 γ = 0.013, Γ = 0.011 p = 0, P = 0 p = 0.07, P = 0.12 p ≈ .0, P ≈ 0 p ≈ 0, P ≈ 0
r = 0, R = 0 r = 0.04, R = 0.06 r = 0.016, R = 0.03 r ≈ 0, R ≈ 0

(a) (b) (c) (d) (e) (f)

Fig. 10. Effects of geometric constraints on the form-finding procedure. A simple (and already stable) sphere model (a) is stabilized again (b) enforcing minimal
distance between struts. An initial “hypercube” model (c) is made stable: without any constraint (d); enforcing face planarity (e); additionally enforcing
face-shape preservation (f). The structures (d), (e) and (f) are also simplified; γ and Γ are the average and minimum distance between any strut and its closest
one; p and P are the average and worst planarity value of constrained faces, computed as the distance from the best fitting plane; r and R are the average and
maximum distance to the rigidly aligned original polygon. Distances are expressed as fractions of the bounding box of the structure.

Adaptively delayed stability check. To reduce the computational
cost, we perform a stability test only once every k consecutive
tentative removals. If stability is maintained, we finalize all of them;
otherwise, we reverse them, and try again with a smaller k (until
k = 1, then we label the tested cable as indispensable and move on,
as before). Specifically, we start with k = 1, quadruple it every time
a removal attempt is successful, and we divide it by 4 otherwise.

Fast single-cable test. When a single cable (i, j) is tested for re-
moval, the stability test can be made more efficient; only one LP
problem needs to be solved instead of two, using (δj − δi) as the
coefficients of the linear objective function. In other words, if the
system, once cable (i, j) is removed, is still unable to pull nodes pi
and pj further apart, then cable (i, j) is redundant.

6 EXPERIMENTAL RESULTS
We test our framework by designing a variety of stable tensegrities,
starting from both polygonal surfaces and point clouds. We show
a few models that we used to test the ability of the framework to
generate coherent results for different variations of initial shapes in
Figure 11, as a typical part of the artistic design process. Figure 17
(right) illustrates how our framework readily handles complex in-
puts both in terms of node numbers (> 100), and of initial geometry
(not homeomorphic to a sphere, and with thin parts). Numerical
details about the presented structure are found in Table 1.

6.1 Empirical validation
We empirically validate the generated structures in three ways as
listed below.

Accordance with pre-stress based methods. We empirically verify
that all the stable structures built with our framework are also
“super-stable” according to the definition of [Zhang andOhsaki 2007].
This requires solving for a valid set of per-element pre-stresses
(which are not needed in our pipeline); we successfully did this for
each of our results, using a variation the method proposed in [Zhang
and Ohsaki 2015]; more details are provided in Section 6.4. Note
that finding a pre-stress a-posteriori, over an already valid graph

Table 1. Tensegrity design statistics: model name, number of nodes, type of
edge initialization (↷ is h-path connected, and ∗ uses k-closest, see Section
5.1), resulting number of edges, presence of a collision mesh (see Section
4), enforcement of symmetry constraints (see Section 4.1), final number of
struts and cables, illustrating figure(s), and total computation time.

nodes edge edges struts cables
model |P | init. |E | coll. sym. |S | |C | figure time

arc A 30 ↷ 266 15 78 1 30 s
arc B 84 ↷ 1150 42 245 11.a 124 s
arc C 56 ↷ 569 28 144 11.b 58 s
arc D 84 ↷ 1075 42 281 11.c 57 s
arc E 56 ↷ 534 28 147 11.d 68 s

24 ∗ 228 12 76 10.d 30 s
hyper-cube 24 ∗ 228 12 103 10.e 42 s

24 ∗ 228 12 73 10.f 45 s
dolphin 52 ↷ 26 354 13.a(r) 2 s
torus 32 ↷ 200 16 105 13.b(r) 10 s

sphere-7 14 ∗ 91 7 30 5(l) 21 s
triple-arc A 48 ↷ 523 24 168 7(l) 72 s
triple-arc B 48 ↷ 523 ✓ 24 146 5(r),7(r) 64 s
chair A 28 ↷ 256 ✓ 14 84 12 (r) 5 m
chair B 28 ↷ 256 ✓ 14 87 12 (l) 3 m
chair C 28 ↷ 256 ✓ 14 72 12 (c) 3 m
bridge 80 ∗ 2432 ✓ 420 226 15 (r) 25 m
dogfight 50 ∗ 672 5 69 16 10 m
twirl 124 ↷ 1980 62 611 17 (r) 12 m
knot 240 ↷ 2983 120 728 17 (l) 82 m

is much easier, as the position of the nodes and the verse of the
forces (inward for cables, outward for struts) are already known.
The computed forces can also be used in any scenario requiring a
pre-stress over each element (e.g. physical realization). However
there is no formal proof that infinitesimal rigidity is equivalent to
super-stability as defined by Zhang and Ohsaki [2007].

Physical simulation. We test the stability of our structures by
using a physically-based simulation. The simulation is based on
Position-Based Dynamics [Müller et al. 2007], in which reaction

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:11

Fig. 11. An array of different arches designed with our pipeline, initiated with polygonal meshes of various shapes and dimensions. Our pipeline preserves
well the input arch shapes, while enforcing stability.

(a) (b) (c) (d)

Fig. 12. Three variations on a “tensegrity chair”, obtained from the same input mesh (on the left) and collision mesh (in red) to keep the seating area free. The
variations are obtained for various choices of connectivity-finding parameters: normal orientation, random, and maximal total length (Section 5.1).

(a) (b)

Fig. 13. Two frames from the simulation shown in the video: (a) The dolphin on the left is the result of our entire pipeline, the one on the center has not been
optimized for stability (skipping the form-finding phase), and the last one has been initialized without the separating plane constraint (and consequently not
optimized for stability). Even though the last model has many more cables than the others, it is the weaker one. (b) A comparison showing an optimized torus
(left) versus a non-optimized one (right), which partly collapses.

forces from rigid objects are not explicitly modeled; instead, node
positions are reprojected so to adhere to hard positional constraints
(e.g. non intersection with the ground); the updates of positions im-
ply velocity changes. In our simulation, the positional constraints for
internal reaction forces abide exclusively to the principles of Tenseg-
rity: we impose that the length of all cables/struts are bounded
above/below by their rest (i.e. initial) length (Eq. 1). Every other
deformation is allowed. Note that we allow the extension of struts,
even if this is counterintuitive; this is done to factor out the resis-
tance of the strut to extension, which we do not rely on (Section 2).

To test a given structure, we simulate two scenarios: we apply
a random load to its nodes; we drop it from an height and let it
hit the ground at random angles. We verified that, as expected,
all structures produced by our framework behave rigidly, while
structures that are not optimized for stability deform visibly, or
even collapse (see attached video and Figure 13).

Physical Validation. We also manually assembled physical real-
izations of three of our designs (see Figures 1 and 5), and verified
their ability to stay rigid in presence of external stress, confirming
the validity of our framework. In particular, the two models shown
in Figure 5 are made of stainless steel tubes (diameter 60 mm) and

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:12 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

Fig. 14. Top: The rigidity of our structures allows a person to climb on them
without introducing deformations. Bottom: The metallic components and
labelling used for assembly.

steel cables (diameter 4 mm). As expected, these structures are not
only rigid but also extremely sturdy (Figure 14, top). The bigger
one (24 tubes, 145 cables) weights about 130 kg and is 2.3 m tall;
its construction required approximately one week. Detail are as
follows (Figure 14, bottom). We drilled one hole at a tube extremity
for each incident cable; the hole position was computed by carefully
taking into account the insertion angle and the tube width. Bent
bolts were inserted in the holes, and cable ends were secured to
them with threaded cable terminals. Pre-stress was added by using
tensioners in each cable. Because of the difficulties of accurately
reproducing forces, we did not use the values we computed using
[Zhang and Ohsaki 2015]; instead, we applied a simple and intu-
itive procedure: we progressively tightened the tensioners manually,
until the structure reached full rigidity.

6.2 Tweaking the Tensegrity Pipeline
Our main pipeline (Section 4) can also be modified to handle varia-
tions of the tensegrity design problem, as follows.

Removing tension from a truss structure. Given a truss, i.e., a struc-
ture made of welded struts which relies on both compression and
tension forces from the struts for stability, we want to secure trusses
to a small number of cables, so that the stability of the structure
can be guaranteed when only the cables sustain the tension. That is,
not considering the resistance of the struts to tension, as per our as-
sumptions. To tackle this problem, it is sufficient to initialize a graph
by adding cables between the endpoint of the struts (Section 5.1),
and then perform a step of structure simplification (Section 5.5).

(a) (b)

(c) (d)

Fig. 15. (a) An inputwelded truss bridge, held stable by both the compression
and tension forces of its 420 struts (b) Removing tension forces, the bridge
is no longer stable. (c) A set of 226 cables, identified by our system, is added,
obtaining a “compression-only truss”, where all tension forces are delegated
to cables (no cable is allowed in the red volume visible in (a), which is
provided as an input to prescribe a free passage through the bridge); (d) As
a stress test, the resulting object is dropped on the ground in a simulation,
but it sustains the impact without deforming (see attached video).

In this setup, the tensegrity connectivity constraints are ignored,
as struts must be connected to each other. This is demonstrated in
Figure 15, and in the video.

Designing a supporting tensegrity structure for an installation.
Given a set of rigid, sturdy objects, each coming with a set of “at-
tachment points” where cables can be secured, we want to design a
supporting tensegrity structure. This structure, consisting of a few
struts connected by cables, should be capable of keeping the instal-
lation in mid-air, in a prescribed 3D spatial arrangement. We want
the objects to be held in their place exclusively by cables connecting
pairs of attachment points on different models, and/or endpoints of
the struts. To address this task, we construct a graph with a node
for each attachment point of each object at its designated place, and
we add five extra struts connecting random points of an enclosing
bounding sphere of the scene. To recreate the sturdiness of the ob-
jects, we add both a “virtual” cable and a “virtual” strut between
each pair of attachment points of the same model, thus making it
fully rigid (in this setup, the normal connectivity constraints are
disregarded). Then, we proceed as usual: we populate the scene with
cables, apply form-finding to achieve stability, and finally use struc-
ture simplification to remove redundant cables. During this process,
we treat the 3D models of the input objects as collision objects (to
avoid cables or struts to traverse them), and we enforce the shapes
and sizes of the original models as auxiliary geometric constraints,
to ensure that they are not deformed by the form-finding process.
A result is shown in Figure 16.

6.3 Timings
The processing times vary considerably between different models,
but are well within a reasonable range for interactive processing
with medium-sized structures (six to a few hundreds nodes). The
most time-consuming step is structure simplification, as the number

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

Position-Based Tensegrity Design • 172:13

Fig. 16. A “tensegrity support structure” automatically designed by our
system keeping ten rigid toy planes in a prescribed spatial configuration.

of stability tests is proportional to the number of cables. Neverthe-
less, with the batch removal improvement, this phase takes only
a few minutes for most models (Table 1). For the most complex
structure, the knot of Fig. 17, the overall process took 82 minutes;
tests were performed on a 2.3 GHz Intel Core i7 with 8Gb and we
used SCIP [Gamrath et al. 2016] for the ILP problem.

6.4 Direct comparisons with alternatives
With Adaptive Force-Density Method. As mentioned in Section 3,

the task of making existing structures stable has a rather established
solution based on the adaptive force-density method [Zhang and
Ohsaki 2006]. This process of form-finding deforms (if needed) the
input structure so that they become super-stable (according to the
definition in [Zhang and Ohsaki 2006]). This requires an initializa-
tion of “prestress forces” ti j to each element, which is hard to do,
yet essential to the task. The direction of these forces, relative to the
respective element, is determined from a preprocessed labelling of
the graph edges as cables or struts. This preprocess is not directly
addressed in [Zhang and Ohsaki 2006], and so, for comparison pur-
poses, we used our connectivity-finding procedure (Section 5.1).
We compute the magnitudes of the forces by solving the force sys-
tem for equilibrium, under the condition that ti j ⩽ −α for each
strut, and ti j ⩾ α for each cable, for a given α > 0. This avoids
the convergence to the degenerate solution, where all prestresses
are zero. This form-finding process, when applied to non-stable
structures, deforms the input shape in an unpredictable way. See
the comparison in Figure 4.

With [Tachi 2013]. We provide a direct comparison with the de-
sign system proposed by [Tachi 2013] in Figure 18. For a fair com-
parison, we generated both results automatically, without exploiting
any interactive feature. Our framework is able to adhere to the input
shape and graph and without increasing its complexity (resulting in

Fig. 17. Two tensegrities constructed from initial complex geometric models.

Fig. 18. The same input model is converted into a tensegrity using [Tachi
2013] (left) and with our algorithm (right).

fewer than one third of the struts being used: 15 vs. 55). Moreover,
[Tachi 2013] is not guaranteed to produce stable configurations; in-
deed, the shown example by [Tachi 2013] is not stable, and cannot be
made stable using form-finding (we tried using both our algorithm
and [Zhang and Ohsaki 2006]).

7 CONCLUSIONS
We proposed a novel and flexible framework for the computational
design of tensegrity structures, which includes a fully automatic
pipeline ranging from connectivity optimization, through form find-
ing, to enforcing auxiliary geometric constraints. This allows the
exploration of the highly-constrained space of tensegrity structures.
In the following we address a few limitations and sketch directions
for future research.

Stronger rigidity conditions. In our work we optimize for local
(infinitesimal) rigidity only. This guarantees stability, i.e. that the
object cannot deform continuously. This is guaranteed as the struts
and the cables are perfectly incompressible/inextensible, and exert
internal forces that always negate external forces.

Nevertheless, the continuous deformation assumption is only an
approximation in real-world settings: small elastic deformations
occur in response to sudden external forces, and the physical object
briefly goes through a non-admissible state, potentially ending up
in an different admissible state; we have no way to predict if the
resulting state would also be locally rigid. Because of this, an object
that is deemed stable in our system may not be robustly rigid in

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

172:14 • Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni

practice. Our physical experiments and empirical simulations, how-
ever, strongly indicate that this infinitesimal approximation works
well in practice.

A systematic way to handle the problem, in the context of our
work, is to adopt a stronger condition for rigidity, experimenting
with deformations that are small but are no longer assumed to be
infinitesimal. While still a weaker condition than global rigidity,
this problem appears, mathematically and algorithmically, more
challenging. We plan to address it in the near future.

Physical construction. In our experience (see Section 6.1), the com-
plexity of designed structure makes their assembly a daunting task.
With many pieces, we encountered a number of practical problems,
pertaining to both maintaining a partial structure in correct shape,
and understanding the correct order of progression. Previous works
about tensegrity assembly are limited to the actual construction
of very simple designs, or exploit regular and modular structures,
which allow independent construction of their parts. In the future,
we plan to computationally assist the assembly process.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for the many insights
and suggestions. We thank the many colleagues and friends who
helped us during the fabrication process: Luigi Malomo, Marco Cal-
lieri, Gaia Pavoni, Federico Ponchio, Manuele Sabbadin, Gianpaolo
Palma, Matteo Dellepiane, Massimiliano Corsini, Marco Potenziani,
Francesco Banterle, Lorenzo Della Rovere, Pietro Cignoni (for their
hard work in assembling the structure), Mauro Voliani, Federico Par-
dini and FabioMicheletti (for cutting and drilling), Roberto Scopigno,
Claudio Montani and Domenico Laforenza (for allowing to place
the structure in the main garden), and finally Margherita Cignoni
(for fearlessly testing the structure).

REFERENCES
Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.

Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31,
5 (Aug. 2012), 1657–1667. DOI:http://dx.doi.org/10.1111/j.1467-8659.2012.03171.x

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-aligned
Mesh Joinery. ACM Trans. Graph. 33, 1, Article 11 (Feb. 2014), 12 pages. DOI:
http://dx.doi.org/10.1145/2537852

Robert Connelly. 2013. Tensegrities and Global Rigidity. Springer New York, New York,
NY, 267–278. DOI:http://dx.doi.org/10.1007/978-0-387-92714-5_21

Robert Connelly andWalterWhiteley. 1996. Second-order rigidity and prestress stability
for tensegrity frameworks. SIAM J. on Discrete Mathematics 9, 3 (1996), 453–491.

Fernando de Goes, Pierre Alliez, Houman Owhadi, and Mathieu Desbrun. 2013. On the
Equilibrium of Simplicial Masonry Structures. ACM Trans. Graph. 32, 4, Article 93
(July 2013), 10 pages. DOI:http://dx.doi.org/10.1145/2461912.2461932

Shintaro Ehara and Yoshihiro Kanno. 2010. Topology design of tensegrity structures
via mixed integer programming. Int. J. of Solids and Structures 47, 5 (2010), 571–579.

G Gomez Estrada, H-J Bungartz, and Camilla Mohrdieck. 2006. Numerical form-finding
of tensegrity structures. Int. J. of Solids and Structures 43, 22 (2006), 6855–6868.

Gerald Gamrath, Tobias Fischer, and Tristan Gally et al. 2016. The SCIP Optimization
Suite 3.2. Technical Report 15-60. Zuse Institute, Berlin.

Buntara Sthenly Gan, Jingyao Zhang, Dinh-Kien Nguyen, and Eiji Nouchi. 2015. Node-
based genetic form-finding of irregular tensegrity structures. Computers & Structures
159 (2015), 61–73.

Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. In-
teractive Design of Modular Tensegrity Characters. In Proc. of the ACM Symp.
on Computer Animation (SCA ’14). ACM, Eurographics Association, 8. http:
//dl.acm.org/citation.cfm?id=2849517.2849539

Steven J Gortler, Alexander D Healy, and Dylan P Thurston. 2010. Characterizing
generic global rigidity. American J. of Mathematics 132, 4 (2010), 897–939.

Ariel Hanaor. 2012. Debunking Tensegrity - A Personal Perspective. Int. J. of Space
Structures 27, 2-3 (2012), 179–183. DOI:http://dx.doi.org/10.1260/0266-3511.27.2-3.
179 arXiv:http://dx.doi.org/10.1260/0266-3511.27.2-3.179

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. 2012. Crdbrd: Shape Fabrication
by Sliding Planar Slices. Comput. Graph. Forum 31, 2pt3 (May 2012), 583–592. DOI:
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x

Sergi Hernandez Juan and Josep M Mirats Tur. 2008. Tensegrity frameworks: static
analysis review. Mechanism and Machine Theory 43, 7 (2008), 859–881.

Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. 2007. Geometric Modeling in
Shape Space. ACM Trans. Graph. 26, 3, Article 64 (July 2007). DOI:http://dx.doi.org/
10.1145/1276377.1276457

Kurilpa Bridge. 2009. (2009). http://www.arup.com/projects/kurilpa_bridge.
Yang Liu, Hao Pan, John Snyder, Wenping Wang, and Baining Guo. 2013. Computing

Self-supporting Surfaces by Regular Triangulation. ACM Trans. Graph. 32, 4, Article
92 (July 2013), 10 pages. DOI:http://dx.doi.org/10.1145/2461912.2461927

Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping
Wang. 2011. General Planar Quadrilateral Mesh Design Using Conjugate Direction
Field. ACM Trans. Graph. 30, 6 (Dec. 2011), 10. DOI:http://dx.doi.org/10.1145/
2070781.2024174

Daniel Lobo and Francisco J Vico. 2010. Evolutionary development of tensegrity
structures. Biosystems 101, 3 (2010), 167–176.

Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable
Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages.
DOI:http://dx.doi.org/10.1145/2897824.2925978

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. J. of Visual Communication and Image Representation 18, 2 (2007),
109–118.

Needle Tower. 1968. (1968). http://www.kennethsnelson.net/.
Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing Unrein-

forced Masonry Models. ACM Transactions on Graphics (proc. of ACM SIGGRAPH)
32, 4 (2013), 91:1–91:12.

Chandana Paul, Hod Lipson, and Francisco J Valero Cuevas. 2005. Evolutionary form-
finding of tensegrity structures. In Proc. of the 7th annual conf. on Genetic and
evolutionary computation. ACM, 3–10.

Nico Pietroni, Davide Tonelli, Enrico Puppo, Maurizio Froli, Roberto Scopigno, and
Paolo Cignoni. 2015. Statics Aware Grid Shells. Computer Graphics Forum 34, 2
(2015), 627–641.

András Recski. 2008. Combinatorial Conditions for the Rigidity of Tensegrity Frameworks.
Springer Berlin Heidelberg, Berlin, Heidelberg, 163–177. DOI:http://dx.doi.org/10.
1007/978-3-540-77200-2_8

John Rieffel, Francisco Valero-Cuevas, and Hod Lipson. 2009. Automated discovery
and optimization of large irregular tensegrity structures. Computers & Structures 87,
5 (2009), 368–379.

Ben Roth and Walter Whiteley. 1981. Tensegrity frameworks. Trans. of the American
Mathematical Society 265, 2 (1981), 419–446.

Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware Design with Intersecting
Planar Pieces. Computer Graphics Forum (proc. of Eurographics 2013) 32, 2 (2013),
317–326.

Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015.
Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6,
Article 224 (Oct. 2015), 7 pages. DOI:http://dx.doi.org/10.1145/2816795.2818128

Tomohiro Tachi. 2013. Interactive Freeform Design of Tensegrity. In Advances in
Architectural Geometry 2012. Springer, 259–268.

Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut
Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans.
Graph. 33, 4, Article 70 (July 2014), 9 pages. DOI:http://dx.doi.org/10.1145/2601097.
2601213

AG Tibert and Sergio Pellegrino. 2011. Review of form-finding methods for tensegrity
structures. Int. J. of Space Structures 26, 3 (2011), 241–255.

Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012.
Design of Self-supporting Surfaces. ACM Trans. Graph. 31, 4, Article 87 (July 2012),
11 pages. DOI:http://dx.doi.org/10.1145/2185520.2185583

Walter Whiteley. 1984. Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans.
of the American Mathematical Society 285, 2 (1984), 431–465.

Walter Whiteley. 1989. Rigidity and Polarity. 2. Weaving lines and Tensegrity Frame-
works. Geometriae Dedicata 30, 3 (1989), 255–279.

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of
Structurally-sound Masonry Buildings. ACM Trans. Graph. 28, 5, Article 112 (Dec.
2009), 9 pages. DOI:http://dx.doi.org/10.1145/1618452.1618458

Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Durand. 2012.
Structural Optimization of 3D Masonry Buildings. ACM Trans. Graph. 31, 6 (2012),
159:1–159:11.

JY Zhang and M Ohsaki. 2006. Adaptive force density method for form-finding problem
of tensegrity structures. Int. J. of Solids and Structures 43, 18 (2006), 5658–5673.

JY Zhang and M Ohsaki. 2007. Stability conditions for tensegrity structures. Int. J. of
Solids and Structures 44, 11 (2007), 3875–3886.

Jing Yao Zhang and Makoto Ohsaki. 2015. Tensegrity Structures. Vol. 6. Springer Japan.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 172. Publication date: November 2017.

http://dx.doi.org/10.1111/j.1467-8659.2012.03171.x
http://dx.doi.org/10.1145/2537852
http://dx.doi.org/10.1007/978-0-387-92714-5_21
http://dx.doi.org/10.1145/2461912.2461932
http://dl.acm.org/citation.cfm?id=2849517.2849539
http://dl.acm.org/citation.cfm?id=2849517.2849539
http://dx.doi.org/10.1260/0266-3511.27.2-3.179
http://dx.doi.org/10.1260/0266-3511.27.2-3.179
http://arxiv.org/abs/http://dx.doi.org/10.1260/0266-3511.27.2-3.179
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x
http://dx.doi.org/10.1145/1276377.1276457
http://dx.doi.org/10.1145/1276377.1276457
http://dx.doi.org/10.1145/2461912.2461927
http://dx.doi.org/10.1145/2070781.2024174
http://dx.doi.org/10.1145/2070781.2024174
http://dx.doi.org/10.1145/2897824.2925978
http://dx.doi.org/10.1007/978-3-540-77200-2_8
http://dx.doi.org/10.1007/978-3-540-77200-2_8
http://dx.doi.org/10.1145/2816795.2818128
http://dx.doi.org/10.1145/2601097.2601213
http://dx.doi.org/10.1145/2601097.2601213
http://dx.doi.org/10.1145/2185520.2185583
http://dx.doi.org/10.1145/1618452.1618458

	Abstract
	1 Introduction
	2 Background and overview
	2.1 Rigidity and Stability

	3 Related Work
	4 Designing Tensegrity Structures
	4.1 Internal Representation of the Structure
	4.2 Stability from Rigidity

	5 Pipeline Stages
	5.1 Connectivity Finding
	5.2 Stability Testing
	5.3 Form-Finding
	5.4 Geometric Constraints
	5.5 Structure Simplification

	6 Experimental Results
	6.1 Empirical validation
	6.2 Tweaking the Tensegrity Pipeline
	6.3 Timings
	6.4 Direct comparisons with alternatives

	7 Conclusions
	Acknowledgments
	References

