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Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

G. Canu

Institute for Energetics and Interphases,

National Research Council, I-16149 Genoa, Italy

J. Petzelt

Institute of Physics, Academy of Sciences of the Czech Republic,

Na Slovance 2, 182 21 Praha 8, Czech Republic

(Dated: March 25, 2016)

Abstract

Glassy freezing dynamics was investigated in BaZr0.5Ti0.5O3 (BZT50) ceramic system by means

of dielectric spectroscopy in the frequency range 0.001Hz - 1 MHz at temperatures 10 K < T <

300 K. From measurements of the quasistatic dielectric polarization in bias electric fields up to

∼ 28 kV/cm it has been found that a ferroelectric state cannot be induced, in contrast to the case

of typical relaxors. This suggests that—at least for the above field amplitudes—BZT50 effectively

behaves as a dipolar glass, which can be characterized by a negative value of the static third order

nonlinear permittivity. The relaxation spectrum has been analyzed by means of the frequency-

temperature plot, which shows that the longest relaxation time obeys the Vogel-Fulcher relation

τ = τ0 exp[E0/(T − T0)] with the freezing temperature of 48.1 K, whereas the corresponding value

for the shortest relaxation time is ∼ 0 K, implying an Arrhenius type behavior. By applying a

standard expression for the static linear permittivity of dipolar glasses and/or relaxors the value

of the Edwards-Anderson order parameter q(T ) has been evaluated. It is further shown that q(T )

can be described by the spherical random bond-random field model of relaxors.

PACS numbers: 77.22.-d, 77.22.Ej, 77.22.Gm, 77.84.Cg
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I. INTRODUCTION

Relaxor ferroelectrics (relaxors) have long been attracting considerable attention in view

of a number of special physical properties [1]: (i) broad frequency dependent peak in the

complex dielectric permittivity; (ii) absence of spontaneous polarization and of global sym-

metry breaking down to lowest temperatures; (iii) clustering of elementary dipolar entities

giving rise to polar nanoregions (PNRs), which appear at relatively high temperatures; (iv)

broad distribution of relaxation times and divergence of the longest relaxation time, leading

to ergodicity breaking and hence to freezing phenomena; (v) a field-induced ferroelectric

state can be achieved by cooling in a sufficiently high electric field along one or more sym-

metry directions. It should be noted that the features (i)-(iv) also apply to a group of closely

related disordered systems known as dipolar glasses; however, the feature (v) is an inherent

property of relaxors, and could thus be used to discriminate between relaxors and dipolar

glasses in marginal cases. In fact, relaxors can exibit either dipolar glass or ferroelectric

nature depending whether they are studied below the critical field line Ec(T ) or above [2].

The oldest and probably most widely studied relaxor is the disordered perovskite

PbMg1/3Nb2/3O3 (PMN) [3], but a vast number of other systems have been described over

the years [4, 5]. Recently the mixed binary system Ba(Zr1−xTix)O3 (BZT) came into focus

for two main reasons: First, it is lead free and thus environmentally more acceptable for

possible applications, and second, it is isovalent in the sense that the ionic charges of Ti4+

and Zr4+ are the same. The latter feature suggests that random electric fields may be absent

(or are presumably minimal), thus bringing BZT conceptually close to the case of magnetic

spin glasses [6].

There have been several experimental investigations of BZT ceramics so far [7–17]. Maiti

et al. studied the structure of BZT for a number of compositions x and found that BZT is a

relaxor for 0.25 . x . 0.75 [8, 11]. Petzelt et al. [12, 13] carried out an extensive broadband

spectroscopy study of BZT and found that for a set of concentrations in the above range

the relaxation time follows the Arrhenius rather than the Vogel-Fulcher law, and concluded

that BZT should be classified as a dipolar glass rather than a relaxor. Similarly, Kleemann

et al. [15] studied the non-linear permittivity of BZT for 0.25 < x < 0.35 and described the
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crossover from ferroelectric to relaxor and cluster glass behavior.

In recent first-principles-based theoretical work Akbarzadeh et al. [18] investigated the

properties of BZT for the case x = 0.5. They observed the formation of PNRs and calcu-

lated several physical quantities such as the direct and the field-cooled susceptibility and the

Edwards-Anderson order parameter. They found that random electric fields and random

strains did not contribute significantly to their results, and also discussed the importance

of antiferroelectric interactions between Ti-rich nanopolar clusters for the relaxor behav-

ior. Meanwhile, Sherrington [6] discussed a microscopic model of BZT, which explicitly

includes the interactions of Ti and Zr ions with neighboring ions, and found that BZT can

be understood by mapping to a soft pseudospin glass.

In order to gain further insight into the properties of BZT in the relaxor regime and, in

particular, to address the issue whether BZT could be classified as a relaxor or a dipolar

glass, we have carried out a dielectric study of the quasistatic and dynamic behavior of BZT

at x = 0.5 (BZT50). The concentration x = 0.50 was chosen because it lies in the middle of

the presumed relaxor regime, and because the case x = 0.50 has been explicitly investigated

in some theoretical [18–20] and experimental [10, 21] studies.

Several criteria to discriminate between dipolar glasses and relaxors have been formulated

in the past. From a microscopic point of view, it is clear that in dipolar glasses there may

be some clustering of the elementary dipoles but the resulting PNRs will remain small, i.e.,

of the order a few lattice constants. In relaxors, however, the PNRs can be large and their

dipole moments may be affected by the applied electric field. This is reflected in the shape

of the probability distribution of relaxation times f(τ), which can be extracted from the

complex dielectric permittivity by means of the Tikhonov regularization method [22, 23]. In

dipolar glasses f(τ) has a single peak structure, whereas in relaxors a second peak appears at

low temperatures, where the two peaks in relaxors are related to the flipping and breathing

modes of the PNRs [24, 25].

Another manifestation of relaxor behavior is the occurrence of square hysteresis loops

for some symmetry directions of the field E, implying that a first-order transition into a

field-induced ferroelectric phase appears [26]. On further increasing the field amplitude a

critical point in the E, T plane is reached. On the other hand, in dipolar glasses only slim

hysteresis loops are observed and no critical point exists for any field direction and amplitude.

Alternatively, one can monitor the static polarization on lowering the temperature in a field
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by the charge accumulation technique, and look for a first order jump of polarization at a

threshold field [27]. Here we will apply this method to BZT50 in order to test whether it

behaves as a normal relaxor or a dipolar glass.

II. EXPERIMENTAL DETAILS

The complex dielectric constant ε∗(f, T ) = ε′−iε′′ was measured between 10 K and 300 K

in the frequency range 0.001Hz < f < 1 MHz using a Novocontrol Alpha High Resolution

Dielectric Analyzer. The amplitude of the probing ac electric signal was 1 V/mm. The

temperature was stabilized within 0.1 K using an Oxford Instruments continuous flow

cryostat and an ITC4 temperature controller.

BZT powders were prepared using the standard solid state reaction by calcination at

1000 ◦C (4 hours) and the ceramics were processed by cold isostatic pressing (1500 bar) and

sintering at 1000 ◦C for 4 hours. The ceramics were of single phase perovskite structure with

over 99% theoretical density and grain size of ∼ 1µm [13].

Ceramics samples had a diameter of typically 6 mm and thickness of 0.25 mm. Gold

electrodes were sputtered on the disc faces.

The temperature dependence of the field-cooled (FC) and zero-field-heated (ZFH) (after

field-cooling) quasistatic dielectric polarization was measured using the charge-accumulation

technique (the external bias field applied to a sample was up to 28 kV/cm) using a Keith-

ley 617 programmable electrometer [28]. The temperature dependence of the field-cooled

(FC) dielectric polarization was determined during cooling the sample with the rate of -1.6

K/min. An analogous rate (+1.6 K/min) was used when heating the sample after external

bias voltage had been removed from the sample at 10 K, and the zero-field-heated (ZFH)

quasistatic dielectric polarization was determined.

Polarization vs. electric field P (E) loops were measured using a Sawyer-Tower bridge.

The external field was applied to the sample from 0 kV/cm up to 28 kV/cm with a rate

of approximately 0.002 Hz. The polarization measurements were performed always after

cooling the sample from room temperature to a desired temperature (at zero electric field)

with the cooling rate of -1.6 K/min.

4



III. DATA ANALYSIS AND DISCUSSION

The temperature dependence of ε′ and ε′′, measured at different frequencies (0.001 Hz - 1

MHz), is shown in Figs. 1 and 2, respectively. The figures show a typical behavior, as found

in dipolar glasses or relaxors, in a broad temperature interval, where the maxima of ε′ and

ε′′ for a set of selected frequencies f appear. A common method to determine the freezing

temperature TF from the dielectric data is based on the observation that both ε′(f, T ) and

ε′′(f, T ) show maxima as functions of temperature. For example, the temperature Tmax(f)

at which the maximum of ε′(f, T ) or ε′′(f, T ) occurs has been found empirically to scale

with f according to the Vogel-Fulcher (VF) relation

f = f0 exp[−E0/(Tmax − T0)], (1)

where f0, E0, and T0 are parameters of the system. The VF relation (1) is applicable to both

relaxors [5] and dipolar glasses [29]. Usually the maxima in the temperature dependence of

the imaginary part of the dielectric constant, ε′′, are better defined; therefore the freezing

temperature has been determined from them. The characteristic relaxation frequency, de-

termined from the peaks in ε′′(T ), is plotted in Fig. 3 versus reciprocal temperature, and is

found to follow the Vogel-Fulcher law. The parameters f0, E0, and T0 were determined by a

best fit analysis to Eq. (1) and are displayed in Fig. 3. Specifically, the value of T0 is given

by T0 = 9.5 K ± 1.2 K, the attempt frequency is f0 = 4.08×1013 Hz, while the activation

energy is E0 = 2225 K.

One is obviously tempted to interpret T0 as the static limit of the freezing temperature TF ;

however, there will be in general two different sets of parameters for the real and imaginary

parts of the dielectric constant and thus the choice of TF is not unique.

Some information about the shape of the relaxation spectrum can be obtained from the

so-called Cole-Cole diagram, where ε′′ is plotted vs. ε′ in a wide teperature interval, as shown

in Fig. 4. The shape of the plots becomes asymetric at low temperatures, indicating that the

dielectric relaxation is strongly polydispersive. In order to extract the relevant parameters,

such as the static dielectic constant εs and ε∞, we performed a fit to the Havriliak-Negami

(HN) function

ε∗(ω, T ) = ε∞ +
εs − ε∞

[1 + (iωτ)α]β
, (2)

where ω = 2πf and τ is the characteristic relaxation time of the medium. In Fig. 5, εs
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and ε∞ are plotted as functions of temperature. The HN method yields a reliable estimate

for the temperature dependence of the static dielectric constant. On the other hand, the

Cole-Cole diagrams show clearly that by lowering the temperature the dielectric relaxation

becomes strongly polydispersive, i.e., the dielectric dispersion cannot be completely covered

even with a ten decades wide range of frequencies, which was experimentally available.

Therefore, the above procedure can provide information about the temperature dependence

of relevant parameters εs, ε∞, and τ in a relatively narrow temperature range. We will show

later that the static dielectric constant, εs, determined from the fit of experimental data

to HN function coincide with the values, εFC , determined by a quasistatic FC experiment

in low electric field. The FC experiment in low electric field provides the quasistatic FC

dielectric constant, εs = εFC , which is not experimentally accessible by standard dielectric

spectroscopy at low temperatures.

In order to extract the information about the relaxation spectrum from the dielectric

data we apply the method of temperature-frequency plots [29, 30]. We consider the real

part of the dielectric constant ε′ and introduce the ratio

δ =
ε′ − ε∞
εs − ε∞

. (3)

The parameter δ = δ(ω, T ), where ω = 2πf , is determined solely on the basis of experimental

values of the dielectric constant. One can always choose a set of fixed values of δ and find

the corresponding values of ε′ by a suitable interpolation technique. As one scans ε′ between

εs and ε∞, δ varies between the values 1 and 0. Fig. 6 shows the plot for log(ω) vs. 1/T

obtained in this way for a set of δ values 0.05 < δ < 0.98. One method to analyze these plots

is to express δ as an integral over the probability distribution of relaxation times g(log(ωaτ)),

namely,

δ =

∫ z2

z1

g(z)dz

1 + (ω/ωa)2exp(2z)
, (4)

where z = log(ωaτ), with ωa representing an arbitrary unit frequency, and z1 and z2 corre-

spond to the cutoff limits of the relaxation spectrum [29]. Here δ contains mainly contribu-

tions of g(z) for relaxation times below 1/ω. To explicitly calculate the integral in Eq. (4)

one must make a specific ansatz for the probability distribution function g(z) and for the

temperature dependence of the two integration limits z1 and z2, and then fit these to the

data.
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Alternatively, it is also possible to extract the relaxation parameters directly from the

temperature-frequency plots by fitting each curve with a generic VF type ansatz

log(ωτ0i) = −Ei/(T − T0i), (5)

where i refers to the i-th curve in the plot [31]. This then leads to a VF type temperature

dependence of the i-th relaxation time τi = 1/(2πfi), namely, τi = τ0i exp[Ei/(T − T0i], or

fi = f0i exp[−Ei/(T − T0i]. (6)

By fitting Eq. (6) to the δ-plots in Fig. 6 we obtain a set of freezing temperatures corre-

sponding to all intermediate values of δ, as shown in Fig. 7. The limiting cases δ → 1 and

δ → 0 then yield the parameters for the longest and shortest relaxation time, respectively,

i.e., T02 = 48.1 K, E02 = 725 K, and the attempt frequency f02 = 3.65 × 105 Hz, and

T01 ≈ 0 K, E01 = 1330 K, and the attempt frequency f01 = 2.17× 1014 Hz.

One of the fundamental experiments to probe the glassy/relaxor nature of the material

under investigation is to measure the splitting between the FC and ZFH susceptibility [2].

Fig. 8 shows the temperature dependence of the FC and ZFH (after field-cooled) quasistatic

dielectric polarization. The highest dc electric field in the FC experiment was 28 kV/cm

(700 Volts across 250 µm thick sample). The ZFH (after field-cooled) polarization represents

the remanent polarization Pr, because the external electric field (in a FC experiment) was

removed from the sample at the lowest temperature.

The experiment presented in Fig. 8 can also provide an estimate for the freezing tempera-

ture TF . Pr remains nearly frozen up to temperatures where most of the relaxation spectrum

remains frozen. It is thus expected that the highest rate of relaxation of Pr would take place

close to the freezing temperature, T02 ∼ 48.1 K, as indeed indicated by the steepest slope

in Pr(T ) variation, shown in Fig. 8. It should be noted, however, that the freezing tem-

perature TF ∼ 50 K thus obtained is not a true static quantity, but rather depends on the

experimental time scale defined by the rate of the temperature scan in the ZFH experiment

(+1.6 K/min). We may conclude that the results shown in Fig. 8 represent strong evidence

that the state of BZT50 in high external electric fields is indeed analogous to a spin-glass

state [6].

In order to decide whether BZT50 is a relaxor or a dipolar glass we have investigated the

relation P (E) between the induced polarization and the applied quasistatic electric field. The
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external field was applied to the sample from 0 kV/cm up to 28 kV/cm, and conversely, with

a rate of approximately 0.002 Hz. The polarization measurements were performed always

after cooling the sample from room temperature to a desired temperature (in zero electric

field) with a cooling rate of -1.6 K/min. In a relaxor, ”slim” ferroelectric hysteresis loops with

a nonzero remanent polarization are typically observed below the freezing temperature TF ,

and large ”square” loops appear in certain symmetry directions for large fields [26]. Above

TF , where the polar nanoclusters are dynamic, the remanent polarization approaches zero,

but the P (E) relation is nonlinear [32]. This is not the case in dipolar glasses, where the basic

reorientable units are either isolated dipoles or small polar nanoregions, and the formation

of domains in the applied field does not occur. In a relaxor, however, the basic reorientable

units are polar nanoregions, where the dipole moments are sufficiently large so that the

system can order ferroelectrically in a large external field. The remanent polarization is due

to the fact that frozen-out polar nanoregions orient in the applied electric field, and that

part of this order remains when the field is turned off. The nanoregions interact with each

other, and therefore it may take a long time before this induced orientational order decays

to zero.

Fig. 9 shows the relation between the induced polarization and the applied field at several

temperatures above TF for which the applied frequency can still be considered as quasistatic.

Note the nonlinear relation P (E) with zero remanent polarization at all temperatures. With

decreasing temperature the nonlinearity increases. It might be possible that the electric field

of 28 kV/cm (dc or ac external voltage), which was used in BZT50 experiments, was not

high enough to induce a ferroelectric phase. However, by our knowledge, in all relaxor

ferroelectrics studied so far, the electric field necessary to induce the ferroelectric phase has

been by almost an order of magnitude smaller than the one used in BZT50 experiments.

Due to experimental limitations the maximum applied field was up to 28 kV/cm.

Fig. 10 shows the results of the fitting of the nonlinear P (E) relation to a simple expansion

P (E) = ε0ε1E+ε3E
3+ε5E

5, introducing the first, third, and fifth order dielectric constants.

The third order dielectric constant ε3 is negative, and is responsible for the lowering of the

induced dielectric polarization in a dc electric field.

Fig. 11 shows the temperature dependence of the dielectric constant εFC , which was

obtained by a field cooled experiment, where a dc field of 10 kV/cm was applied to the

BZT50 sample and the quasistatic dielectric polarization was measured on cooling. The
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cooling rate was -1.6 K/min, i.e., the same as in all FC experiments (cf. Fig. 8). From the

results presented in Fig. 9 it is known that the relationship between polarization and electric

field P (E) is nonlinear at high electric fields. However, at low fields (E . 10 kV/cm) the

system is still in the linear regime, which means that it is possible to determine the dielectric

constant εFC from the measured polarization using the simple linear relation P (E) ∼= ε0εE.

The temperature dependence of εFC is displayed in Fig. 11. The linear dielectric constant

values thus obtained agree well with the values of ε1 shown in Fig. 10(a).

Also presented in Fig. 11 is the temperature dependence of the real part of the dynamic

dielectric constant ε′(f, T ) measured at different frequencies (0.001 Hz - 1 MHz) with a

low electric field amplitude of 1 V/mm. As already displayed in Fig. 1, ε′(f, T ) shows a

typical relaxor behavior in a broad temperature interval, where the maxima in ε′ at different

frequencies occur. Fig. 11 demonstrates that the quasistatic FC experiment in low electric

field yields the static FC dielectric constant εs = εFC at low temperatures, which is not

experimentally accessible by standard dielectric spectroscopy. Above T ∼ 100 K, however,

εFC coincides with the peaks in the dynamic dielectric constant ε′(f, T ).

The linear field-cooled susceptibility χ1 = ε1 − 1 in relaxors and dipolar glasses, and in

related systems can be generally written in the form [33]

χ1 =
C(1− q)

T − TC(1− q)
, (7)

where C and TC represent the Curie constant and temperature, respectively, and q = q(T )

is the spin-glass or Edwards-Anderson (EA) order parameter. The parameters C and TC

can be determined from χ1 measured in the asymptotic regime at high temperatures, where

Eq. (7) reduces to the well-known Curie-Weiss law χ1
∼= C/(T−TC). The linear susceptibility

for BZT50 was extracted from the field-cooled polarization according to χ1
∼= P (E)/(ε0E),

where P (E) was measured in the same manner as in Fig. 9, but with a much smaller field

amplitude E . 10 kV/cm, so that a linear regime of P (E) was guaranteed. The parameter

values are C = 1.424 × 105 K and TC = 124.6 K. The EA order parameter has then been

calculated from Eq. (7) by using the data for χ1 in the low temperature regime. The result

for BZT50 is shown in Fig. 12. Note that the EA order parameter q(T ) is a typical decreasing

function of temperature, which vanishes in the asymptotic high temperature regime.

Since BZT50 has many features which are characteristic for relaxors, we can tentatively

describe the system in terms of the spherical random bond–random field (SRBRF) model
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of relaxors [34]. This could be justified microscopically by assuming that the elementary

dipolar units are not just isolated off-center Ti4+ ions, but some clustering of the elementary

dipoles may occur [12, 13]. Hence, unlike the case of typical dipolar glasses, the dipolar

degrees of freedom cannot be described by fixed-length pseudospins, but rather as vectors

of variable length as in the SRBRF model. According to the SRBRF model, the order

parameter q satisfies the equation

q = (J/T )2(1− q)2(q +∆/J2), (8)

where the parameter J represents the half-width of the Gaussian distribution of random

interactions (bonds), and ∆ is the variance of the distribution of local random electric fields.

By fitting this equation to the experimental data for q(T ) in Fig. 12, we obtain the following

values for the parameters: J = 165.75 K, ∆/J2 = 0.025. Note that J is larger than the

average random interaction J0 ≡ TC = 124.6 K, which is the condition for the absence of

long range order in zero field in relaxors.

The fact that q(T ) obeys Eq. (8), which has been derived for a typical lead based heterova-

lent relaxor system, suggests that BZT50 is characterized by yet another relaxor feature.

However, it should be remembered that a field-induced ferroelectric state cannot be induced

by cooling in a large electric field. Hence, BZT50 can be tentatively classified as a dipolar

glass with a number of relaxor features. This is consistent with the observed negative value

of the third order static dielectric nonlinearity, which technically prevents the system from

reaching a field-induced feroelectric state [35]. It should be noted that BZT is available only

as ceramics and no single crystals seem to exist. Thus it is possible that for a symmetry

direction in a single crystal BZT50 a field-induced ferroelectric phase would exist; however,

when averaged over all grain orientations in a ceramics this feature could disappear.

IV. CONCLUSIONS

It is widely accepted that the mixed system Ba(Zr1−xTix)O3 (BZT) for concentrations

0.25 . x . 0.75 behaves as a lead-free isovalent relaxor system. However, there have been

recent arguments that BZT should be classified as a dipolar glass rather than a typical

relaxor. The present dielectric spectroscopy study has revealed a number of relaxor features

of BZT50. Specifically, the real part of the complex permittivity has been analyzed by
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means of the temperature-frequency plots, which shows that the relaxation times of each

segment of the spectrum obey the Vogel-Fulcher relation, except for the high frequency

limit where the familiar Arrhenius law applies. Since these features in principle appear both

in relaxors and dipolar glasses, the question whether BZT50 is a relaxor or a dipolar glass

cannot be answered by these findings alone. A more decisive experiment is the measurement

of the dielectric polarization P (E) in an applied quasistatic electric field. For large fields the

relation P (E) is nonlinear, but it is not possible to induce a ferroelectric phase, which would

be a distinctive feature of relaxor behavior. Moreover, the third order nonlinear dielectric

constant turns out to be negative, whereas in relaxors it is expected to be positive. Thus the

P (E) experiment supports the dipolar glass picture for BZT50 as found in relaxors below

the critical electric field Ec and at high temperatures.

From the linear dielectric susceptibility the spin-glass or Edwards Anderson (EA) order

parameter q(T ) has been determined. Again, the EA order parameter has a typical de-

creasing temperature profile, which could be interpreted either as a relaxor or dipolar glass

feature. It turns out, however, that q(T ) can be described by the theoretical model of re-

laxors, which is based on the concept of interacting polar nanoregions. Polar nanoregions

seem to exist in BZT50 and are presumably due to the clustering of individual Ti4+ dipoles.

However, these polar clusters are too small to enable the formation of macroscopic domains

in an aplied field, which would lead to large ”square” hysteresis loops as seen in typical

relaxors.

Thus we may conclude that the BZT50 ceramic system has a number of properties that

can be found in relaxor systems. On the one hand, the high dielectric constant observed

in BZT50 is typically observed in canonical relaxor systems like Lead Magnesium Niobate

(PMN) in which the ferroelectric state can be induced by the electric field. In contrast to

PMN, the electric field does not have a significant impact on the dielectric dispersion and

the relaxation times in BZT50 ceramics. In addition, no ferroelectric state can be induced

in BZT50 with fields up to the 28 kV/cm, which is an order of magnitude higher than

typical critical fields observed in other canonical relaxor systems. On the other hand, such

properties as the nonlinear P (E) profile, negative ε3, and glassy dynamics with divergent

maximum relaxation time are typical for dipolar glasses; however, they can also be found in

the dipolar glass section of the E−T phase diagram of relaxors. This indicates that BZT50

behaves like an incipient relaxor system, where a ferroelectric state cannot be induced by
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application of a static electric field down to the lowest temperatures.
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FIG. 1: Temperature dependence of the real part of the complex dielectric constant ε′ in BZT50

at various frequencies, showing a typical relaxor behavior.
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FIG. 2: Temperature dependence of the imaginary part of the complex dielectric constant ε′′ in

BZT50 at various frequencies, where the peak positions of ε′′(f, T ) differ from the peak positions

of ε′(f, T ) (see Fig. 1).
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FIG. 3: The temperature Tmax(f), at which the maxima of ε′′(f, T ) occur, is found empirically to

scale with f according to the Vogel-Fulcher (VF) relation f = f0 exp[−E0/(Tmax − T0)] with a VF

freezing temperature T0 = 9.5 K ± 1.2 K, attempt frequency f0 = 4.08×1013 Hz, and activation

energy E0 = 2225 K.
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FIG. 4: Cole-Cole diagram: Measured values of ε′′ plotted vs. ε′ in BZT50 at various temperatures

beween 50 K - 95 K. Solid lines between experimental points measured at the same temperature

serve as guide to the eye.
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FIG. 5: Temperature dependence of the parameters εs and ε∞ in BZT50. The parameters were

obtained by fitting experimental data with the Havriliak-Negami (HN) function.
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FIG. 6: Temperature-frequency plots for several fixed values of the reduced dielectric constant δ,

top to bottom, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.98. Solid lines are

fits obtained with a generic VF type ansatz, providing a freezing temperature T0(δ) for each value

of the parameter δ.
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FIG. 7: Freezing temperature T0 vs. δ. The limiting cases δ → 1 and δ → 0 yield the freezing

temperatures T02 = 48.1 K and T01 ≈ 0 K, respectively. Solid line is extrapolation to δ → 1. The

value T0 = 9.5 K determined from the maxima of ε′′(f, T ) (see Fig. 3) approximately corresponds

to δ ≈ 0.6.
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FIG. 8: Temperature dependence of the FC and ZFH (after field-cooled) quasistatic dielectric

polarization in high electric field (28 kV/cm). There is no sign of an induced ferroelectric phase.

The ZFH polarization represents the remanent polarization Pr. As indicated, the steepest slope in

Pr(T ) variation, at TF ∼ 50 K, yields an estimate for the freezing temperature.
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FIG. 9: Relation between the induced polarization and the applied quasistatic electric field, P (E),

at several temperatures above TF . Note the nonlinear relation P (E) with zero remanent polariza-

tion at all temperatures. With decreasing temperature the nonlinearity increases.
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FIG. 10: Temperature dependence of the first (a), third (b), and fifth (c) order dielectric constants

obtained by fitting of the nonlinear P (E) data with the function P (E) = ε0ε1E + ε3E
3 + ε5E

5.
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FIG. 11: Temperature dependence of the dielectric constant εFC
∼= P (E)FC/(ε0E) obtained by a

field-cooled experiment in low electric field (10 kV/cm). εFC values (diamonds) agree well with the

values of ε1 shown in Fig. 10(a). Also presented (open circles) is the temperature and frequency

dependence (1 Hz - 1 MHz) of the real part of dielectric constant ε′(f, T ) measured in a low electric

field (1 V/mm).
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FIG. 12: Temperature dependence of the spin-glass or Edwards-Anderson (EA) order parameter

q(T ) derived from Eq. (7), where the linear susceptibility has been determined from the field-

cooled polarization measured in low electric field (Fig. 11). Also displayed are the values of the fit

parameters J0, J , and ∆ obtained by fitting Eq. (8) to q(T ).
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