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Abstract: Monitoring of ammonium ion levels in water is essential due to its significant impact
on environmental and human health. This work aims to fabricate and characterize sensitive, real-
time, low-cost, and portable amperometric sensors for low NH4

+ concentrations in water. Two
strategies were conducted by cyclic voltammetry (CV): electrodeposition of Au nanoparticles on
a commercial polyaniline/C electrode (Au/PANI/C), and CV of electropolymerized polyaniline
on a commercial carbon electrode (Au/PANIep/C). Au NPs increase the electrical conductivity of
PANI and its ability to transfer charges during electrochemical reactions. The electrode performances
were tested in a concentration range from 0.35 µM to 7 µM in NH4

+ solution. The results show
that the Au/PANI/C electrode performs well for high NH4

+ concentrations (0.34 µM LoD) and
worsens for low NH4

+ concentrations (0.01 µM LoD). A reverse performance occurs for the electrode
Au/PANIep/C, with a 0.03 µM LoD at low NH4

+ concentration and 0.07 µM LoD at high NH4
+

concentration. The electrodes exhibit a good reproducibility, with a maximum RSD of 3.68% for
Au/PANI/C and 5.94% for Au/PANIep/C. In addition, the results of the repeatability tests show
that the electrochemical reaction of sensing is fully reversible, leaving the electrode ready for a new
detection event.

Keywords: ammonium ions; polyaniline; screen-printed electrochemical sensor

1. Introduction

Ammonia nitrogen (NH3 or NH4
+) is a common pollutant in water bodies, originat-

ing from agricultural runoff, industrial discharges, and wastewater treatment plants [1].
Elevated levels of ammonium can lead to eutrophication, harmful algal blooms, and ad-
verse effects on aquatic ecosystems and humans [2]. Therefore, monitoring ammonium
ion levels in water is important to mitigate the impact on the environment and human
health. Various detection tools have been developed for the analysis of ammonia nitrogen
in water, including FTIR spectroscopy [3], spectrophotometric methods [1,4], colorimetric
pH detection [5,6], ion-selective electrodes [7,8], and other optical methods [9–12]. The
most common sensors are based on a sensitive ion-selective membrane, modified with
functional groups, that responds to the presence of NH4

+ in water [8,13–16]. The disad-
vantages of these sensors include the need for periodic calibration, the instability of the
sensitive membrane over time, and the sensitivity to interferents in the water, which may
affect the measurement accuracy. Several methods for monitoring ammonium ions in
water have been developed using biological sensors. Microorganisms, such as bacteria and
algae, act as bio-indicators to monitor water quality [17–19]. Unfortunately, environmental
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variables can affect biosensors’ performance, and optimal culture conditions are required
to ensure correct NH4

+ detection. In addition, although these techniques are specific and
sensitive, their use presents several drawbacks, such as the need for sampling and the use
of sophisticated, expensive, and time-consuming tools. For these reasons, the development
of low-cost, portable, and real-time sensing systems [20–22] is a research priority, and
electrochemical sensors are the best candidate. Using screen-printing technology, electrodes
with reproducible chemical performances can be developed [23,24]. A screen-printed elec-
trochemical cell is composed of three electrodes: a working electrode (WE), which may be
functionalized with materials selective towards the analyte; a reference electrode (RE) to
ensure the precise application of the WE potential; and a counter electrode (CE) to complete
the circuit. This system undergoes an electrochemical reaction that results in changes in
current, potential, charge, conductivity, or impedance, which are measured using different
electrochemical techniques [25–27]. The inks used for printing determine the properties of
the electrochemical cell, and the appropriate modification of the working electrode surface
plays a key role in the development of sensitive and selective electrochemical sensors for
molecule/target substance detection. The working electrode can be modified with different
materials, such as metal nanoparticles, metal oxides, organic molecules, and conducting
polymers. The sensing mechanism involves changes in electrical conductivity or other
properties when NH3 molecules interact with the surface of the functionalized electrode.
Polyaniline (PANI) is considered one of the most versatile conducting polymers, with a
wide variety of controllable properties. PANI consists of monomer units built from reduced
(y) and oxidized (1 − y) blocks.

The polymer redox state is determined by the value of y (0 ≤ y ≤ 1), which varies
from zero to one (Figure 1). At y = 0.5, polyaniline is in the form of emeraldine; y = 0
corresponds to pernigraniline, the fully oxidized form, while y = 1 corresponds to the fully
reduced form, leucoemeraldine [28,29]. Pernigraniline and emeraldine may occur as either
salts or bases.
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The doping process can modify the properties of PANI. Dopants for conductor or
semiconductor PANI include inorganic and organic acids such as hydrochloric acid, sulfuric
acid, phosphoric acid, formic acid, oleic acid, camphoric sulphonic acid, etc. PANI doping
generates high conductivity, mainly due to the increase in carrier concentrations, and leads
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to the formation of conjugative defects such as solitons, polarons, and bipolarons in the
polymer chain that create an electron vacancy mechanism [30]. Proton-doped polyaniline,
produced using acids, forms emeraldine salt, which is a highly conducting polymer [31].
Generally, ammonia monitoring is performed for the gas form but can be determined in
the ionic form in liquid matrices [7,32–34]. Korent et al. developed a sensor for ammonia
detection in biological fluids using polyaniline as the conducting polymer and commercial
drop-cast gold nanoparticles. They operated at neutral pH using a PBS buffer solution
and obtained an LoD of 1.44 µM for an ammonia concentration ranging from 51 µM to
510 mM [30]. Functionalizing PANI with Au NPs promoted the system’s conductivity,
which resulted in a better stabilization of the current and sensory performances in the
low NH3 concentration range. Electrodeposited and drop-cast Au NPs exhibit significant
differences in their physical and chemical properties. Electrodeposited gold nanoparticles
tend to have a more uniform size and shape than those deposited by drop casting. In
addition, electrodeposited Au NPs may also have a higher surface charge density. Therefore,
starting from the above-mentioned research, using screen-printed electrodes, the present
research aims to develop an ammonium ion detection method in water that is sensitive,
selective, inexpensive, and capable of providing a rapid response using a commercial and
electropolymerized PANI with Au NPs deposited via cyclic voltammetry (CV) to improve
the sensitivity. This study proposes two sensing mechanisms for detecting ammonia as
NH4

+. The first uses electropolymerized PANI (PANIep) with commercial screen-printed
carbon electrodes (SPCEs), and the second with commercial PANI screen-printed carbon
electrodes at acid pH. For both devices, the sensing mechanism is based on the PANI
deprotonation reaction, NH4

+ oxidation, and the following PANI reduction and oxidation.
The unique properties of polyaniline and gold nanoparticles enable efficient electrochemical
signal transduction upon exposure to NH4

+, leading to the accurate quantification of
ammonium concentrations in water matrices.

2. Results
2.1. Morphological Characterization

SEM images were acquired to investigate the morphological difference between the
two developed electrodes.

Figure 2a shows the surface of the bare C WE characterized by a flake-like structure
that is typical of the screen-printing process. After CV electropolymerization, the surface
of PANIep/C WE obtained (Figure 2b) shows the nucleation of nanogranular PANIep,
growing into nanofibers that do not cover the whole C surface but are located as separate
islands. The latter could be a consequence of an uneven C screen-printed electrode surface.
The modified Au/PANIep/C WE has a granular morphology composed of particles of
different sizes (30–60 nm, see Figure S1b in the Supplementary Materials) and surface tex-
tures (Figure 2c). Morphologically, Au NPs do not affect the nanogranular and nanofibrous
structure of the PANIep and are uniformly distributed on the surface of the WE obtained,
which fully covered the bare surface of the carbon electrode. The commercial bare PANI/C
screen-printed WE shows a uniform, interconnected, and porous film of polyaniline on top
of the carbon surface (Figure 2d). The conductive PANI film provides increased surface
area for the effective electrodeposition of Au NPs. As seen in the SEM images in Figure 2e, a
dense and uniform coverage of Au NPs (size 20–30 nm, see Figure S1a in the Supplementary
Materials) on the PANI film was obtained. Furthermore, the size of the Au nanoparticles
deposited on the commercial PANI/C electrode is smaller than that of the gold nanoparti-
cles deposited on the synthesized PANIep/C electrode. Nanoparticles of different sizes
have different surface-to-volume ratios, which may influence their chemical reactivity. In
general, smaller Au NPs tend to have a greater surface area to unit mass than larger ones,
leading to higher catalytic activity. The size depends on the material of the substrate on
which they are electrodeposited. In particular, the micro granular PANIep provides specific
anchoring sites for the Au NPs, influencing their distribution and orientation on the carbon
surface, while the uniform PANI film on the carbon surface provides a more homogeneous
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and continuous matrix to support Au NPs. Thus, the exposed carbon surface generates
the formation of gold nanoparticles of different sizes. EDX analysis (see Supplementary
Materials Figure S2 and Table S1) confirms the Au nanoparticles’ formation on top of both
electrodes. The Au distribution on the sample indicates its presence on the whole PANI
surface (with a percentage of about 5%) with peaks of 19% where Au nanoparticles are
visible in the SEM images.
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2.2. Electrochemical Characterization of Electropolymerized Polyaniline

The voltammograms in Figure 3 show the typical PANI oxidation (a1 = 0.24 V and
a2 = 0.81 V vs. Ag) and reduction (c1 = 0.52 V, c2 = 0.30 V, and c3 =−0.1 V vs. Ag) peaks [35–37].
In the first few cycles of the electropolymerization, the voltammogram shows a PANI oxidation
peak at a potential of 0.97 V vs. Ag which is masked by the emeraldine oxidation peak
(a2 = 0.81 V vs. Ag) [30] after more deposition cycles. In detail, peak a1 represents the oxidation
of leucoemeraldine to emeraldine, and a2 the oxidation of emeraldine to pernigraniline. The
peaks c1 and c2 are relative to the reduction of pernigraniline to emeraldine, and the peak c3 is
the reduction of emeraldine to leucoemeraldine [28,30,36,37].
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In an acidic medium, polyaniline exists in a fully reduced form (leucoemeraldine)
and undergoes two distinct redox transitions to the half-oxidized form (emeraldine) and
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the fully oxidized form (pernigraniline). The two oxidation (a1, a2) and two reduction
peaks (c1, c2) together form two redox couples (a1/c2 and a2/c1); specifically, the first redox
couple (a1/c2) is the transition between leucoemeraldine and emeraldine, and the second
one (a2/c1) is the transition between emeraldine and pernigraniline. The final product of
the electrochemical polymerization via the CV in the HCl electrolyte is HCl-doped PANI
in the form of green emeraldine salt [28,30,36]. The concentration of HCl plays a crucial
role in determining the morphology of PANIep. This process of proton doping with HCl
helps to delocalize the diiminoquinone-diaminobenzene states trapped in the emerald
salt form of polyaniline. This form, called emeraldine base, is neutral but becomes highly
electrically conductive after doping with the acid [30]. Therefore, doping with HCl results
in the emeraldine salt state of PANI. PANI is a p-type semiconductor indicating most charge
carriers as holes. The (ππ) and (ππ*) orbitals serve the role of valence and conduction bands,
respectively. The energy difference between (ππ) and (ππ*) is termed as the band gap for
the polymer [38–40]. Au NPs were electrodeposited via CV on PANI and PANIep. The
use of Au NPs during electrode modification offers numerous advantages, such as better
diffusion of electroactive compounds, improved catalytic activity, high selectivity, and a
higher signal-to-noise (S/N) ratio [38]. In the fabrication of electrochemical sensors, Au
NPs can be used to play their role in catalyzing electrochemical reactions and promoting
electron transfer [25,41–43].

The interaction between polyaniline and Au NPs in the sensor design plays a crucial
role in promoting the detection of ammonium ions. The synergistic effects of these materials
result in improved sensitivity, selectivity, and response time of the sensor toward detecting
ammonium ions in water samples [32,44].

2.3. Chronoamperometric Ammonium Ion Detection in Water

PANI undergoes redox and protonation reactions during a voltage scan; hence,
chronoamperometry (CA) was used as a detection method. Amperometry measures the
current generated when a constant potential is applied to the working electrode. The
applied voltage causes an oxidation (or reduction) reaction on the electrode surface and
the corresponding anodic (or cathodic) current is recorded and correlated with the con-
centration of the target molecule. To obtain the oxidation (or reduction) potential of the
analyte under test, cyclic voltammetry must be performed [24,45,46]. Figure 4 shows the
voltammograms for the Au/PANI/C (a) and Au/PANIep/C (b) electrodes.
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The PANI electrochemical study was focused on the potential region of the first
oxidation peak, a1 (i.e., the oxidation of leucoemeraldine to emeraldine), because the perni-
graniline form is unstable due to the quinoid-imine structure [28,30]. Therefore, the starting
PANI form for NH4

+ detection is the emeraldine salt (protonated half-oxidized form),
obtained after the CV polymerization process in HCl. The potentials chosen for electrodes
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were 0.25 V for Au/PANI/C and 0.35 V for Au/PANIep/C, since these are the potential
values after the oxidation process observed through cyclic voltammetry. The switching
between leucoemeraldine and emeraldine (a1/c2) is a diffusion-controlled reaction. NH4

+

forms strong hydrogen bonds with hosts and occupies empty PANI protonation sites [47,48].
The formation of the PANI·NH4

+ complex results in an instantaneous increase in the oxida-
tion current. The application of the potential leads to the oxidation of the ammonium ion,
which is the source of electrons and protons for the simultaneous reduction of the emerald
base of PANI, resulting in a protonated reduced PANI that simultaneously undergoes
an oxidation reaction in the presence of an oxidative potential [30]. After wearing the
reductant and the deprotonation of the PANI, the current returns to its initial value and
stabilizes. This mechanism produces a transient current response to the presence of NH4

+ in
amperometric-mode measurements. Gold nanoparticles on the electrodes improve PANIs’
electrochemical properties by increasing the electrical conductivity of polyaniline and its
ability to transfer charges during electrochemical reactions [49]. The electrical quality of the
polymer–metal contact is defined by the metal’s Fermi level position and the position of the
lowest unoccupied molecular orbital in a polymer [50–52]. PANI can form low-resistance
ohmic contacts in combination with a metal with a high work function such as Au (5.2 eV),
due to its p-type conduction characteristic [53].

The effect of different concentrations was studied via amperometry to understand
the performance of the two sensors developed for detecting ammonium ions in water.
At 25 ◦C, the pKa of NH4

+ is 9.2, with a pH at which ammonia nitrogen is 50% in NH3
form and 50% in NH4

+ form [54]. Therefore, monitoring the ammonium ion is best
carried out in neutral and acidic solutions. The relationship between current response and
concentration was studied from 0.35 µM to 7 µM NH4

+ in 1 M HCl solution. Figure 5a,b
show the amperometric measurement results for the Au/PANI/C electrode. The calibration
graphs are linear in two ranges, from 0.35 µM to 1.5 µM with a sensitivity of 0.03 mA/µM
(Figure 5a) and from 2 µM to 7 µM with a sensitivity of 1.09 mA/µM (Figure 5b). Again, for
the Au/PANIep/C electrode, the calibration graphs are linear in two ranges, from 0.35 µM
to 1.5 µM with a sensitivity of 0.34 mA/µM (Figure 6a) and from 2 µM to 7 µM with a
sensitivity of 0.18 mA/µM (Figure 6b). The calibration curves for the PANI-NH3 detection
system were split as previously achieved in the literature [30,55,56].
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The results show that the Au/PANI/C electrode performs better for high NH4
+

concentrations and worse for low NH4
+ concentrations than the Au/PANIep/C WE.

The opposite behavior is observed for the latter electrode (Figure 7). This phenomenon
can be explained by considering the properties of the two electrodes. Specifically, the
commercial fully PANI-coated carbon electrode works poorly with low concentrations
of ammonium ions, since the PANI is HCl-undoped; therefore, it may be difficult for
NH4

+ to reach the electrode surface and participate in the detection process due to the
diffusion. Instead, it works well for high NH4

+ concentrations since the increased presence
of ammonium ions may exceed the diffusion limits and favor the interaction between the
ions and the polyaniline. On the other hand, the C electrode coated with nanogranular
PANIep works well for low concentrations of ammonium ions because the polyaniline
allows greater accessibility of NH4

+ to the electrode surface, but the sensor works poorly for
high ammonium ion concentrations because the nanogranular PANI can quickly saturate
and become unable to handle high amounts of NH4

+. This could be a consequence of the
complete occupation of the empty protonation sites of PANI by NH4

+. In summary, the
distribution of polyaniline on the carbon electrode can significantly affect the sensitivity
and dynamic range of the sensor for amperometric detection of ammonium ions for a wide
concentration range. The electrode exhibits good reproducibility with a maximum relative
standard deviation (RSD) of 5.94% for Au/PANIep/C and 3.68% for Au/PANI/C.
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2.4. Repeatability Test

The repeatability test was carried out using the same sensors, Au/PANI/C and
Au/PANIep/C, for six consecutive measurements using the same NH4

+ solution. A con-
centration of 2 mM was chosen, above the regime change threshold in the sensitivity of both
electrodes. Each electrode was washed with distilled water and wiped with a paper towel
between two measurements. The standard deviation (SD) was calculated by comparing
the subsequent measurements’ current peak with the first one. Figure 8 shows the ampero-
metric response of sequential injections of 2 µM NH4

+ for the Au/PANI/C electrode (blue
dots) and the Au/PANIep/C electrode (green squares). After each current stabilization,
the sequential injection gave similar maximum oxidation currents (0.47 mA ± 0.02 mA for
Au/PANIep/C and 0.35 mA ± 0.02 mA for Au/PANI/C).
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The calculated SD was 0 µA, 14.14 µA, 21 µA, 7.10 µA, 21.20 µA, and 7 µA for
Au/PANIep/C, and 0 µA, 14 µA, 6.9 µA, 20.1 µA, 7 µA, and 14.1 µA for Au/PANI/C
(Table 1). These results show that the electrochemical detection mechanism is fully re-
versible, confirming the complete recovery of the PANIep after each measurement and a
compact electrode after cleaning and wiping.

Table 1. Calculated SD for repeatability tests.

Electrodes SD

Au/PANIep/C

0 µA
14.14 µA

21 µA
7.10 µA

21.20 µA
7 µA

Au/PANI/C

0 µA
14 µA
6.9 µA
20.1 µA

7 µA
14.1 µA

3. Materials and Methods

Ammonium chloride (NH4Cl), phosphate-buffered saline (PBS), hydrochloric acid
(HCl), aniline (Ph-NH2), and chloroauric acid (HauCl4) were purchased from Merck KGaA
(Headquarters in Darmstadt, Germany) and used without further purification. Milliq
water (resistivity of ~18.2 Ω cm) by Simplicity UV (Millipore, by Merk, Headquarters in
Darmstadt, Germany) was used in all solutions. SPEs (screen-printed carbon electrodes, cod.
Ref. 150, and screen-printed polyaniline electrodes, cod. Ref 110PANI) were bought from
Metrohm DropSens s.r.l. (Origgio, VA, Italy). Electrodeposition of Au and PANI, as well as
all electrochemical measurements, were performed using the Palmsens4 electrochemical
workstation by PalmSens BV (C-PS4-BP.F2.10, GA Houten, The Netherlands). Scanning
electron microscopy (SEM) images were obtained using a ZEISS FE-SEM SUPRA 35 (Carl
Zeiss AG, Jena, Germany).

Electrode Fabrication

Two amperometric sensors were fabricated for the detection of ammonium ions in
water by using two commercial SPEs. Specifically, one SPE has a C screen-printed working
electrode, while the second has a PANI/C screen-printed working electrode. PANI elec-
trodeposition on the C working electrode (4 mm diameter) was performed using 0.1 M
aniline monomer in a 1 M HCl solution. Classically, hydrochloric acid (HCl) with sulfuric
acid (H2SO4) and chloric acid (HClO3) are used as dopants in conductive PANI synthesis.
In acid doping, the basic action of polymeraldine with HCl induces protons at immune
spots and gives polymeraldine salt. Low temperatures and high dopant (HCl) concentra-
tions favor a faster polymerization process and the production of a thicker polymer film;
therefore, the electropolymerization of aniline was carried out at room temperature with a
low concentration of HCl (1 M). Electrodeposition was performed on the WE by CV using
15 cycles of scan in a potential range from −0.3 V to 1.0 V, with a scan rate of 0.05 Vs−1.

The commercial polyaniline-modified screen-printed carbon electrode (PANI/C) cell
consisted of three electrodes: the working electrode was made of carbon ink modified with
polyaniline, with a counter electrode of carbon ink. In contrast, silver ink was used as the
reference electrode.

Au electrodeposition on the fabricated PANIep/C working electrode and commercial
PANI/C electrodes (4 mm diameter) was performed using 0.1 M HAuCl4 in a 1 M HCl
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electrolyte solution. Electrodeposition was performed by CV using 5 cycles of scan in a
potential range from 0.0 V to 1.0 V, with a scan rate of 0.05 Vs−1.

Figure 9 summarizes the functionalization process of two different electrodes: Au on
top of the electrodeposited PANIep on the carbon SPE (Au/PANIep/C) and the electrode
with Au on top of the PANI/C commercial SPE (Au/PANI/C).
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4. Conclusions

In this work, two amperometric sensors for NH4
+ concentration in water were devel-

oped. Two strategies were conducted for their fabrication by cyclic voltammetry electrode-
position of Au NPs on (i) a commercial PANI/C electrode (Au/PANI/C) and (ii) after CV
electropolymerization of a PANIep/C electrode (Au/PANIep/C). In the last sensor, PANI
CV electropolymerization produces the growth of nanogranular PANIep into separate
nanofibers on the C surface. Indeed, the commercial bare PANI/C electrode shows a
uniform, interconnected, and porous film of polyaniline on the carbon surface. The size
of the Au NPs deposited on the commercial PANI/C electrode is smaller than that of the
Au NPs deposited on the synthesized PANIep/C electrode. Smaller Au NPs have a wider
surface area to unit mass than larger ones, leading to higher catalytic activity. For both
devices, Au NPs increase the electrical conductivity of polyaniline and its ability to transfer
charges during electrochemical reactions. The electrodes’ performances were tested in a
concentration range from 0.35 µM to 7 µM NH4

+ in 1 M HCl solution; the results show that
the Au/PANI/C electrode performs better for high NH4

+ concentrations (0.34 µM LoD)
and worse for low NH4

+ concentrations (0.01 µM LoD). Opposite behavior occurs for the
Au/PANIep/C electrode, with a 0.03 µM LoD for low NH4

+ concentration and 0.07 µM
LoD for high NH4

+ concentration. The distribution of polyaniline on the carbon electrode
can significantly affect the sensitivity and dynamic range of the sensor for amperometric
detection of NH4

+. In conclusion, the electrodes exhibit good reproducibility (with a maxi-
mum RSD of 5.94% for Au/PANIep/C and 3.68% for Au/PANI/C), and the results of the
repeatability tests show full WE recovery after each measurement. The proposed sensors
can be easily implemented in precision agriculture as a low-cost, fast, specific, and sensitive
method for ammonium ion detection in irrigation water.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29133028/s1, Figure S1: SEM images of Au on top of
(a) commercial PANI/C SPE; (b) electrodeposited PANI on Carbon SPE; Figure S2: EDX analysis
on top of an Au nanoparticle (grey spectrum) on a surface region where Au nanoparticles were not
visible by SEM (red spectrum); Table S1: Element’s relative abundance on the WE Au/PANIep/C.
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