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Abstract The flexible and pay-as-you-go computing capabilities offered by cloud infrastructures 

are very attractive for high-demanding e-Science applications like weather prediction simulators. 

For their ability to couple the scalability offered by public service provider with the greater control 

and customization provided by private clouds, Hybrid Clouds seem a particularly appealing 

solution to support meteorological researchers and weather departments in their every-day activity.  

Cloud Brokers interfacing customers with cloud providers, may support scientists in the 

deployment and execution of demanding meteorological simulations, by hiding all the intricacies 

related to the management of powerful but often complex HPC systems. 

The paper presents a brokering algorithm for Hybrid Clouds aimed at the execution of various 

instances of the weather prediction WRF model subject to different user requirements and 

computational conditions. A simulation-based analysis documents the performance of different 

allocation policies at varying workloads and system configuration. 

Keywords:  Hybrid Clouds, Meteorological Simulations, Brokering Algorithm  

1 Introduction 

Extreme precipitation and flooding events are among the greatest risks to human life and property, 

and represent one of the main issues of the 21st century with significant societal and economic 

implications. To cope with these issues a Meteorological research major objective is to enable the 

acceleration and the integration of advances in the everyday forecasts thus improving the 

environment protection. Actually, predicting weather and climate and their impacts is a crucial 

task both for research groups as well for civil protection departments. Moreover preventing 

hazards such as floods and landslides needs to address manifold issues that involve not only 

meteorology scientists but requires a strong connection and collaboration with the ICT community 

to explore new technological solutions and approaches [1]. In particular, run prediction systems 

(e.g. WRF, MESO-NH) in a timely and efficient way, both for research and even more for possible 

operational application, usually requires the use of high performance computing resources that are 

both costly and not always easily accessible. In particular the Weather Research and Forecasting 

(WRF) model is a numerical weather prediction and atmospheric simulation system developed to 

advance the understanding and the prediction of mesoscale weather and accelerate the transfer of 

research advances into operations. This is “the reference” model for a large community of users, 

and reflects flexible, state-of-the-art, portable code that is efficient in computing environments 

ranging from massively-parallel supercomputers to laptops. The computational capacity of the 

underline system may actually represent a limitation in the every-day-life work of each 

meteorology scientist [2].  

A key factor of cloud computing is represented by its on-demand, pay-per-use approach 

towards virtualized and distributed ICT solutions – in contrast to the creation and the maintenance 

of expensive, tightly pre-configured IT infrastructures, necessary to grant analogous services at the 

same level of business continuity. Hybrid Clouds (HC) integrating internal (private) and external 
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(public) resources, couple the scalability offered by public Clouds with the greater control supplied 

by private ones. An (hybrid) Cloud Broker (CB) – acting as an intermediary between users and 

providers of public Cloud services – may support meteorologists in the selection of the most 

suitable computational platform depending on their simulation objectives, optionally adding the 

provisioning of dedicated services with higher levels of quality. 

Fostered by the research activities of the FP7 EU Distributed Research Infrastructure for 

Hydro-Meteorology (DRIHM) project (2012-2015) – aimed to enable Hydro-Meteorology 

research to make a step beyond the state of the art in the modeling of forecasting chain [3] – in the 

paper we analyze the performance behavior of a brokering algorithm for Hybrid Clouds in 

adequately responding to the operational constraints raised by different instances of  

meteorological models, that, as in the case of WRF, may have various kind of users and 

computational requirements [4]. We analyzed the behavior of different allocation strategies, 

through simulation, by comparing the results achieved by the brokering algorithm with respect to 

different system configurations and type of workloads. To this end the study will take into account 

both the CB than the user (i.e. meteo researcher and professional) perspectives, by considering 

metrics such as revenue, user satisfaction and system utilization. 

Section 2, introduces WRF, its computational issues and their relations with user requirements.  

Section 3 briefly reports on some related work. Section 4 presents the rationale under the 

brokering algorithm. Section 5 details the simulation set-up, while Section 6 presents and 

discusses the results. In Section 7 some conclusions are drawn.   

2 The Weather Research and Forecasting Model 

The Weather Research and Forecasting (WRF) model is a numerical weather prediction and 

atmospheric simulation system designed for both research and operational applications [5]. The 

effort to develop WRF began in the latter part of the 1990's and was a collaborative partnership 

among the U.S. Institutions, Universities and Laboratories, in particular the National Oceanic and 

Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR), 

and more than 150 other organizations and universities in the United States and abroad, [6]. 

Indeed, it represents a multi-agency effort to build a next-generation mesoscale forecast model and 

data assimilation system to advance the understanding and prediction of mesoscale weather and 

accelerate the transfer of research advances into operations. Its spectrum of physics and dynamics 

options reflects the experience and the input of the broad scientific community. In fact, WRF has 

grown to a large worldwide community of users (over 20,000 in over 130 countries), and it is now 

considered a community model contributed by the many research community developers.  

WRF is a next-generation forecast model and reflects flexible, state-of-the-art, portable code 

that is efficient in computing environments ranging from massively parallel supercomputers to 

laptops. The model serves a wide range of meteorological applications across scales ranging from 

meters to thousands of kilometers. Applications include real-time Numerical Weather Prediction, 

tropical cyclone and hurricane research and prediction, regional climate, atmospheric chemistry 

and air quality, and basic atmospheric research. WRF allows researchers to simulations using real 

data (observations, analyses) or idealized atmospheric conditions, [7]. The WRF model is 

frequently used in operational mode in a very large community, widespread from American 

continents to Europe, through Asia and Israel1. A part from U.S., where the model is run for real 

time forecasts from different department of the National Oceanic and Atmospheric Administration, 

as the Global Systems Division and the National Sever Storm Laboratory, and other University, 

the model is actually used also in Mexico and Uruguay. As for Europe, many national and regional 

forecasts are obtained exploiting WRF, let us cite the LaMMA Consortium in Italy, the Earth 

Sciences Department of the Barcelona Supercomputing Center in Spain, the Republic Hydro-

meteorological Service of Serbia. 

2.1 Computational aspects  

The WRF model represents the atmosphere as a number of variables of state discretized over 

regular Cartesian grids. The core is based on an Eulerian solver for the fully compressible 

nonhydrostatic equations. The model uses terrain-following, hydrostatic-pressure vertical 

 
1 WRF Real-time Forecasting, http://wrf-model.org/plots/wrfrealtime.php 
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coordinate with the top of the model being a constant pressure surface. The horizontal grid is the 

Arakawa-C grid. The time integration scheme in the model uses the third-order Runge-Kutta 

scheme, and the spatial discretization employs 2nd to 6th order schemes, [7]. Weather prediction 

codes are by nature I/O (mostly output) intensive, repeatedly writing out a time series of 3D 

representations of the atmosphere. Among other possibility, the most common standard used for 

data representation is netCDF. Parallel implementations of the model are distributed, it is possible 

to support multi-level parallelism: shared-memory (OpenMP), distributed-memory (MPI), and in 

hybrid parallel (message passing and multi-threaded) computation modes. Few experimental 

components have been ported on Graphics Processing Unit (GPU) with CUDA, [8] [9]. The 

parallel version decomposes the WRF domains in the two horizontal dimensions, thus it requires 

interprocessor communications between neighbors on most supercomputer topologies; each time-

step involves 36 halo and 144 nearest-neighbor exchanges (assuming aggregation), [10]. Data 

decomposition could exploit two-level of memory: distributed memory cranks and (again within 

each cranks) shared memory tiles. To simulate real cases, WRF needs initial and boundary 

conditions that may be provided by different global circulation models and reanalysis datasets. 

Physiographic data (digital elevation model and land use) are also needed.  

In the research version, the model supports horizontal nesting that allows resolution to be 

focused over a region of interest by introducing an additional grid (or grids) into the simulation. 

The nested grids are rectangular and are aligned with the parent (coarser) grid within which they 

are nested. Additionally, the nested grids allow any spatial and temporal refinements of the parent 

grid; compared other models allowing the nesting, the major improvement in the WRF’s nesting is 

the ability to compute nested simulations efficiently on parallel distributed-memory computer 

systems.  

An official benchmark is distributed with the aim of demonstrating computational performance 

and scalability of the model on target architectures [11]. Given the version of the code, and the test 

case, performance is expressed through model speed, ignoring I/O and initialization cost, and 

measured as the average cost per time step over a representative period of model integration. 

Scalability is given by the ratio of increase in simulation speed to the increase in the number of 

parallel processes. This is a measure of integration speed, and it would provide a means for 

comparing the performance of different architectures and for comparison with other models. 

Results are available for scientific community, and scientists interested in submitting their results 

obtained on a specific architecture have to follow a procedure. A benchmark exists also to test the 

GPU deployment of the model [12]. In this case, key computational kernels (within the dynamics 

and physics of WRF) are analyzed singularly. The aim is to characterize the performance of the 

kernels in terms of computational intensity, data parallelism, memory etc. thus to improve the 

effectiveness of the parallel implementations. Other contributions proposed a User-Oriented WRF 

Benchmarking Collection, [13] and focus on supporting users in setting up model domains for 

WRF simulations, along with aiding in decisions related to necessary hardware and software 

resources for various model configurations. Thus, different demanding configurations are 

evaluated to support users in the estimation of resources needed to integrate over millions of grid 

points. These represent typical user needs in complicated and demanding multi-nest and multi-

shaped configurations used in regional modeling applications. The evaluated metrics are measured 

in minutes, and include the time spend in doing I/O, a consistent part of the model; thus it is 

possible to understand the real consumptions of the model when used in complex configurations. 

A complex configuration corresponds to highly demanding computations, both in terms of 

memory space and CPU time. For instance, considering the case of a 3-domain configuration2 

composed of about 17 million grid points and 24 GB of input data files. A WRF computation on 

an Opteron processors connected through an Infiniband3, required an execution time for each 

integration step, from about 20 hours when using 96 cores, to 3 hours with 512 cores. The same 

configuration run on Intel processors connected through a Infiniband4 requires about 16 hours with 

56 cores and 2 hours with 620 cores.  

 
2 http://weather.arsc.edu/WRFBenchmarking/3dhrlev.html 
3 http://www.arsc.edu/arsc/resources/pacman/index.xml 
4 http://vsc.ac.at/about-vsc/vsc-pool/vsc-1/ 
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2.2 Users Requirements 

Working in both operational and research modes, the variety of forecasts and analyses that can be 

performed by WRF is very large, with model instances requiring from hours to days of 

computation and a not negligible memory requirements. Moreover, especially when the model is 

used for research issues, the computational capacity of the underline system may actually represent 

a limitation. To support such demanding WRF instances it is evident the relevance of ensuring the 

availability of powerful resources to complete model executions. In fact, it is a quite common 

situation that WRF demanding runs may be truncated from HPC system administrators when they 

violate possible limitations set on wall clock time and/or memory quotas for “general” 

computations. To cope with this situation, WRF enables the periodic (in simulation time) creation 

of restart files, i.e. checkpoints, to resume the computation from the last restart point printed out, 

such recovery mechanism result in increases of CPU and memory usage of each model run. 

Notwithstanding these common issues, various requirements arise, depending on the role and 

the needs of the WRF users, which impact on the selection of the most suitable resources to 

execute the WRF simulations. For example, if used for weather forecasts, WRF execution usually 

requires high levels of urgency with strict not negotiable deadline. When used for advanced 

research aims, large computations on multiple nested domains could require long availability 

assurances to avoid the overhead due to recovery steps, while deadline may be a minor issue.   

In the context of a HC devoted to the execution of different kind of workload, in the paper we 

considered the coexistence of four classes of users, namely Advanced Researchers (AR), Medium 

Researchers (MR), Weather Forecasters (WF) and Students (ST).  Each user has to express a set of 

parameters useful to configure the setting of her simulation according to her specific requirements 

and execution options. This configuration setting has to be declared in the namelist.input file, also 

containing other mandatory information, as for example the microphisics and parameterization to 

be applied, as well as the domain resolution.  

Using WRF for scientific research leads to massive simulations both in terms of CPU and 

memory requirements. In fact in research case, improvements in predictability of extreme events 

can be obtained considering run at very high resolutions, namely cloud-permitting (i.e. 1-5 km grid 

spacing) and/or cloud-resolving (i.e. 1 km grid spacing or less) simulations. For example, an 

improvement in modeling atmospheric scenarios inducing flash floods could be achieved with 

their characterization in terms of kinematics, thermodynamics and microphysics properties 

[10][14]. The use of HPC resources is essential to enable such studies at very high-resolution, 

involving the exploitation of nested domains. Depending on the degree of accuracy required by the 

simulation activity we differentiated between medium and advanced researchers. The first require 

a two-domains simulations at cloud permitting resolutions. The latter require the execution of 

three-domains simulation, of which the first two domains at cloud permitting resolutions, and the 

third one at cloud resolving resolution. Due to the computational requirements of researcher’s 

instances, the duration of the runs is actually relevant, also when employing highly parallel 

resources (see Table 1). In particular, to support AR’s heavy computations, without incurring in 

possible time costly interruptions, it is important that the broker guarantees the highest availability 

of the scheduled HPC resources. For this reason AR’s request of execution are scheduled on the 

HC private zone. Conversely less demanding MR requests, may be allocated, at a reduced cost 

(see Table 2), independently on the private or public zones, without have to grant the same level of 

availability.   

When used in operational mode WRF usually run at cloud-permitting resolution, with a high 

degree of urgency expected by weather forecasters therefore requiring executions on 

supercomputers or on dedicated clusters. To respect such hard constraint on response time (in the 

order of hours) the CB must guarantee WFs that their executions are always satisfied in time by 

supplying powerful parallel resource thus to obtain the fastest results. As explained in next section, 

to enforce strict deadline requirement, WF requests will always be privileged respect the others.  

Students attending a course should learn how to run and configure the model, rather than 

deeply analyzing simulation results. In this case performance is not the main issue, nor the 

complexity (i.e. number of grid points and levels of nesting) of the domain. Therefore students’ 

runs of the model do not require high level of parallelism, long computations and large memory 

space. A student requests may find space indifferently on private or public resources.  

For each class of users, Table 1 summarizes the configurations of the WRF instances, along 

with the simulated period and the execution times as resulted on the cluster detailed in Section 5.3. 

The second column reports the extension (in km) of the geographical domain to which the 
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simulation applies. The domain is partitioned in a 3D regular grid, according to the spatial 

resolution determines by columns three and four: first the horizontal resolution (in km), then the 

number of points in each dimension of the geographical grid5. The temporal resolution (number of 

computed time-steps) is specified in the fifth column. The total duration of the simulated period is 

given in column six, while column seven reports the computational time required running the 

proposed configuration on the testbed machine. Finally, last column express specific requirements 

(if any) of the submitted requests. Each raw of the table specifies each domain involved in the 

simulation. As previously stated researcher requires complex computations involving up-to three 

nested domains. From table it is clear how execution time is strictly related to both spatial and 

temporal resolution as well to the levels on nesting required. 

Table 1 Configurations of WRF instances for different class of users 

User Dataset 

 

(Km) 

Horizontal 

resolution 

(Km) 

Number of 

points 

Nx/Ny/Nz 

Timesteps 

 

(s) 

Simulated 

period 

(h) 

Execution 

time 

(h) 

Requirements 

MR 1000 5 200/200/84 2 24-72  - 

 400 1 400/400/84 2 24-72   

      22-66  

AR 1000 5 200/200/84 1 12-36  High 

 400 1 400/400/84 1 12-36  Availability 

 200 0.2 100/100/84 1 12-36   

      37-111  

ST 500 5 100/100/32 30 24-72 1-4 - 

WF 1000 2.5 400/400/40 10 24-72 2-6 Strict deadline 

 

Several commercial [15][16][17] and open source [18][19][20] Cloud broker platforms and 

tools support organizations in consuming and maintaining cloud services, being IaaS, PaaS or 

SaaS, particularly when they span multiple providers. These systems generally support the creation 

and the management of various cloud environments – whether public, private or hybrid clouds – 

and may be provided on-premises, as SaaS or either solutions. Almost all these tools grant some 

QoS feature like security, reliability and resiliency. Scientific organizations, like universities and 

research centres; weather operational departments belonging to public administrations or SME 

operating in the ICT sector, can advantage of cloud brokers platforms, to exploit their internal ICT 

infrastructures, combined with public IaaS providers, making the experience gained in configuring 

and executing specific Meteorological packages, such as WRF, at disposal to third party research 

groups. 

To coordinate the selection of internal and external resources the brokering approach for hybrid 

Clouds, presented in [21], may be adopted for providing a customizable delivery of meteorological 

services. In the following, we analyse the economic impact of this brokering methodology respect 

to a CB and to her, here above described, classes of WRF users. 

3 Related Works 

Clouds are increasingly being used by businesses, governments and scientists in areas from 

astronomy to zoology. Many experts affirm that the demands of 21st century science mean that 

eScience will be largely compute in the Cloud. This vision is based on many reasons, foremost, 

computational requirements of scientists are bursty, needing massive capabilities for short periods 

of time, and the cloud supports for short temporary peaks in resource needs. The 21st century 

science frequently requires the sharing of large datasets and their process through an adequate 

computational infrastructure, hosting dataset and computing service in the clouds will be much 

easier and faster than purchase physical devices, with higher flexibility in setting the environment, 

and replication opportunities. Furthermore, applications are more and more multidisciplinary and 

progress in science increasingly requires collaborations among many distributed groups. The cloud 

can facilitate these collaborations. Of course, many barriers in the usage of cloud computing for 

 
5 Actually, Nx and Ny are the number of points of the horizontal grid, while Nz is the number of vertical 

levels considered in the configuration. 
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research and science are still present, those include the perception of “too early”, i.e. many open 

issues have to be studied, and many unresolved issues on how, in particular, domain scientists can 

best leverage and exploit cloud computing, and hybrid infrastructure composed by cloud and grid 

resources. [22, 23]. 

 It is possible to find different projects exploiting the clouds to design and/or to build specific 

eScience environments o to enable the porting of specific codes on the cloud in various application 

domains. For example in [24], the implementation of a MODIS (Moderate Resolution Imaging 

Spectroradiometer) satellite data re-projection and reduction pipeline in the Windows Azure cloud 

computing platform is presented. Authors claim to hide data complexities, processing and 

transformation from end users, and to dynamically scale to satisfy scientists’ various 

computational requirements in a cost-efficient way. Authors affirm that their experience has 

further demonstrated the potential of using cloud computing to lower a series of data entry barriers 

for eScience by leveraging the scalable storage and computing services, and in the same time, 

outline the unresolved issues related to the use of the cloud and troubleshooting problems defined 

as “not only time-consuming, but sometimes very tricky”. In the field of hazardous chemicals 

releases, a hybrid cloud computing platform is proposed to solve the problem of hazardous 

chemicals releases monitoring and forecasting, [25]. Authors present hybrid cloud architecture, 

called Hazardous Chemicals Monitoring Cloud (HCMC), which provides hybrid management for 

HPC and Virtual Private Cloud, and storage resources for hazardous chemicals releases data 

processing and analysis. A scheduling algorithm and QoS policy to assure efficiency of the 

platform is discussed. Although authors affirm that HCMC is still in a theory-research stage, 

considering that many chemical domain specialists believe that clouds represent the next 

generation of mass computing services, future version of HCMC will be provided as a service to 

process data collected from huge numbers of distributed wireless sensors. In the context of natural 

language processing (NLP), GATECloud.net has been developed as a cloud-based platform for 

large-scale NLP research exploiting the Amazon cloud [26]. GATECloud.net is used to layer the 

existing GATE framework on top of Amazon’s cloud infrastructure and services, and to shield 

users from infrastructural issues as data management, and deployment of virtual machines. The 

platform has been made available to the public as a beta service (June 2011). During its first six 

months of operation, the number of processed documents was 4.7 million, amounting for an 

accumulated server time of 430 h. This level of usage indicates a need for such tools and a clear 

interest from researchers and the wider community. 

Actually the benefits of a possible use of the cloud are appealing also for Hydro-

Meteorological scientific community, thus a part from the use of Grid computing [27, 28, 29] it is 

possible to cite Hydro-Meteorological applications running on the Cloud. For example, the 

HydroNET portal (www.hydronet.eu) [30] supports water managers in assessing historical, current 

and forecasted precipitation events, through the combination of different tools already developed. 

Such combined solution provides a simplification for the work of hydrological practitioners of 

municipalities and water boards; municipalities use the portal in operational management of 

excessive rainfall and floods and for post-flood analysis, as a decision support system. HydroNET 

has been developed as a SaaS cloud application and authors claim use of a hybrid cloud. The 

private cloud appears to be used as the primary computing environment, managed by a provider of 

information; while the public cloud for an expansion of computing power when needed. In [31] 

authors present CloudCast, a mobile application that provides short-term weather forecasts aimed 

at the real-time nowcasting on a specific geographical location. CloudCast leverages pay-as-you-

go cloud platforms, and has two components: 1) an architecture linking weather radars to cloud 

resources, and 2) a Nowcasting algorithm for generating accurate short-term weather forecasts. 

This implies a significant data staging to the cloud, which determines possible bottlenecks. To 

analyze the compute feasibility of cloud services for real-time application of short-term weather 

forecasting, authors tested four cloud services, two commercial cloud services—Amazon’s EC2 

and Rackspace Cloud Hosting—as well as two research cloud testbeds—GENICloud and 

ExoGENI cloud. 

As previously mentioned WRF is a highly demanding application usually requiring HPC 

resources. For this reason distributed infrastructures have been take into consideration for its 

running. WRF4g is a framework for the execution and monitoring of WRF on Grid environments 

[32]. The framework claims the ability of running experiments on different computing resources in 

a transparent way through the DRM4G (Distributed Resource Manager), which allows the user to 

merge local and remote resources, and Grid infrastructures. Other examples of the WRF porting on 

the Grid are provided in [33,34]; both works give a detailed description of the strategy used in the 
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development of the Grid implementation, and leverage specific Grid infrastructure as SEEGRID-

SCI for the former and the D-Grid for the latter. The former emphasizes the big need and the 

difficulties occurred for porting the WRF model to the Grid. The latter proposes a performance 

measurement through the run of the official WRF benchmark [11], and discuss specifically 

performance issues. An example of WRF running on the cloud is given in [35]. To improve 

weather forecasting in Central America, the SERVIR team, in collaboration with NASA's Short-

term Prediction Research and Transition (SPoRT) Center, is using the NASA Cloud Services to 

forecast thunderstorms and other weather-related hazards in Central America. SERVIR is 

producing daily runs of the WRF model to capture large scale weather features moving through the 

area, as well as details about individual thunderstorm locations and local impacts of terrain on 

temperature, wind, and precipitation. SERVIR is the US Regional Visualization and Monitoring 

System with the sponsorship and active participation of NASA and USAID. 

4 Brokering algorithm for HC 

In [21] we presented a QoS aware brokering algorithm for the allocation of request of execution of 

business services toward an HC infrastructure. In such composed environment, the computing 

resources managed by a CB may be supplied by one or more public Cloud provider (e.g. AWS) 

and by the CB selecting from its internal asset. 

In the cited scenario, two classes of service requests were considered: requests with specific 

QoS requirements (i.e. security, availability) which demanded for a protected execution on the CB 

internal resources; and requests that do not require any particularly privilege that can therefore be 

executed on any available resource.  

In the following paper we adapt this approach to deal with heavy computation demanding 

meteorological requests (i.e. various kind of WRF execution), with a further constraint related to 

the class of Weather Forecasters (WF), that is characterized by the need to be mandatorily (i.e. 

always) executed in time. We consider therefore the class of demanding requests, to be subdivided 

into two: WF and AR, with the latter that, still requiring to be executed in-house, can be rejected 

(i.e. delayed) if no space is available. The other requests (i.e. MR, ST) can indifferently be 

executed in the private or public zone.  

The requested services are delivered by the CB through VMs equipped with the necessary 

software (i.e. WRF instances with configured parameters according to the related namelist.input 

file). Based on the brokering algorithm CB allocates the VM to the private or public Cloud zone, 

depending on the availability of feasible private resources and according to service’ computational 

demand and non-functional constraints. The purpose of the brokering algorithm is of maximizing 

the number of satisfied users, by reducing the rejected requests, along with the CB’s revenue, by 

maximizing the execution of the VMs on its private Cloud. 

4.1 Brokering strategies 

According to Table 1 in the following we call, Private cloud Zone (PZ) service, a request of 

service execution that, due to its specific requirements (e.g. urgency, high availability) need to be 

executed on a dedicated set of resources (i.e. WF, AR), and Any cloud Zone (AZ) service, a 

request that can indifferently executed on the private or the public zone (i.e. MR, ST). Allocation 

strategies aimed at satisfying the majority of PZ requests, tend to be more conservative hence less-

profitable. On the other side, an allocation mechanism that indiscriminately assigns AZ requests to 

private nodes increases the number of missed or delayed PZ requests. To balance between CB 

eagerness and user satisfaction our allocation solution use part of the private resources to run AZ 

services (aimed at increasing the total revenue), reserving a reasonable amount of them free thus to 

satisfy possible future PZ requests. 

Considering the CB operating a HC composed of two administrative zones, the private and the 

public one, amounting for N and P (with N<<P) physical servers respectively; the brokering 

algorithms schedules job by applying heuristics based on different quota Q, Q ≤ N, of private 

resources dedicated to the execution of type PZ requests. Depending on the value of Q, the 

brokering algorithm allows depicting three allocation patterns, namely zone strategies: Feasible (Q 

= N), Static Reservation (0 < Q < N) and Max Occupation (Q = 0). With Feasible (FE) all private 

resources are dedicated to perform PZ requests only (i.e. all AZ are executed on public zone). 
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According to Max Occupation (MO), no resource is used exclusively to perform PZ. Static 

Reservation (SR) reserves a fixed quota of resources Q to execute PZ requests and lets N-Q 

resources free to execute the other kind of requests (i.e. AZ). As we discuss in Section 6, the 

choice of Q affects both CB’s revenue and user satisfaction, and strictly relates to the actual 

system workload.  

Moreover, to cope with the strict deadline requirement related to WF requests (see Section 2.2), 

the algorithm has been modified with respect to the basic version presented in [21]. Independently 

of the actual strategy deployed, any request r ≠ WF is allocated in-house if, and only if, available 

space is left to execute any WF requests occurring in the time r is executed. If r ϵ AZ it is allocated 

immediately on the public zone, elsewhere (i.e. r=AR) it is rejected. As we discuss this change to 

the original algorithm impacts on all performance metrics. 

4.2 Performance metrics 

The performance of the brokering strategies FE, SR and MO at varying system and workload 

configurations have been measured with respect to three metrics: CB’s revenue, user satisfaction 

and system utilization. 

As to user satisfaction we considered the total number of requests accepted in the simulated 

period. This amounts for the sum of the throughput Xi [36], i.e. number of requests completed by 

each server i of the Hybrid Cloud: 

accepted_req = ∑i  Xi             i=1,…,N+P 

However, as all AZ requests are always satisfied (either on private or public zone), user 

satisfaction is better assessed by refused_req the number of PZ requests refused during the 

observation period. Given M the total monthly arrival rate of submitted requests:  

refused_req = M - accepted_req 
The revenue of the CB is function of the service price that, in the case of hybrid cloud, may 

include the cost to rent resources from a public provider. Given a request to execute, for the time t, 

a service of type k, a customer has to pay the CB the price pk:  

pk = Bk + t * Ck 

Where the brokering service price Bk is the fee owed to the CB to handle the request, 

irrespectively if the request is executed in-house or on the public Cloud. The second term is the 

actual provisioning price, proportional to the execution time t and varying according to the 

requirements of the specific service and expressed by the hourly cost Ck. The revenue of the CB to 

execute for the time t, a request j of class k on server i is: 

revenueij = Bk + t * Ck,  i ∈ private resources 

revenueij = Bk  i ∈ public resources 

The (monthly) total CB’s revenue achieved for its brokering activity, accounts for all the Xi 

requests executed on each server i of the whole hybrid cloud: 

revenue =∑i ∑j revenueij           i=1,…,N+P; j=1,…, Xi 

The utilization U of the private Cloud, under control of the CB, is given by the busy time Ui of 

each private server i:  

U =∑i Ui            i=1,…,N 

5 Simulation Set-up  

In this section we describe the parameters used to perform the experiments, which are the arrival 

times and the average service times for the classes of requests, the prices we considered and the 

composition of the private Cloud infrastructure. 
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5.1 Arrival times and service demand times 

The values of the parameters used in the simulation are based on the information collected in many 

years of Hydro-Meteorological research at the Inter-University Centre for Research in 

Environmental Monitoring (CIMA Foundation6). As regards the arrival and the service demand 

times we used synthetic workloads generated by statistical functions. The frequency of arrivals of 

the requests (λk) of each class of service k ∈ {MR, AR, WF, ST}, during a month is modeled with a 

uniform distribution, not specifying particular daily (e.g. daytime/night-time) or monthly (e.g. 

weekdays/weekends) time ranges. With respect to more sophisticated solutions [37], this choice is 

justified by the fact that at least MR and AR jobs require several days of execution times, and to 

the end of out analysis, it seems not particularly relevant to distinguish the exact moment of their 

arrival. The service demand times of the classes of requests are uniformly distributed in the 

specific time-range of their class (e.g. AR requests lay between 37 and 111 hours), as defined in 

Table 1. 

5.2 Definition of prices  

Among the public Cloud providers, Amazon EC2 provides suitable solutions for High 

Performance Computing applications, so we considered its pricing models7 for their adoption in 

our simulation. In particular, due to its correspondence in term of technical requirements and 

economic convenience, we adopt, as reference VM instance, the Amazon “C” instance type 

corresponding to a two 4-cores Xeon X5570 processors. At present the “C” instance is offered at 

$1.3 per hour according to the US East (N.Virginia) region prices in September 20138.  

  According to the definitions of Section 4.1 we assumed that AZ customers (i.e. MR, ST), not 

requiring any specific QoS, will pay the Amazon price plus the brokering service Bk that the 

simulator computed as a 5% of the provisioning price. This solution is reasonable as the brokering 

algorithm is always able to allocate their requests (at least) on the public Cloud on the basis of the 

scheduling strategy and the private Cloud load. For what concerns PZ customers, as WF and AR 

respectively require urgency and high availability assurance, they are always scheduled on CB’s 

private zone, therefore major prices are eligible from the CB to execute such requests. Moreover as 

WF requests have always being satisfied in-time, we assumed for them a price higher than the one 

paid by AR customers (see Table 2).   

5.3 Private Cloud system configuration  

To define the configuration of the simulated private Cloud infrastructure we started by considering 

a series of experiments carried out on the SUPERMUC’s migrations system9 accessed within the 

context of the EXtreme PREcipitation and Hydrological climate Scenario Simulations (EXPRESS-

Hydro) project10 that performs high-resolution regional dynamical downscaling of climate 

scenarios produced by a global climate model, using a state-of-the-art convective model.  The 

performance results achieved resulted in the data reported in Table 1. Based on those results we 

then performed some benchmarks on the Amazon EC2 instance types and we derived the number 

of VM instances and the service time for each class of requests as reported in Table 2, on the basis 

of the “C” instance type. We assumed that the resulting cloud configuration is composed up-to 120 

nodes equipped with two 4-cores Xeon X5570 Processors, 23 GB of Ram, linked together via a 10 

Gigabit Ethernet network.  

Table 2 Simulation parameters 

User Monthly 

Arrivals 

#VM 

instances 

Amazon 

Instance 

Type 

Cores Service 

(h) 
PZ 

Price/h 

AZ 

Price/h 

MR 8 16 C 8 22-66  $ 1.3+5% 

AR 4 64 C 8 37-111 $ 2.4  

 
6 http://www.cimafoundation.org 
7 http://aws.amazon.com/ec2/pricing/ 
8 http://aws.amazon.com/ec2/instance-types/ 
9 http://www.lrz.de/services/compute/supermuc/ 
10 http://www.lrz.de/projekte/hlrb-projects/0000000000F43551.html 

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/instance-types/
http://www.lrz.de/services/compute/supermuc/
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ST 60 1 C 8 1-4  $ 1.3+5% 

WF 28 16 C 8 2-6 $3.6  

6 Simulation Results 

We have compared the FE, SR and MO zone allocation strategies, by analyzing the achieved CB 

revenues, users’ satisfaction and system utilization at increasing workloads. Due to WF requests 

peculiarity, i.e. the requirement of always been timely served, we first examined the results 

achieved when satisfying such constraint, with the ones obtained by applying no reservation on 

private resources. This comparison sheds light on the algorithm behavior in dealing with more 

complex situations than the one previously studied [21], where only two categories of request were 

considered. We then examine metrics variations at doubling system configuration.  

In order to ensure meaningfulness of simulated measurements a large number of iterations have 

been carried out. In particular, for more than 100 iterations, we have not got appreciable 

differences in the obtained results. The value of parameter Q for the SR strategy has been set to 

50% (e.g. half the private resources) for every scenario considered. All simulations take place in a 

timeframe of one month, and monthly workload (λ) varies between 100 and 400 requests 

according to the per-class subdivision listed in Table 2. 

6.1 Basic scenario 

Figure 1 shows the expected monthly average revenue at increasing λ. For all the three policies we 

can notice revenue rising at λ increases. We also see that this increase tends to proportionally 

diminish for high values of λ. MO policy allows higher revenues than the other two for all load 

rates. This fact is due to MO ability of accepting a greater number of AZ requests respect than SR 

and FE. The latter, in particular, neglects any AZ request thus renouncing to cash the provisioning 

price (i.e. t * Ck). Anyway, the gap amongst FE and the other two strategies constantly reduces at 

higher loads, due to the inability of the private resources to host an increasing number of requests. 

It is quite surprising that notwithstanding MO has potentially the whole set of private resources at 

its disposal its major revenue compared to SR is almost negligible. It seems that something hinders 

its ability to fully exploit such greater asset. Actually this fact is reasonably explained if consider 

that for satisfying WF requests a lot of resources are left idle, as shown by the utilization graphs of 

Figure 2.  

 

 

Figure 1 Monthly CB’s revenue. 

Indeed for all three strategies we observe that utilization is always under 70% even at higher 

loads. For all loads SR is almost superimposed to MO, justifying their quite identical revenue 

results. Moreover for λ > 200 FE curve tends to approximate the others two. Thus at least 30% of 

resources are actually unavailable for all the strategies just to guarantee the timely execution of 

WF; if we look at the user satisfaction graphs in Figure 3 we can see how this restriction penalizes 

AR requests. 
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Figure 2 Private zone utilization U at varying arrival rates. 

Each histogram in Figure 3 depicts, for each λ/strategy pair, the total of AR requests refused. 

Indeed these are the only possible refused, as WF requests are always mandatorily executed and 

the AZ ones can always be address to the public Cloud. With a monthly arrival rates of AR 

workload assuming values in the set {4, 8, 12, 16} we observe a percentage of refused of 50%, 

75%, 91% and 93%. This extremely poor performance is caused by the conservative nature of the 

brokering algorithm, aimed to fulfill WF requests, along with the heavy computation required by 

AR and by the (limited) number of system private resources. Indeed a medium AR run employs 

512 cores (out of 960) for an average period of 74 hours. Let us call ar such request.  Even 

considering the base case (λ = 100), during that period up to four WF requests could arrive (one 

per day) each requiring 128 cores, plus almost one MR (having a weekly rates of two requests) and 

several (circa 7.5) ST ones. If the last two classes do not affect FE strategy, we see that in the 

worst case if four WF should arrive during the time ar is running at least one should be rejected. 

To avoid such situation ar is refused. Worst things occur for SR and MO that use part of private 

resources to run AZ requests. This attitude is further amplified at heavier workloads. 

 

 

Figure 3 Average monthly number of refused AR requests. 

Before considering what happen to the refused_req metric if system is upgraded, to ameliorate 

AR users satisfaction, it is worthwhile to compare the brokering behavior when no limitations is 

set to always satisfy WF users. 
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Figure 4 Average monthly number of refused AR and WF requests, when no deadline constraint is 

applied to WF. 

In Figure 4 are reported the number of PZ requests when no reservation is made to grant WF 

strict deadline. In this case, as expected, AR users are lesser sacrificed with respect the previous 

case. When an AR request arrives it is immediately allocated, if there are available resources for 

its execution, no mind how many space is left for future WF ones. These lasts are indeed greatly 

penalized in favor of the greedier AR. Such behavior is obviously unacceptable for the situation 

considered in the present paper subject to the specific requirement of WF. In more general cases, 

however, as the one presented in [21] the subdivision of user requests in just two categories, if no 

other distinction is added to PZ classes, proved to be more suitable to fully exploit the system 

asset of the HC, as witnessed by the utilization graphs based on that weaker assumption, as 

reported in Figure 5.  

From Figure 5, it is clear the way the three strategies use system resources coherently with their 

increasing values of Q. Now SR (Q = 50) and MO (Q = 100) curves are neatly separated, showing 

that the last better exploits the whole set of system resources until saturation. We can conclude that 

the constraint posed by WF users obliged the CB to not fully exploit its resources; this loss is 

(partly) compensated by the major price achieved to execute WF requests.  

 

 

Figure 5 Private zone utilization U at varying arrival rates when no deadline constraint is applied to WF.  

Indeed if we look at the CB’s revenues when no restriction is set on allocation of PZ requests, 

we see from Figure 6 that revenues are still comparably higher than the ones achieved by the basic 

scenario, notwithstanding the prices for WF have been reduced by a 50% (i.e. 2.4$) and equal to 

the ones applied for AR. This fact do not surprise if we consider from Figure 4 that, in the general 

case, several time-consuming AR requests are executed. These requests have an averagely 74 hour 
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execution time against the 4 hour averagely needed to run a WF simulation. Moreover WFs 

employ 16 VMs against the 64 used by ARs. Thus from the CB point of view this seems to be a 

preferable solutions, even if WF users suffer a high number of refusals as workload increases. 

 

 

Figure 6 Monthly CB’s revenue when no deadline constraint is applied to WF. 

6.2 System upgrade 

We come back to the initial scenario (i.e. constrained by WF), and analyze the improvements 

achieved by doubling the number of private resources (i.e. N=60) resulting in a total number of 

1920 cores. In Figure 7 the percentage gains achieved by each strategy with respect the basic 

scenario are reported. With 100% more private nodes available, system is now ready to satisfy a 

greater number of incoming AR and AZ requests (see Figure 8). This major system capacity allow 

to achieve percentage gains up to 95% for MO at λ=400, with good figures for the other load rates 

and strategies considered. Apart from the lowest rates with just a marginal improvement (1,3%) 

also FE benefits of the major size of the pool set of nodes up to 62% at λ=400.We can also see 

from the gap between SR and MO, that the last, due to its ability to allocate all the private 

resources (Q = 100), is now able to better exploit this pool, thus resulting in noticeable better 

revenues than SR. Nothing surprising: the more computation availability, the more AZ requests 

performed in-house instead turned to the public zone, the higher the revenues. For this reason, both 

SR and MO always outperform FE, as it completely renounces to the incomes deriving from the 

execution of AZ requests. 

 

 

Figure 7 Percentage revenue increases with respect the basic scenario (60 vs. 30 nodes). 

The major revenues achieved by the upgraded system firstly result from the ability to satisfy 

incoming AR requests. Figure 8 outlines the number of AR refusals showing a dramatic 

improvement, with respect the 30 nodes scenario. For λ<300, no AR is rejected for FE and SR, and 

just 1 (out of 8) for MO. Even for λ=300 we have 8% of refused (one only) instead of about a 90% 

of refusals of the basic case, for FE and SR. At this load rate also MO gives an acceptable 16% 
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percentage of refusals. Things worsen at the maximum workload, even if FE and SR show 12.5% 

and 25% of AR rejected, almost acceptable if compared to 87.5% and 93.7% of the basic scenario. 

 

 

Figure 8 Average monthly number of refused AR requests with a 60 nodes system. 

Before concluding, we can summarize that a significant upgrade to the system resources can 

effectively improve CB’s profit as well the level of satisfaction of her customers. The choice of the 

strategy that better fits to the involved parties’ goals, has to be analyzed prospectively by the CB 

taking into account the trade-off between the two metrics. SR indeed grants a more that 

satisfactorily level of user satisfactions along with a good revenue response for workload rates up 

to 300 arrivals at month. If the CB privileges revenues, MO can be a valid option, resulting in the 

risk to upset a, however, reduced number of AR users (for λ<400). Finally in the case of highest 

foresee arrivals, FE could be considered the best alternative to satisfy a great number of users 

(388), penalizing just two of AR ones, but at the expenses to see her revenues significantly be 

reduced.  

7 Conclusions 

The pay-as-you-go modality offered by Cloud Computing makes it an appealing ICT solution for 

high-demanding e-Science applications like weather prediction simulators. These complex 

scientific packages may benefits of a number of Cloud opportunities: the easy deployment of 

computational (SaaS, PaaS) or infrastructural (IaaS) services; the scalability of the requested 

hardware that allows to effectively dealing with workload variations; the availability of pre-

configured virtual machines that can assist users in quickly performing their simulations. Small-

medium research institutions as well public administration departments (e.g. civil protection) 

operating in the meteorological field, often lack sufficient amount of time and money to create and 

maintain in-house HPC infrastructures suitable for processing high volumes of weather data at the 

required speed. Moreover, QoS features such as high availability, resiliency, urgency and enabling 

factors like customizability are critical points to consider when choosing ICT service providers. 

All these factors make cloud brokers invaluable actors in the Cloud Computing market for their 

ability to interface scientific customers with cloud service providers.  

In this paper we presented a brokering system for Hybrid Clouds and its adoption to execute 

various instances of the weather prediction WRF model, by studying the performance of three job-

scheduling strategies (i.e. FE, SR and MO). Based on the reservation of a quota of private Cloud 

resources, the brokering tool manages the allocation of users’ requests towards the public or the 

private Cloud zone depending on the various user requirements, model computational needs and 

the workload of in-house resources. Simulation results examined the response of the various 

policies in terms CB revenues, system utilization and user satisfaction. 

Differentiating from a previous work, we saw that urgency requirements like the one posed by 

WF, demand for an over-dimensioned private infrastructure thus to efficiently deals with various 
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classes of users, without too much penalizing some of them (i.e. AR). Once properly dimensioned, 

the private zone, seems offer adequate space to allocate the great part of requests, at almost the 

various workloads, and in the meantime is able to grant significant (with respect the initial 

scenario) revenues to the CB.  

From the results analysis followed that, although MO is certainly the best policy as regards CB 

revenue, it majorly penalizes AR customers, at medium-high load rates. By contrast FE is more 

customers safeguarding at the cost of diminish CB revenues. For this reasons SR, which follow a 

less greedy approach, without too much disregards users’ needs, seems a good trade-off 

compromise between CB economic goals and users’ satisfaction. 
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