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ABSTRACT: Herein, we report on the development of a waste
minimization/valorization methodology applied to the representa-
tive benchmark Sonogashira cross-coupling reaction performed in a
continuous-flow reactor, featuring a continuous-flow downstream
membrane organic/aqueous separator to recover medium and
products with minimal waste. The protocol is based on the use of a
biomass waste-derived heterogeneous Pd-based catalyst, which is
obtained from the valorization of urban-waste pine needles (PiNe).
In a circular economy approach, the PiNe biomass has been proven
to be capable of producing an effective active carbon support for
Pd nanoparticle immobilization. In addition, the catalyst has been
utilized in an azeotropic mixture formed by industrial waste-
derived cyclopentyl methyl ether (CPME) and water. Thanks to this combination and with the adoption of flow conditions, high
yields of final target products could be accessed with high stability and durability of the catalyst. Final isolation of the products has
been realized by setting an in-line liquid−liquid separator in flow, which has also allowed CPME recovery with a significant
reduction of the waste generated. The protocol has been applied to the representative preparation of eniluracil, a GSK API.

KEYWORDS: waste valorization, waste minimization, waste-derived heterogeneous catalyst, circular economy, copper-free Sonogashira,
continuous flow, CPME/water azeotrope

■ INTRODUCTION

Sonogashira cross-coupling is a widely useful synthetic tool
allowing the introduction of an acetylenic moiety in a variety of
molecular structures.1−4 Since the seminal work by Sonoga-
shira and Hagihara,5 the protocol has been largely studied and
improved by exploiting the use of inorganic or organic bases
under homogeneous or heterogeneous conditions and in the
presence of a wide range of reaction media.6−15

Among the metal catalysts, palladium is arguably the
preferred choice for the promotion of Sonogashira cross-
coupling reactions. In all cases, the need for its complete
removal from products must be considered, and therefore,
especially when homogeneous palladium catalytic systems are
used, additional wasteful purification steps are necessary.
In recent decades, several heterogeneous palladium catalytic

systems have been developed and proposed with the intention
of not only simplifying the separation of the catalyst from the
reaction mixtures but also realizing its effective reuse to
minimize the loss of extremely precious palladium. Among the
heterogeneous Pd-based catalysts used in the Sonogashira
cross-coupling, Pd/C is an effective and preferred choice due
to its thermal stability, low cost, and large availability.16,17

Our research program aims at developing efficient metal
heterogeneous catalytic systems,18−21 while we are also
contributing to a circular economy approach working on
biomass valorization.22−25 Recently, we dedicated our
attention to the valorization of urban waste and exploited
biochar derived from local biomass as a viable alternative to
carbonaceous supports for the preparation of Pd-based
heterogeneous catalysts.
Biochar is abundant and can be a valuable means to dispose

and add value to waste biomass. Biochar is a porous, high-
carbon material produced from the conversion of renewable
biomass. Importantly, its physical and chemical properties can
be tuned depending on the conditions used for its preparation.
As a result, a very wide range of functional carbon materials
can be produced for different applications such as soil
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conditioning or adsorption/degradation of pollutants in
water.26,27 Despite its good advantages, biochar has arguably
received scarce attention in the field of heterogeneous catalysis.
Only very recently has sulfonated biochar been used for the
production of biodiesel from waste oils, highlighting its
potential as a catalyst.28 It has also been proven that it may
be effectively used as a surrogate for commercial activated
carbon to stabilize metal nanoparticles.29−31

On the coast of central Italy and also in several other
Mediterranean areas, pine needles represent a large portion of
annoying urban waste that occupies large volumes and needs
to be appropriately collected and burned for being disposed.
New ways to transform this waste into a valuable product are
desirable and may pave the route to a change in the local
micro- or small-manufacturing opportunities.32

While aiming at the development of novel heterogeneous
catalytic systems, it is always necessary to consider how its
efficiency can be strongly affected by the solvent used as a
medium during the catalytic tests. Accordingly, solvent
selection represents a critical aspect also in the Sonogashira
reaction, influencing not only the chemical efficiency but also
and directly the waste produced. Harmful dipolar aprotic
solvents such as dimethylformamide (DMF) and N-methyl-2-
pyrrolidone (NMP) have been generally used as a medium for
this process with only very few exceptions.33−35 Also, when
safe/green water is used as the medium, the necessary work-up
procedure requires the utilization of organic solvents, and also,
in these cases, large amounts of waste can be generated.36−39

Mixtures of organic solvents and water are also often used as
they offer the advantage of solubilizing organic and inorganic
reagents giving effective chemical results. Specifically, in the
Sonogashira cross-coupling, a mixture of an organic solvent
and water is used as it allows the solubilization of the halide
salts stoichiometrically produced in the process. However,
these mixtures cannot be easily recovered leading to additional
complicated issues arising from the disposal of hazardous
waste.40−50

In this context, we have been interested in the use of
aqueous azeotropic mixtures that are constituted by a precise
combination of water and an organic solvent. They can allow
the opportunity of exploiting both types of media still acting as
a single recoverable substance. In this view, they can constitute
an effective tool for minimizing waste while allowing a high
chemical efficiency.51−56 To this aim, we have been attracted
by the peculiar properties of cyclopentyl methyl ether
(CPME). This solvent forms a heterogeneous aqueous
azeotrope, which boils at 83 °C.57,58 In addition, CPME is
also very interesting as it is produced from petrochemical waste
with a 100% atom economy process, and it features very good
toxicity and safety profiles.58 Production of CPME starting
from biomasses is also under evaluation.57,58

In this work, we report our results on the exploration of a
local biomass urban waste material (pine needle) to design and
develop an effective palladium catalytic system and combine its
use with the safe solvent CPME derived from industrial waste
aiming at implementing the “circular economy” approach into
the definition of sustainable synthetic tools (Scheme 1).
Therefore, we have applied our strategy to the widely
representative copper-free Sonogashira (also known as
Cassar−Heck,59,60 named after the first researchers who
defined a protocol where a copper cocatalyst was not
employed) cross-coupling to define an effective waste-
minimized protocol. It should be mentioned that generally

the Sonogashira cross-coupling is performed on aryl iodides
and rarely on bromides, while aryl chlorides represent a
challenge for both academia and industry; the latter are anyway
more toxic and arguably less sustainable (see the Supporting
Information (SI) for data). Considering that the Sonogashira
reaction is a mature synthetic tool and aiming at optimizing the
sustainability of this reaction under the umbrella of a circular
economy, waste minimization approach, and sustainability
approaches, we preferred to focus on iodides and the
production of a very cheap and efficient catalyst system
utilizing an effective and recoverable medium. To this aim, we
have set a continuous-flow reactor protocol allowing a
multigram-scale production not only to optimize the recovery
and reuse of both the catalytic system and reaction medium
but also to minimize the waste produced.61−65

■ RESULTS AND DISCUSSION
We began our investigation with the preparation of the waste-
derived pine needle biochar (PiNe). After pretreatment66 of
the collected common urban waste, the subsequent formation
of PiNe was achieved in agreement with protocols reported in
the literature (see the Supporting Information for further
details).67 Subsequently, palladium nanoparticles were depos-
ited onto PiNe and efficiently immobilized following a
modified polyol method to afford the corresponding Pd/
PiNe catalyst (see the Supporting Information for further
details).68 Transmission electron microscopy (TEM) images of
the samples show the formation of Pd nanoparticles with an
average particle size of 4.5 ± 1.8 nm (Figures 1 and S1). The
Pd loading was measured using microwave plasma atomic
emission spectrometers (MP-AES) analysis and resulted to be
9.9% w/w. We consider these features quite interesting as they
make our Pd/PiNe comparable and competitive in terms of
metal contents with the most widely commercially available
Pd/C heterogeneous catalysts.
At this stage, we have tested the Pd/PiNe catalyst under

batch conditions in the representative copper-free Sonogashira
cross-coupling between aryl iodide 1a and phenylacetylene 2a
using the mentioned CPME/water azeotropic mixture (Table
1).
By conducting the reaction at 60 °C in the presence of

potassium carbonate, no conversion into the expected product
3a was observed (Table 1, entry 1); similar results were
obtained using polystyrene-supported dimethylamine (Table 1,
entry 3) as the base. Homogeneous organic bases gave slightly
better results (Table 1, entries 2 and 4). Based on these results,

Scheme 1. Features of the Pd/PiNe-Catalyzed Continuous-
Flow Sonogashira Reaction
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we selected 1,4-diazabicyclo[2.2.2]octane (DABCO) for
further optimization at different reaction temperatures. We
identified as optimal conditions the use of DABCO and 5 mol
% Pd/PiNe in CPME/water azeotrope at 85 °C, where
complete conversion to 3a could be achieved (Table 1, entry
8).
In addition, the comparative experiments using commer-

cially available Pd/C (10% w/w loading) showed negligible
differences with our Pd/PiNe catalytic system (Table 1, entry
9).
Although we aimed at the use of the azeotropic mixture, we

also evaluated whether a different ratio between CPME and
water would influence the process as reported in Table 1.
Under the optimized reaction conditions, only CPME/water
azeotrope gave satisfactory results (Table 1, entry 8), while
moving to 16/84 or 50/50 ratios dramatically impacts the
conversion observed (Table 1, entries 10−11).
The reusability of the catalyst has also been checked by

recovering the system and reusing it for different consecutive
runs (Table 2) without loss in efficiency.
Next, we screened the substrate scope of the process and

applied the optimized conditions to differently substituted
acetylenic compounds and aryl halides (Scheme 2). Gratify-
ingly, we observed that high yields could be achieved in the

presence of both electron-donating and electron-withdrawing
groups in the aryl iodide, as well as when electron-withdrawing
groups are incorporated in the acetylenic compounds.
However, the yields slightly decrease in the presence of an
electron-donating group on the acetylenic moiety.
Interestingly, the reaction conditions were also found to be

compatible with alkyl-substituted acetylenic compounds (5ca
and 5da) leading to high isolated yields.
To further test the efficiency of our Pd/PiNe catalyst, we

checked the feasibility of the reaction conditions on generally
more challenging aryl bromides (Scheme 3). As expected, with
a highly activated aryl bromide such as the 4-nitro derivative, a
high yield was obtained. However, in the presence of fewer
electron-withdrawing substituents under the same reaction
conditions, the efficiency slightly decreased.
We then started to investigate the process under flow

conditions. Aiming at a system able to run the process on a
larger scale, we have used a 6 mm internal diameter
poly(tetrafluoroethylene) (PTFE) tube filled with our Pd/
PiNe. Initially, we tested various lengths of the reactor together
with different flow parameters to achieve the optimal balance
in terms of reactivity/time for the copper-free Sonogashira
reaction (Table 3). When a 0.2 m coil length and a 75 psi
back-pressure regulator (BPR) were used, only a 10%
conversion to the desired product could be achieved (Table
3, entry 1) due to a low residence time. By increasing the
catalyst amount from 0.6 to 2 g and the reactor length, the
conversion slightly increased (Table 3, entry 2). Satisfactory
results were only obtained with a reactor length of 4 m and a
BPR of 250 psi (Table 3, entry 4).

Figure 1. TEM images of the Pd/PiNe heterogeneous catalyst.

Table 1. Optimization of Sonogashira Cross-Coupling of
1aa

entry base CPME/H2O (wt %)
Pd/PiNe
(mol %)

T
(°C)

C
(%)b

1 K2CO3 84/16 (azeotrope) 0.5 60 0
2 Et3N 84/16 (azeotrope) 0.5 60 20
3 PS−N(Me)2 84/16 (azeotrope) 0.5 60 0
4 DABCO 84/16 (azeotrope) 0.5 60 45
5 DABCO 84/16 (azeotrope) 0.5 85 65
6 DABCO 84/16 (azeotrope) 0.5 110 70
7 DABCO 84/16 (azeotrope) 1 85 80
8 DABCO 84/16 (azeotrope) 5 85 99
9 DABCO 84/16 (azeotrope) 1 85 85c

10 DABCO 16/84 5 85 45
11 DABCO 50/50 5 85 50

aReaction conditions: 1a (1 mmol), 2a (1.5 mmol), Pd/PiNe, base
(1.2 equiv), reaction medium (1 mL, 1 M), 16 h. bGLC conversion
has been determined using samples of pure compounds as reference
standards; the remaining materials are 1a and 2a. cReaction
performed using commercially available Pd/C (10% w/w loading).

Table 2. Recycle and Reuse of the Pd/PiNe Catalyst in
Batcha

run C (%)b

1 >99
2 >99
3 >99
4 98
5 99

aReaction conditions: 1a (1 mmol), 2a (1.5 mmol), Pd/PiNe (5 mol
%), DABCO (1.2 mmol), CPME/water azeotrope (1 mL). bGas−
liquid chromatography (GLC) conversion has been determined using
samples of pure compounds as reference standards; the remaining
materials are 1a and 2a.
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During these experiments, we noted that the initial CPME/
water emulsion pumped through the reactor was subjected to a
partial separation. To control this phenomenon, we further
conducted the optimization by adding sodium dodecyl sulfate
(SDS) as an emulsifier (Table 4). We observed that using 0.1
M SDS in water with a 4 h residence time the reaction gave
better results, leading to 87% conversion (Table 4, entry 1). By
decreasing the SDS concentration to 1 × 10−4 M, good
conversion was maintained (Table 4, entry 2). Finally, under
these conditions and with a longer residence time (8 h), we
achieved almost a full conversion to the desired product (Table
4, entry 3).
The optimized flow conditions were then applied to the

representative synthesis of various substrates (Table 5) on a
multigram scale. The reactor (Figure 2) remained operative for
15 consecutive days, and the leaching of metal in solution was

monitored over time (Scheme 4). To our delight, Pd/PiNe
showed very high stability with a very low palladium loss on
applying flow conditions. As reported in the literature, by
experimental and/or in operando analysis, this effect is due to
the increased stability and preservation against mechanical
friction.69−74

In addition, an in-line continuous liquid−liquid membrane
separator (Zaiput Inc) was connected to the Pd/PiNe flow
reactor. This operation allowed us to easily recover the CPME
with its consequent reuse. The water in which salt DABCO-I is
solubilized therefore represents the only (also inevitable)
major waste associated with the reaction.
To quantify the environmental efficiency of our continuous

flow protocol, we compared the E-factor with other
Sonogashira processes. For comparison, both flow and batch
protocols were selected, featuring low E-factor values53 and

Scheme 2. Scope of Sonogashira in Batch Using the Pd/PiNe Catalyst
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different solvent recovery strategies50 (Table 6). Due to the in-
line separation and reuse of CPME and the high throughput of
the flow system, the E-factor value associated with our protocol
is very low (2.8).
As additional demonstration of the synthetic utility and

applicability of our flow protocol based on the urban waste-

derived Pd/PiNe catalyst, we attempted the telescoped flow
synthesis of an active pharmaceutical ingredient: eniluracil.
The above-mentioned flow system has therefore been

Scheme 3. Scope of Sonogashira in Batch Using the Pd/PiNe Catalyst with Aryl Bromides

Table 3. Optimization of Flow Parametersa

entry
coil length

(m)
catalyst
(g)

Pd
(mol %)

BPR gauge
(psi)

residence
time (h)

C
(%)b

1 0.2 0.6 30 75 0.5 10
2 2 2 37 100 2 35
3 4 2 19c 100 4 68
4 4 2 19c 250 8 88

aOptimization of flow parameters conducted at a constant flow rate of
0.01 mL min−1. bGLC conversion has been determined using samples
of pure compounds as reference standards; the remaining materials
are 1a and 2a. cFor these experiments, the same reactor was used.

Table 4. Optimization of Flow Parameters with the
Addition of SDS to Water

entry
coil length

(m)a
residence time

(h)
BPR gauge

(psi)
[SDS] in
waterb

C
(%)c

1 4 4 100 0.1 87
2 4 4 100 1 × 10−4 90
3 4 8 250 1 × 10−4 99

aThe coil was filled with 2 g of Pd/PiNe (12 mol %). bExpressed as
molar concentration in water. cGLC conversion has been determined
using samples of pure compounds as reference standards; the
remaining materials are 1a and 2a.

Table 5. Substrate Scope for the Sonogashira Reaction in
Flowa

entry R- flow rate (μL min−1) mmol of 1a C (%)b

1 H (3aa) 14 50 >99% (96)
2 Ac (3da) 24 20 >99% (96)
3 NO2 (3ca) 24 20 >99% (98)
4 OMe (3ia) 10 20 45 (42)

aReaction conditions: 1 (1 equiv), 2a (1.5 equiv), CPME/water
azeotrope [1 M], SDS (1 × 10−4 in water), the reactor, filled with 2 g
of Pd/PiNe (1.7 mol %), was installed into a thermostated box at 85
°C, 250 psi BPR. bGLC conversion has been determined using
samples of pure compounds as reference standards; the remaining
materials are 1a and 2a. Isolated yields are given in parenthesis.

Figure 2. Schematic representation of flow setup.
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implemented to achieve the initial Sonogashira coupling
between 5-iodouracil and trimethylsilylacetylene with a
residence time of 8 h and telescoped with an in-line
desilylation reaction using 1 M NaOH (Scheme 5).
After a 30 min loop in which the desilylation reaction occurs,

further liquid−liquid separation of the CPME fraction and
evaporation led to eniluracil in 92% yield. It is noteworthy to
highlight that with this flow methodology an E-factor value of
25 has been obtained for the synthesis of eniluracil, which is a
consistent reduction compared with the value (E-factor = 104)
of the optimized process reported by GlaxoSmithKline.75 The
low solubility of 1j forces us to use more diluted conditions
(0.2 M) hindering the possibility of further reducing the E-
factor value.
Finally, the catalyst was recovered from the reactor and

analyzed. TEM images (Figure S2 in the Supporting
Information) show a slight particle increase (8.8 ± 4.8 nm)
mainly due to the presence of particle aggregates. This result
was expected and it strongly suggests the presence of a “release
and catch mechanism”.76−78 The noncovalent immobilization
of Pd nanoparticles on the PiNe support may allow the release
of the palladium active species in solution at the beginning
stage of the catalytic cycle. Only at the end of the process was
the metal in solution re-deposited on the support as confirmed
by both low leaching and a slight increase of Pd nanoparticles.

■ CONCLUSIONS

In conclusion, we have reported that a Pd/PiNe catalyst
derived from urban pine needle waste is an effective catalytic
system and it can be effectively used in combination with an
industrial waste-derived CPME/water azeotropic mixture
allowing the definition of a sustainable circular economy
inspired protocol for the Sonogashira cross-coupling. We have
set a continuous flow protocol exploiting the efficient
recoverability and stability of Pd/PiNe and also the
recoverability of CPME from water via continuous liquid−
liquid separation. Our flow reactor was left to operate
continuously for 15 days, showing constant efficiency and a
minimal metal leaching with an average throughput of 0.95
mmol h−1. Low E-factor values have been calculated thanks to
the optimal stability of the catalyst and the easy continuous
separation of CPME from water. Indeed, the possibility of
separating in-line the reaction medium and reusing it
continuously allowed for an additional waste minimization
for the representative copper-free Sonogashira reaction
reported here. Additionally, the flow system reported has
been successfully applied to the synthesis of eniluracil with
good yield and a low E-factor.
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