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Abstract: The study of long precipitation series constitutes an important issue in climate research
and risk assessment. However, long datasets are affected by inhomogeneities that can lead to biased
results. A frequent but sometimes underestimated problem is the definition of the climatological
day. The choice of different starting times may lead to inhomogeneity within the same station and
misalignment with other stations. In this work, the problem of temporal misalignment between
precipitation datasets characterized by different starting times of the observation day is analyzed.
The most widely used adjustment methods (1 day and uniform shift) and two new methods based on
reanalysis (NOAA and ERA5) are evaluated in terms of temporal alignment, precipitation statistics,
and percentile distributions. As test series, the hourly precipitation series of Padua and nearby
stations in the period of 1993–2022 are selected. The results show that the reanalysis-based methods,
in particular ERA5, outperform the others in temporal alignment, regardless of the station. But,
for the periods in which reanalysis data are not available, 1-day and uniform shift methods can be
considered viable alternatives. On the other hand, the reanalysis-based methods are not always the
best option in terms of precipitation statistics, as they increase the precipitation frequency and reduce
the mean value over wet days, NOAA much more than ERA5. The use of the series of a station near
the target one, which is mandatory in case of missing data, can sometimes give comparable or even
better results than any adjustment method. For the Padua series, the analysis is repeated at monthly
and seasonal resolutions. In the tested series, the adjustment methods do not provide good results in
summer and autumn, the two seasons mainly affected by heavy rains in Padua. Finally, the percentile
distribution indicates that any adjustment method underestimates the percentile values, except ERA5,
and that only the nearby station most correlated with Padua gives results comparable to ERA5.

Keywords: daily precipitation; time of observation; time series; aggregation method; adjustment
method; hourly dataset; daily extremes

1. Introduction

Long-term precipitation records are of great importance in climate research and risk
assessment. Therefore, quality-controlled and homogenized data are needed for improved
climate-related decision-making processes [1]. In addition, due to the spatial variability in
precipitation, the availability of ground-based observations and high spatial station density
are basic requirements to provide reliable results [2].

Recently, there has been growing interest in series of precipitation at daily [3,4] and
sub-daily [5] resolutions, as these are the typical timings of extreme events. The study
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of weather extremes is crucial for the scope of climatological analyses, climate change
impact assessment, and future climate projections. The introduction of automatic rain
gauges in the mid-20th century has allowed continuous observations, providing sub-daily
and sub-hourly values. Before the standardization operated by WMO, founded in 1951,
the number and times of daily observations were not standardized and depended on the
station, period, and even the observer. Data were collected manually, so the observation
time depended on several factors, some subjective, e.g., the health and other commitments
of the observer, the weather, and the accessibility to the instrument [6]. Therefore, in the
early instrumental period, the investigation of climate change effects on short-duration
events, including the extreme ones, is often difficult [7], as only daily values are available.

Automatic weather stations introduce more flexibility in the definition of the clima-
tological day, and in the methods used to calculate climatological parameters over time,
e.g., daily average, as more values are available. In fact, even if the duration of the day
is consistent between different stations, i.e., 24 h, the starting time of the climatological
day may not be. For instance, if the climatological day starts at 08 LT (i.e., 8:00 am Local
Time), the daily precipitation total is the amount collected from 08 LT on the previous day
to 08 LT on the reporting day. For long-term analysis, especially in periods in which data
are scarce, it may be necessary to use composite datasets derived from a combination of
stations close to the target one. The misalignment in daily precipitation totals due to a
different definition of the climatological day affects the compatibility between different
stations, but also within the same station, thus limiting the possibility of using long-term
observation-based data for spatial analyses and model development [8]. WMO [9] states
the following: (i) The definition of the climatological day has to be clearly stated in the
metadata of the station. The scarcity or lack of metadata in the early instrumental period
makes it difficult to identify a bias due to data misalignment, if any, and, consequently, to
apply the most appropriate adjustment. (ii) Any change in the definition of the climato-
logical day should be avoided, as it can lead to potential inhomogeneity. Such a change
is particularly crucial when extreme events are considered and sub-daily values are not
available. For identifying extreme daily precipitation events, WMO [10] recommends the
comparison of the daily totals with certain fixed thresholds or percentiles. An extreme
event may be lost if it had been broken by the change in the climatological day.

The issue of the time of observation adjustment emerged during the reconstruction
of the precipitation series of Padua, one of the longest precipitation series in Italy (for
details, see [6] and references herein). That work required facing several problems that
often affect early precipitation series, e.g., missing readings, cumulative amounts [11], and
gaps [12]. One of the most used filling-gaps method consists of the use of contemporary
records from one or more stations in the same climatic area [12]. The definition of the
climatological day of these datasets is very likely absent in the early instrumental period,
and often different in the modern period. For the 20th century, three main datasets are
available: (1) the Meteorological Observatory of the Water Magistrate (WM) from 1920
to the 1990s; (2) the Meteorological Service of the Italian Air Force (AF) at Padua Airport
from 1951 to 1990; and (3) the Regional Agency for the Prevention and Protection of the
Environment in the Veneto Region (ARPA), from 1980 up to now. These three precipitation
datasets are characterized by different definitions of the climatological day: WM set the
start time at 09 LT; AF at 00 UTC, i.e., 01 LT; and ARPAV at 00 LT of the target day. Therefore,
the reconstruction of the precipitation series of Padua since 1920 requires the adjustment of
datasets characterized by different climatological days.

The problem of the time of observation misalignment is well known, and several
adjustment methods have been proposed. One of the simplest methods was to shift morning
observations back to one calendar day [13,14]. Other methods foresaw disaggregating
daily precipitation amounts to hourly and then aggregating back following a different
definition of the climatological day [13–16]. Disaggregation can be performed using actual
hourly observations [13] or under the assumption that a daily total is distributed uniformly
across all hours in a 24 h period [14,16]. These methods improved interstation temporal
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correlations in the following scenarios: adjustment of daily precipitation from a morning
to midnight-to-midnight observation time [13,14,16]; adjustment of daily precipitation
from an afternoon to midnight-to-midnight observation time [14]; and adjustment of daily
precipitation from an afternoon to a morning time [14]. Nevertheless, they showed some
drawbacks, e.g., the increase in precipitation frequency and temporal autocorrelation, and
the decrease in average intensity and extremes [13–16]. In addition, the absolute optimal
method cannot be established, because it depends on the dataset, its specific application,
and the local climatology. Therefore, starting from the results of previous studies, in this
work, the problem of the inconsistencies in the observing times between stations was
explored more in depth, to find a reliable method to overcome the issue of the temporal
misalignment in the three available precipitation datasets of Padua, thus providing a unique
aligned series from the early-20th century up to the present day. To achieve this main aim,
several modern (1993–2022) datasets at an hourly resolution were used as testing sets, with
the following specific objectives:

(i) To apply adjustment methods already tested in the literature to modern datasets;
(ii) To test for the first time two further adjustment methods, based on reanalysis;
(iii) To compare the alignment of the series adjusted to the original series of stations

located near the target one;
(iv) To determine the impact of all the methods considered on the identification of ex-

treme days;
(v) To explore the feasibility of the application of the adjustment methods considered to

WM and AF series.

The identification of the best method to adjust the three available precipitation datasets
of Padua is extremely important for long-term climatic studies, as the Meteorological
Observatory of the Water Magistrate constitutes a precious source of precipitation data
at a daily resolution for several Italian locations, from 1920 to the 1990s. Moreover, the
described methodology is general, not case-specific, and it can be applied to precipitation
datasets of other countries and periods. In addition, the two new methods proposed, based
on reanalysis, have a large potential of application to modern series.

2. Materials and Methods
2.1. Datasets

In 1980, the Department of Biology of the Padua University installed a weather station
in the historical Botanical Garden, in the city center, that in May 2000 passed under the
control of the Regional Agency for the Prevention and Protection of the Environment in
the Veneto Region (ARPAV). This constitutes the main source of precipitation amount in
Padua at an hourly resolution until present. The reference station for this study is the one
named “Orto Botanico” (OB, the Botanical Garden), located in the city center (Figure 1),
which can be considered the continuation of the former “Specola” station [6]. Five other
stations (Table 1) were selected considering their proximity to OB (Figure 1). In March
2019, the OB station was closed and the meteorological instruments were moved to another
place, called “Padova CUS”, about 2 km away (Table 1). The stations “Orto Botanico”
and “Padova CUS” were considered as only one station because of their proximity and
are named simply “Padua” (Pd) throughout the text. The datasets from the considered
stations cover the 1993–2022 period, except for the Padua series that starts in October
1993, and Tribano in January 1996. The percentage of data available during the working
period of each station is indicated in Table 1. Further information regarding the stations,
such as yearly average precipitation amount and number of rainy days, is reported in
Tables S1 and S2 of Supplementary Material, respectively.
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Figure 1. Location of the ARPAV meteorological stations listed in Table 1: (a) Veneto region; (b) zoom
on Padua center.

Table 1. ARPAV meteorological stations in proximity to Padua, and data availability with respect to
the 1993–2022 period.

Name Acronym Elevation
(m a.g.l.) Lat Long Distance from

OB (km)
Data

Availability

Orto Botanico
Pd

12 45.40 11.88 0 October 1993–December
2022 (97.1%)Padova CUS 12 45.40 11.91 2.3

Legnaro Lg 7 45.35 11.95 8.0 January 1993–December
2022 (99.5%)

Campodarsego Cm 16 45.49 11.91 11.0 January 1993–December
2022 (99.1%)

Codevigo Cd 0 45.24 12.10 24.4 January 1993–December
2022 (99.4%)

Mira Mr 3 45.44 12.12 19.0 January 1993–December
2022 (99.4%)

Tribano Tr 3 45.19 11.85 23.8 January 1996–December
2022 (99.0%)

2.2. Methodology

The overall methodology applied to solve the issue of the temporal misalignment of a
precipitation series visualized in Figure 2 includes the main steps described hereunder. The
hourly precipitation measurements of the target station were taken as input of the process.

(i) Application of the selected adjustment methods to the series of the target station
and calculation of performance indicators. Three out of five adjustment methods are
derived from the literature while two further methods, based on reanalysis, are tested
for the first time;

(ii) If there is at least an adjustment method that is better performing than the misaligned
series, go to the next step; otherwise, return to the misaligned series (output 1, end
of process);

(iii) If there are contemporary precipitation data of a nearby station available, go to the
next step; otherwise, select the series adjusted with the best performing method
(output 2, end of process);
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(iv) Calculate performance indicators of the series of nearby stations;
(v) If there is at least one nearby series that is better performing than the misaligned series,

go to the next step; otherwise, return to the series adjusted with the best performing
method (output 2, end of process);

(vi) If the series of the nearby station is better performing than the adjusted series, select
the series of the nearby station (output 3, end of process); otherwise, select the series
adjusted with the best performing method (output 2, end of process).
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Figure 2. Flowchart of the methodology used to evaluate the adjustment methods of precipitation
series with different definition of climatological day.

2.3. Homogeneity Tests

Firstly, several homogeneity tests were applied to the precipitation datasets to detect
discontinuities and regime shifts. The most used absolute tests were selected to identify
change points based on shifts in the mean: Buishand [17], Pettitt [18], and von Neumann
ratio [19]. The yearly amounts and the monthly anomalies were set as testing variables.
Relative tests are generally favored over absolute ones as they use the difference time series
of the target station with neighboring stations to identify breaks or change points [20,21].
These reference series are supposed to have the same climate as the target station and thus
can be used to detect inhomogeneities [22]. In modern homogenization tests, reference
series themselves do not need to be homogeneous but encompass the same climatic signal
as the target [1]. The relatively new software package Climatol, version 4.0.7, developed
by the Spanish State Meteorological Agency (AEMET) under the R programming lan-
guage [23], was used as the relative test. This package holds functions for quality control,
homogenization, and missing data infilling of climatological series, and it has already
been applied to precipitation series [1,24]. The homogenization is based on the Standard
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Normal Homogeneity Test (SNHT) [25], considering other series as reference to detect
inhomogeneities in the test series: when the SNHT statistics are greater than a prescribed
threshold, the series is split at the point of maximum SNH, moving all data before the break
to a new series that is incorporated into the data. This procedure is performed iteratively,
splitting only the series with the higher SNHT values at every cycle, until no series is found
inhomogeneous. As the SNHT was originally designed to find a single breakpoint in a
series, it was first applied to stepped overlapping temporal windows, and then to the com-
plete series. In the final stage, the method infills missing data in all homogeneous series and
sub-series. As reference series to be used by the algorithm, data of stations listed in Table 1
were used. To infill the missing data and compute the homogeneity tests, the algorithm
does not use the proximity criterion but evaluates the correlation between datasets. The
Buishand and Pettitt tests are usually more performing when a break appears in the middle
of the series, whereas the ability of SNHT is in favor of identifying inhomogeneities at the
beginning/end [26]. Climatol can detect multiple change-points, as the process is iterative,
and the procedure is applied to all the sub-series in which the test series is decomposed by
the breakpoints detected at each step. Overall, absolute and relative tests were employed to
obtain more reliable results and to take advantage of the specific features of each method.

The instrumental threshold of a rain gauge has a significant influence on the distri-
bution of precipitation, more enhanced in frequency and less in amount [27]. Therefore,
the results of the analyses depend on the choice of the threshold to define the wet days.
In recent years, two ARPAV stations, i.e., Lg since 11 October 2005 and Cm since 4 May
2009, have been equipped with heated funnels, and this change had an impact on minor
accumulations, as the false amounts up to 0.6 mm, mostly caused by dew or fog, were
reduced [28]. To avoid bias due to this change, in the following statistical analysis, only
data above the threshold of 1 mm/day were considered, following the WMO definition of
a wet day [9].

2.4. Adjustment Methods

In the dataset with the climatological day starting at 09 LT (herewith named 9–9
dataset), the precipitation total of the target day, dj, is the sum of the quantities collected
from 09 LT on the previous day, dj−1, to 09 LT on the target day. In modern series, the
climatological day generally coincides with the civil local day, i.e., the 24 h interval from
one midnight to the following midnight, subsequently shortened to 0–24 series. Starting
from hourly observations, five different daily aggregation methods were considered and
compared to the 0–24 series, which was thus considered as reference:

(1) 9–9

9–9 daily series is considered as is, i.e., daily precipitation total is the sum of the hourly
amounts collected from 9 LT of dj−1 to 9 LT of dj.

(2) 9–9 1-day shift (named simply “1 day” in the following) [13]

This method shifts the daily amounts of the 9–9 series back one calendar day, because
most of the daily amount of the 9–9 series is collected in the previous day. Therefore,
the precipitation amount of the target day, dj, is simply associated with the previous
day, dj−1.

(3) 9–9 shift uniform (named simply “unif”) [15]

This method reapportions 9–9 daily totals from a 2-day moving window surrounding
the target date, P_adj_j = (Pj · Fj) + (Pj+1 · Fj+1), where P_adj_j is the adjusted amount for
the target day j; Pj and Pj+1 are the original 9–9 reported daily totals for the target and
next days, respectively; and Fj and Fj+1 are the fractions of Pj and Pj+1, respectively,
to be included in the estimate of P_adj_j. Because the uniform method assumes that
a reported daily total is distributed uniformly across all hours within its respective
24 h period, Fj and Fj+1 are determined directly by the number of hours of overlap
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between the 24 h periods, represented by Pj and Pj+1, and the new P_adj_j, i.e., Fj = 9
and Fj+1 = 15 (Figure 3).
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Figure 3. Overlapping between the hours of observation of 9–9 series and the adjusted series, with
the latter composed of Fj = 9 h of the target day j in the 9–9 series, and Fj+1 = 15 h of the day after
(j + 1) in the 9–9 series.

(4) 9–9 shift ERA5 (named “ERA5”) [29]

Like method (3) but Fj and Fj+1 are determined by means of the reanalysis (0.25◦ reso-
lution, 1940–today). The simulated 9–9 amount of the target day and of the day after
is determined using hourly reconstructed data, and the fractions of precipitation that
occurred on those days are calculated. Then, the fractions Fj and Fj+1, are multiplied
by the 9–9 amount of day j and day j + 1, respectively, and the results are added to
obtain the total amount of the target day j.

(5) 9–9 shift NOAA (named “NOAA”) [30]

Like method (4) but using the NOAA 20CRv3 reanalysis to determine the fractions
Fj and Fj+1. Unlike ERA5, this dataset uses only pressure observations as input and
monthly sea surface temperatures as boundary conditions, covers the period 1836–
2015 (experimentally extended to 1806), has a coarser resolution (~0.75◦), and provides
3-hourly data.

2.5. Performance Indicators

The adjustment methods presented in Section 2.4 were validated in two main aspects:
(i) temporal alignment between the original and adjusted series, i.e., if and how much the
adjustment methods applied to the 9–9 series of the target station improve the alignment
with the 0–24 series of the same station; and (ii) precipitation statistics.

The indicators used to evaluate temporal alignment and precipitation statistics are
listed in Tables 2 and 3, respectively, including formulas to calculate them and possible
values assumed. The symbols used in the formulas and their interpretation are described
at the bottom of the tables.

Table 2. Indicators used to evaluate the temporal alignment of the test and reference series.

Name Short Name Formula Range Values

Root-Mean-Square Error RMSE
√

∑N
i=1(yi − oi)

2

N
≥0 (ideal)

Mean Absolute Error MAE 1
N ∑N

i=1 |y i − oi| ≥0 (ideal)
Normalized Mean Absolute Error NMAE ∑N

i=1 |y i − oi |
∑N

i=1 oi
≥0 (ideal)

Brier Score BS 1
N ∑N

i=1(Yi − Oi)
2 0 (ideal)—1

Pearson’s correlation coefficient cor_P cov(y,o)
σyσo

= ∑N
i=1 yioi − Nyo√

∑N
i=1 y2

i − Ny2
i

√
∑N

i=1 o2
i − No2

i

0–1 (ideal)

Spearman’s rank correlation cor_S cov(R(y),R(o))
σR(y)σR(o)

0–1 (ideal)

Kendall’s rank correlation cor_K NC − ND
N(N − 1)/2 0–1 (ideal)

Tail dependence measure χ(u = 0.95) P(y > u|o > u) 0–1 (ideal)
Accuracy ACC TP + TN

P + N 0–1 (ideal)
Heidke Skill Score HSS 2((TP·TN) − (FN·FP))

P(FN + TN) + N(TP + FP)
≤1 (ideal)
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Table 3. Indicators used to evaluate the precipitation statistics of the test and reference series.

Name Short Name Formula Range Values

mean precipitation value over wet days mwet
[(

∑N
i=1 yi

∑N
i=1 Yi

− ∑N
i=1 oi

∑N
i=1 Oi

)
/
(

∑N
i=1 oi

∑N
i=1 Oi

)]
·100 ≥−100% (0 ideal)

frequency of wet days freq
[

∑N
i=1 Yi − ∑N

i=1 Oi

∑N
i=1 Oi

]
·100 ≥−100% (0 ideal)

■ Root-Mean-Square Error (RMSE) is the quadratic mean of the differences between
the observations and the values predicted by the model (in this case, the adjustment
methods):

RMSE =

√
∑N

i=1(yi − oi)
2

N

where N is the number of observations, yi is the value predicted by the adjustment
method considered, and oi is the observed one.

■ Mean Absolute Error (MAE) is a common indicator to measure the errors between
values predicted by the model and the observations:

MAE =
1
N∑N

i=1 |y i − oi|

■ Normalized Mean Absolute Error (NMAE) is a validation metric to compare the MAE
of (time) series with different scales. As the precipitation series of the stations listed
in Tabel 1 have different temporal averages, both MAE and NMAE were calculated.
NMAE is the ratio of MAE to mean daily precipitation:

NMAE =
∑N

i=1 |y i − oi|
∑N

i=1 oi

■ Brier Score (BS) compares the predicted probability of an event to observations. As
precipitation reconstruction does not provide probabilities, Yi and Oi are both binary
with 1 = rain and 0 = no rain [31]. Therefore, BS is the percentage of time steps wrongly
assigned as wet or dry, calculated as

BS =
1
N ∑N

i=1(Yi − Oi)
2

Only the mismatches between Yi and Oi (wet the first and dry the second or viceversa)
contribute with non-zero terms.

■ Pearson’s correlation coefficient:

cor_P =
cov(y, o)

σyσo
=

∑N
i=1 yioi − Nyo√

∑N
i=1 y2

i − Ny2
i

√
∑N

i=1 o2
i − No2

i

where cov is the covariance, σy and σo are the standard deviations of y and o, and y
and o are the mean values 1

N ∑N
i=1 yi and 1

N ∑N
i=1 oi, respectively.

■ Spearman’s rank correlation coefficient is defined similarly but the variables yi and oi
are converted to ranks R(y i) and R(o i):

cor_S =
cov(R(y), R(o))

σR(y)σR(o)

■ Kendall’s rank correlation coefficient measures the correspondence between the rank-
ing of yi and oi: the number of possible pairings of yi and oi is N(N − 1)/2; if the
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pairs are ordered by the oi values, then, for each yi, we count the number of yj > yi
(NC, total number of concordant pairs) and the number of yj < yi (ND, total number
of discordant pairs); hence, the correlation coefficient is defined as

cor_K =
NC−ND

N(N − 1)/2

■ Tail dependence (χ) takes in input y and o and evaluates the dependence on the tail of
the distribution of two series about a set quantile; therefore, it investigates how the
adjustment method affects the temporal alignment of extreme days: in this work, 0.95
was chosen, following Oyler et al. [14] and Weller et al. [32]. It is defined as

χ(u = 0.95) = P(y > u|o > u)

This indicator is directly available in the R extRemes package [33], while new scripts
were created to calculate the others.

■ Accuracy was derived by the confusion matrix [34], which takes the binary variables
Yi and Oi as input and is defined as

ACC =
TP + TN

P + N

where P and N are the total positive (wet days) and negative (dry days) cases, and TP
and TN are the true positive and true negative cases, respectively. A “true positive”
is a day correctly identified by the adjustment method as a wet day, while a “true
negative” is a day correctly identified as a dry day.

■ Heidke Skill Score (HSS) quantifies the alignment of precipitation occurrence and is
defined as

HSS =
2((TP·TN)− (FN·FP))

P(FN + TN) + N(TP + FP)

where FP and FN are the false positive and false negative cases, i.e., days incorrectly
identified as wet or dry, respectively. The confusion matrix and the indicator ACC
were calculated using the R caret package [35], while HSS was calculated using the
elements of the confusion matrix.

■ Mean precipitation over wet days (mwet) is the difference between the mean of the
predicted values yi and the mean of the observed values oi of precipitation. Mwet is
expressed as a percentage, calculated with respect to the observed values oi; since all
0 < yi < 1 are set to zero, for the reason explained in Section 2.3, the calculation of the
mean values over only the wet days (when the binary variables are 1) is simplified:

mwet =

[(
∑N

i=1 yi

∑N
i=1 Yi

− ∑N
i=1 oi

∑N
i=1 Oi

)
/

(
∑N

i=1 oi

∑N
i=1 Oi

)]
·100

■ Frequency over wet days (freq) is the percentage difference between the number of
predicted wet days and the observed wet days. The percentage is calculated with
respect to the observed wet days:

freq =

[
∑N

i=1 Yi − ∑N
i=1 Oi

∑N
i=1 Oi

]
·100

Finally, the impact of the adjustment methods on the extreme days was investigated
by analyzing the trend over the years of the percentile distributions of the original and
adjusted series, with particular attention to the upper percentiles.
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2.6. Multivariate Approach

A crucial problem when dealing with time series is missing data. Over time, a wide
variety of methods has been developed, with the percentage of gaps and data missingness
mechanism being the main factors limiting their applicability [36]. The most performing
techniques require the availability of data from neighboring locations [37], and their success
depends on the extent of the correlation between the target and predictor stations [38].
From this perspective, it is interesting to investigate whether, in the case of a 9–9 series, it is
preferable to apply an adjustment method to convert the 9–9 series in a 0–24 series or leave it
and use the 0–24 series of another station close to the target one. Therefore, the performance
indicators described in Section 2.5 were also evaluated for the 0–24 series of the stations
listed in Table 1 and located near Padua. To make the interpretation and visualization of
the results easier, an exploratory analysis technique was employed, Principal Component
Analysis (PCA, [39]). PCA is a dimension reduction method, used to capture the relevant
information and to visualize major trends and structure of data. PCA was applied to
the dataset of the indicators calculated: (i) for the 9–9 series adjusted using the methods
described in Section 2.4, and (ii) for the 0–24 original series of the stations near Padua. The
dependence of the results on the month of the year was also investigated. To manage this
further variability element, Parallel Factor Analysis (PARAFAC), which is a generalization
of PCA to higher-order arrays [40], was applied. In PARAFAC, any source of variability
constitutes a so-called “mode” and the variation in each mode can be described by a low
number of factors. PARAFAC was mainly used to improve and simplify the visualization
of the results. PCA and PARAFAC were both performed using the software PLS Toolbox
8.1 (Eigenvector Research, Inc., Wenatchee, WA, USA) for Matlab © R2017b.

3. Results

The homogenization tests applied to the datasets listed in Table 1 indicate that all the
series are homogeneous.

NOAA reconstructed data are available in 3 h steps, in UTC format; therefore, the
00 UTC value of dj actually covers the interval from 22 LT of dj−1 to 01 LT of dj. As it is
not possible to disaggregate the amount of this 3 h interval, and to allocate it between
the two subsequent days, the 00 UTC amount was entirely assigned to the first day dj.
The comparison with the daily observations calculated as “1-1” sums showed that the
differences are negligible, i.e., the 1 h shift of the 00 UTC 3-h value does not significantly
alter the indicators.

3.1. Comparison between Methods at Daily Resolution

Figure 4a–e show the scatter plots of the 0–24 vs. the 9–9 series adjusted using the
adjustment methods described in Section 2.4. Linear regressions were added with the
resulting equations and R2 values. The simple 1-day method significantly improves the
linearity between the original and adjusted series, but the methods based on reanalysis
perform better than the others. The same comparison at the monthly level (Figure 4f)
indicates, as expected, that the choice of adjustment method is not as crucial as at the daily
level, in particular in terms of linearity (Table 4). Nevertheless, the methods based on
reanalysis give a lower RMSE than the other methods (Table 4).

Table 4. Significant parameters of the linear regression applied to original and adjusted Padua
monthly series.

Adjustment Method R2 RMSE (mm)

9–9 0.979 7.9
1–day 0.991 5.2
unif 0.994 4.2
ERA5 0.998 2.3
NOAA 0.997 2.6
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Figure 4. Scatter plots of the 0–24 series of Padua compared to (a) 9–9 series; 9–9 adjusted series
(b) using 1-day method, (c) uniform method, (d) ERA5 method, and (e) NOAA method; (f) scatter
plot of the monthly original Padua series compared to the adjusted series using the 4 methods.
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The performance of the different adjustment methods can be discussed based on the
values of the indicators reported in Figure 5, where the 0–24 datasets were used as reference.
For each method, the average calculated for all the stations was also provided. Cor_P,
cor_S, and cor_K indicate the Pearson, Spearman, and Kendall correlation coefficients,
respectively. Two different color scales were used for the columns: (i) a three-color scale
(green-yellow-red) for the indicators related to temporal alignment, i.e., from RMSE to HSS;
and (ii) a double-ended (white-violet) color scale for the indicators related to precipitation
statistics, i.e., mean value over wet days (mwet) and frequency (freq). The indicators
of temporal alignment were evaluated considering their relative value—the ones related
to precipitation statistics in their absolute value. In fact, a method performs better the
larger or smaller the temporal alignment indicators are in relative value, depending on the
indicator; the green color indicates the best performing method, the red color the worst
performing one. As an example, a good method has a low RMSE and MAE and a high cor_P,
cor_S, and cor_K. At the same time, a method performs better the smaller the indicators of
precipitation statistics are in absolute value (i.e., white color), and worse the higher they
are in absolute value (i.e., violet color).
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Tr 3.15 1.21 0.62 0.15 0.84 0.79 0.73 0.63 0.85 0.71 -26.3 34.9
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ERA5 RMSE MAE NMAE BS cor_P cor_S cor_K χ (0.95) ACC HSS mwet freq
Pd 2.27 0.67 0.27 0.08 0.95 0.90 0.86 0.87 0.92 0.82 -5.8 5.5
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NOAA RMSE MAE NMAE BS cor_P cor_S cor_K χ (0.95) ACC HSS mwet freq
Pd 3.09 0.97 0.37 0.10 0.92 0.85 0.81 0.79 0.90 0.79 -11.9 12.7
Lg 2.94 0.90 0.39 0.12 0.90 0.85 0.81 0.79 0.88 0.75 -11.9 13.0
Cm 3.26 1.02 0.39 0.13 0.91 0.86 0.81 0.77 0.87 0.73 -12.2 13.6
Mr 3.38 0.98 0.40 0.14 0.90 0.84 0.80 0.77 0.86 0.71 -12.7 14.3
Cd 3.01 0.89 0.40 0.14 0.91 0.85 0.80 0.76 0.86 0.72 -11.4 12.5
Tr 2.41 0.79 0.39 0.13 0.91 0.85 0.81 0.81 0.87 0.73 -11.1 12.0
average 3.01 0.93 0.39 0.13 0.91 0.85 0.81 0.78 0.87 0.74 -11.9 13.0

Figure 5. Values of the indicators calculated for each adjustment method applied to each station.
RMSE and MAE are expressed in mm, and mwet and freq are expressed in percentage.

The results of the various methods applied to different stations are consistent between
them, as the indicators for the same method show no significant differences between
stations. The reanalysis-based methods, especially ERA5, produce the greatest increases in
temporal alignment. In fact, the ERA5 method is characterized by the highest correlation
coefficients (i.e., cor_P, cor_S, and cor_K), χ(0.95), accuracy, and HSS, and by the lowest
errors (i.e., RMSE, MAE, NMAE) and BS. Also, the 1-day and unif methods produce an



Atmosphere 2024, 15, 412 13 of 22

improvement in temporal alignment. Therefore, in the absence of reanalysis data, they
can be considered valid alternatives to adjust the 9–9 series. Concerning the precipitation
statistic, the values averaged over all stations reported in Figure 5 are better visualized
in Figure 6. The unif method produces large changes in frequency and mean value over
wet days, increasing the former and decreasing the latter. The reanalysis-based methods
introduce changes in the same directions but to a smaller extent than the unif method.
Finally, the 1-day method produces inconsistent improvements in the statistics.
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Figure 6. Values averaged over all stations of precipitation: (a) frequency; (b) mean value over
wet days.

3.2. Comparison between Methods and Stations at Daily Resolution

The same analysis was applied to the 0–24 datasets of the stations listed in Table 1,
again using the 0–24 dataset of Padua as reference. Results are shown in Figure 7.
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of other stations. RMSE and MAE are expressed in mm.

To capture the most relevant information, PCA was applied to the two-dimensional
matrix 10 × 12 of Figure 7, in which the adjustment methods and the stations were con-
sidered as “samples” and the performance indicators as variables. Mean centering and
variance scaling were applied as data pretreatments. The number of principal components
(PCs) to be retained was selected based on the percentage of total variance explained, not
to be lower than 90%. The total variance accounted for by the first two PCs was around
92%; therefore, the discussion of the results focuses on PC1 and PC2. Figure 8a shows
the loading plot of PC1 vs. PC2. PC1, which is responsible for the description of 77% of
the variance, measures the temporal alignment because it has large (in absolute value)
association with the indicators related to this aspect. In particular, PC1 shows positive
loadings for cor_P, cor_S, cor_K, χ(0.95), ACC, and HSS, with negative loadings for RMSE,
MAE, NMAE, and BS. Looking at the position of the indicators in the loading plot, it is
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evident that the indicators of temporal alignment can be divided into two groups. The
former is referred to as “correlation”, the latter to as “error” group, looking at the meaning
of the indicators forming each group. In fact, the most performing method is characterized
by a low value of the indicators that have negative loadings on PC1 (i.e., RMSE, MAE,
NMAE, BS) and high values of the indicators that have positive loadings on PC1 (i.e., cor_P,
cor_S, cor_K, χ(0.95), ACC, HSS). PC2 instead measures precipitation statistics, as both
freq and mwet have high (in absolute value) loadings on PC2, with the former possessing
positive ones and the latter possessing negative ones.
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The score plot of PC1 vs. PC2 in Figure 8b makes the comparison between methods
and stations easier than that in Figure 6. Three out of five stations are characterized by
positive scores on PC1. Hence, concerning temporal alignment, using one of these station’s
datasets gives better results than the 9–9, 1-day, and unif adjustment methods. There is
no significant difference between applying the most performing method, i.e., ERA5, to
the 9–9 dataset and taking the data from Legnaro station, as the two points (ERA 5 and
Lg) are both characterized by the highest values of PC1. The scores on PC1 of the stations
Campodarsego and Mira are placed in the middle between ERA5 and NOAA methods.
Regarding precipitation statistics, all the stations are characterized by negative scores on
PC2. Therefore, they exhibit slightly lower values of freq and higher values of mwet with
respect to the 0–24 series, giving similar results than 9–9 series and 1-day methods. Anyhow,
using another station’s dataset improves the precipitation statistics with respect to unif
and NOAA methods, characterized by higher scores on PC2. The results obtained with
PCA agree with the conclusions drawn using the traditional statistical data analysis and
visualization in Section 3.1.

3.3. Monthly Analysis

The performance indicators calculated at a daily resolution were then aggregated on a
monthly basis to investigate the eventual dependence of the results on the month of the
year. Only the adjustment methods applied to the Padua series were considered. Since
there are now three elements of variability, i.e., the performance indicators, the adjustment
methods, and the month of the year, Parallel Factor Analysis (PARAFAC) [40] was preferred
to PCA. The input data were organized in a three-way array that reports the methods in the
first mode, the indicators in the second mode, and the months in the third mode, i.e., array
with 5 × 12 × 12 dimensions. The choice to build a three-way array was due to the need to
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highlight clear information about differences among months. Preprocessing of the three-
way arrays is much more complicated than in the two-way case, as centering and scaling
across each mode are not independent [41,42]. The variable “indicator” is not homogeneous,
i.e., the performance indicators are of very different typologies and their definitions include
the comparison with the reference series in different ways (see Section 2.5). Hence, no data
preprocessing was applied, to avoid the introduction of artifacts in the analysis. For the
choice of the right number of PARAFAC factors, several different criteria were evaluated,
such as core consistency [40], percentage of explained variance, and sum of squared errors.
The one-factor model with an explained variance of 94% was chosen for the three-way
array because of its high core consistency (100%) and its robustness considering the low
values of the sum of the squared residuals.

The loading plots of the first (adjustment method), second (performance indicators)
and third modes (months) of the first factor are reported in Figure 9. In the first mode
plot (Figure 9a), unif, NOAA, and ERA5 methods have positive scores values, with 9–9
and 1 day exhibiting negative ones. The first factor mainly differentiates the unif method
(characterized by the highest score value) from the others. In particular, it is characterized
by the most remarkable difference in precipitation statistics, i.e., freq and mwet, with
respect to the reference series 0–24 (Figure 9b). This behavior is particularly true for the
two central summer months, i.e., July and August (Figure 9c), which exhibit the highest
positive scores values in Mode 3.
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From an explorative point of view, Figure 9c shows the presence of three groups of
months, according to the values of the loadings on the first factor. Starting from the lower
values to the higher ones, the first group includes the months from late autumn to early
spring (from November to April); the second one the months of late spring/early summer
and early autumn, i.e., May, June, September, and October; and the third one the two
central summer months, i.e., July and August.

The PARAFAC model allows some preliminary conclusions to be drawn up on the
“month” variable: in fact, it seems that the adjustment methods, mainly unif and NOAA
among the others, show poor performance concerning precipitation statistics in the warmer
part of the year, from late spring to early autumn.

Mode 2 (Figure 9b) confirms the result of the PCA, i.e., that the two categories of
indicators behave differently and are internally consistent. This would make it possible
to reduce the number of indicators needed to assess temporal alignment on one side and
precipitation statistics on the other. Nevertheless, with Mode 2 being dominated by the
precipitation statistics, the monthly variability shown by Mode 3 is mainly referred to
regarding this aspect.



Atmosphere 2024, 15, 412 16 of 22

To investigate more in depth the monthly dependence of temporal alignment, a new
three-way array was created, 5 × 10 × 12, with the only difference with respect to the
previous one being that the second mode included only the indicators related to temporal
alignment. Following the same criteria already explained, the one-factor model with an
explained variance of 95% was chosen.

The new loading plots of the three modes of the first factor are reported in Figure 10a–c,
respectively. Mode 2 is dominated by RMSE (Figure 10b), as it is the indicator that has
the highest loading on factor 1, while the other indicators have similar lower values. The
performance ranking of the different methods, represented by Mode 1, throughout the
months, represented by Mode 3, is mainly related to this indicator. Figure 10c shows the
presence of two groups of months, according to the values of the loadings on the first factor;
the first group includes the months from December to April and corresponds to a lower
RMSE, i.e., better performance, than the second group, which includes months from May
to November. Therefore, the series adjusted using the methods represented by Mode 1
are less aligned to the 0–24 series in summer and autumn, as these seasons (Mode 3) are
characterized by higher values of RMSE (Mode 2). This is particularly true for the 9–9
method, characterized by the highest loading on factor 1 (Figure 10a), followed in scale by
the methods 1–day, unif, NOAA, and ERA5. The most performing adjustment method is
ERA5, characterized by the lower loading on factor 1, i.e., the lower RMSE, in particular in
winter and early spring.
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To obtain more robust results, as the PARAFAC model was dominated by RMSE, PCA
was also run on the two-dimensional matrix 60 × 10, in which the monthly adjustment
methods were considered as “samples” and the performance indicators related to temporal
alignment were considered as variables. There were 60 samples in total, as each method
was composed of 12 rows, one for each month. Mean centering and variance scaling were
applied as data pretreatments. The model with one principal component was selected as the
variance explained by PC2 was brought by outliers, as revealed by the Hotelling’s T-squared
test [43]. Results are summarized in Figure 11. PC1, which is responsible for the description
of 84% of the variance, shows positive loadings for the “correlation” group of indicators,
with negative loadings for the “error” group. The best performing methods, i.e., ERA5 and
NOAA, are characterized by a low value of the indicators that have negative loadings on
PC1, i.e., “error” indicators, and a high value of the indicators that have positive loadings
on PC1, i.e., “correlation” indicators. The interpretation of the monthly dependence is less
immediate than with PARAFAC analysis, but the results completely agree. In general, the
adjustment methods show less temporal alignment with the original series in summer and
autumn (Figure 11c), and this is particularly evident for the two methods characterized by
the highest errors, i.e., mainly 9–9, followed by 1 day (Figure 11b).
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3.4. Percentiles Distribution

Figure 12 visualizes the results of the analysis of the percentile distribution to assess
the effect of the adjustment methods on daily extremes. In Figure 12a, the values of the
percentiles from the 50-ile to the 100-ile calculated for the original and adjusted daily
series of Padua are compared. All the adjustment methods underestimate the percentile
values, except ERA5 that outperforms all the others. The unif method exhibits the greatest
difference with the 0–24 series, as it halves the values of the percentiles above the 95-ile. The
same analysis carried out separately for the other stations gave similar results. Then, the
adjustment methods applied to Padua series were compared to the series of the neighboring
stations: the difference from the 0–24 Padua series of the percentile values from the 90-ile to
the 100-ile was calculated for the adjusted series and the series of the neighboring stations.
Tribano was excluded as its dataset is 3 years shorter. The results are shown in Figure 12b
as percentage and in Figure 12c as absolute values. The columns in Figure 12c are colored
using a three-color scale, i.e., red for the highest difference, green for the lowest one, and
yellow for what is in the middle. The only series that comes close to the ERA5 method is
Legnaro, the station that is most correlated with Padua (Figure 7).
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4. Discussion

The adjustment methods applied in the present study to the 9–9 precipitation series of
Padua exhibit different performances depending on the point of view, temporal alignment,
or precipitation statistics, which confirm that they are two distinct aspects, according to both
the traditional statistical analysis and the multivariate approach. The comparison between
the results of the present and other studies is limited, as the adjustment methods have never
been tested in all the possible scenarios; in particular, the climatological day starting at 9 LT
has never been considered. Based on the results of this work and of previous studies, all
methods clearly improve the temporal alignment. The reanalysis-based methods, especially
ERA5, that have been tested here for the first time produce the greatest improvement. But,
for the periods in which reanalysis data are not available, 1 day and uniform methods can
be considered valid alternatives to adjust the 9–9 series from this point of view. Concerning
the precipitation statistics, the adjustment methods are not without drawbacks, as already
pointed out in previous studies. In particular, the uniform shift method, which reapportions
uniformly daily precipitation observations, is confirmed as the method that has the highest
potential of artificially increasing the precipitation frequency and decreasing the mean
value over wet days. The reanalysis-based methods also introduce these changes, but to a
smaller extent than the uniform shift method. Therefore, for the period in which reanalysis
data are not available, the 1-day shift method is confirmed as better performing than the
uniform shift method also in the 9–9 scenario, if both the aspects of temporal alignment
and precipitation statistics are considered.

Moving from the perspective of one single station, and considering several stations
close to the target one—an operation that is mandatory in the case of missing data—the
distance from the adjusted series to the 0–24 series of the same station has been compared
to the 0–24 series of the other stations. It is difficult to generalize the results, as they depend
on the method and station. For Padua, using another station dataset gives similar or better
results than any adjustment method applied to the 9–9 series, except for the uniform shift
method that significantly changes the precipitation statistics.

The multivariate approach allows for better visualizing whether the results obtained
for a single station depend on the month or season of the year. All the adjustment methods
introduce the most relevant changes in the precipitation statistics in summer, in particular
the uniform shift method (Figure 9). Analyzing separately the temporal alignment results
of each method, the adjusted series are less aligned to the 0–24 series in summer and
autumn, and this is particularly true for the 9–9 method (Figure 10). This result can be
interpreted considering the precipitation regime in Padua, where heavy rains are frequent
especially in summer and autumn (Figure S1). At the same time, the reanalysis methods
are less performing in summer than in other seasons (Figure 11), because the reanalysis has
limitations in correctly simulating thunderstorms. Since summer thunderstorms mainly
occur in the late afternoon/evening, the 9–9 method attributes them to the wrong day, i.e.,
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the day after the target one, which is not the case with the 1-day method. In autumn, the
1-day shift method performs worse than in summer (Figure 11). This can be explained
considering that autumn rainfall is quite homogeneous, with no time preference; therefore,
the effect on the 9–9 method is not as dramatic as for months with convective rainfall, i.e.,
summer. Anyhow, the 9–9 method in autumn is still worse than the 1-day method because
the former takes only 9 h of the target day, while the latter takes 15 out of 24, 25% of the
total (Figure 3).

Concerning the impact of the adjustment methods on the daily precipitation per-
centile distribution and consequently on the identification and characterization of extreme
days, the results showed that all the methods underestimate the percentile values, except
ERA5 that simulates daily extremes better than taking the dataset of a neighboring sta-
tion (Figure 12). When regular time series are considered, e.g., regular daily precipitation
amounts, selected percentiles are directly related to the return period (RP) [44]. The precipi-
tation amounts related to 10, 20, and 30-year RPs were evaluated for all the methods and
stations considered in this study, taking advantage of a specific function (i.e., fevd) of the
R extRemes package, version 2.1-3. [33]. In Figure 13, the RPs of the different adjustment
methods applied to Padua datasets are compared between them and with Legnaro, the
station mostly correlated with Padua; the results are expressed as a percentage difference
with respect to the 0–24 Padua series. It is evident that the length of the period considered
is not as important as the method. ERA5 is the method that better reproduces the RPs of the
original series, followed by Legnaro; both datasets can be considered reliable candidates to
fill the gap of the Padua series. The uniform adjustment is confirmed to markedly decrease
the extremes and consequently increase the RPs. The same analysis carried out for the
other stations gives similar results concerning the performance of the adjustment methods
in terms of RPs.
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5. Conclusions

The evaluation of the time of observation adjustment methods is not a simple task, as
their performance depends on the type and entity of the temporal misalignment between
the datasets, and their application. In this study, five adjustment methods were applied to
the 9–9 daily precipitation series recorded by ARPAV in Padua, and in five nearby stations.
Two out of five methods are based on reanalysis and have never been applied before.

The selected indicators evaluate the methods in terms of temporal alignment and
precipitation statistics. The results of both traditional statistical analysis and the multi-
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variate approach confirm that they are two distinct aspects and indicate that none of the
methods considered is the best in either aspect. Nevertheless, the reanalysis-based methods,
especially ERA5, significantly improve the temporal alignment of the 9–9 series. At the
same time, they increase the precipitation frequency and reduce the mean value over wet
days, NOAA much more than ERA5. Overall, using the 0–24 dataset of another station
close to Padua gives similar or better results than applying any adjustment method to the
9–9 series. This finding can be hardly generalized, as it depends on the method, station,
and local climatology.

While the time of observation misalignment can cause problems with daily precipita-
tion, it becomes less of an issue at coarser temporal resolutions, e.g., monthly or seasonally.
In general, all the adjustment methods introduce the most relevant changes in precipitation
statistics in summer. In addition, they show less temporal alignment with the original
series in summer and autumn, which are the two seasons mainly affected by heavy rains in
Padua. Finally, all the adjustment methods underestimate the percentile values, to a greater
extent the higher the percentile, except ERA5 that outperforms all the others. Among the
stations near Padua, the only series that come close to the Padua series adjusted with the
ERA5 method is Legnaro, the station most correlated with Padua.

The methodology described in this work can be extended to broader contexts, as it
is applicable to precipitation datasets of any country and/or period. Nevertheless, the
identification of the best performing adjustment method, or the choice of the series of
a nearby station instead of the adjusted series, depends on the specific dataset under
study and local climate conditions. The new method based on ERA5 reanalysis showed
good potential as an adjustment method, as it was successfully applied to the modern
precipitation series of Padua and nearby stations. As a future perspective, this method
can be extended to all datasets recorded by the Meteorological Observatory of the Water
Magistrate, which constitutes, for Italy, a precious source of instrumental data for the 20th
century. The alignment of these datasets characterized by a different definition of the
climatological day with respect to the modern standard, will allow for extending the daily
precipitation series of several Italian locations, increasing the availability of data for climate
research. Last but not least, the results obtained in this work allow the completion of the
reconstruction of the 300-year precipitation series of Padua, one of the longest series in the
world.
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ARPAV stations in proximity of Padua; Table S2: Number of rainy days in the 1993–2022 period for the
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