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Pod Vodárenskou věž́ı 4, 182 08 Prague, Czech Republic

and
Faculty of Civil Engineering, Czech Technical University

Thákurova 7, 166 29 Praha 6, Czech Republic

Ulisse Stefanelli

Faculty of Mathematics, University of Vienna

Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

and
Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes, CNR

via Ferrata 1, 27100 Pavia, Italy

Chiara Zanini

Dipartimento di Scienze Matematiche G. L. Lagrange, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract. A rate-independent model for the quasistatic evolution of a mag-

netoelastic plate is advanced and analyzed. Starting from the three-dimen-

sional setting, we present an evolutionary Γ-convergence argument in order to
pass to the limit in one of the material dimensions. By taking into account

both conservative and dissipative actions, a nonlinear evolution system of rate-

independent type is obtained. The existence of so-called energetic solutions to
such system is proved via approximation.

1. Introduction. Magnetoelasticity (or magnetostriction) is the property of cer-
tain solids exhibiting a strong coupling between mechanical and magnetic variables.
As effect of this coupling, relevant reversible mechanical deformations can be in-
duced by the application of an external magnetic field. This behavior is clearly of
a great applicative interest in connection with sensors and actuators design, as well
as for a variety of innovative functional-material devices.

The origin of magnetoelasticity lies in the interplay between material crystallo-
graphic patterning (where different crystals present different easy axis of magne-
tization) and magnetic domains. In absence of external magnetic fields, magnetic
domains orient in such a way to minimize long-range dipolar effects. This generi-
cally results in some small or even negligible magnetization of the medium. Upon
applying an external magnetic field the magnetic domains tend to reorient toward
it. As magnetizations are related to specific stress-free reference strains, this causes
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2 MARTIN KRUŽÍK, ULISSE STEFANELLI AND CHARA ZANINI

indeed the emergence of a macroscopic deformation. As the intensity of the mag-
netic field is increased, more and more magnetic domains orientate themselves so
that their principal axes of anisotropy are collinear with the magnetic field in each
region and finally saturation is reached. We refer to e.g. [7] for a discussion of the
physical foundations of magnetoelasticity.

The mathematical modeling of magnetoelasticity is a vibrant area of research,
in particular, in connection with intelligent materials such as iron/rare-earth giant
magnetostrictive materials [10, 25, 26] and magnetic shape-memory alloys [4, 5, 48].
Correspondingly, the understanding of the statics of these materials has attracted
considerable attention [14, 15, 43]. Building from one side upon the static thin-
film-limit analysis for magnetic materials in Gioia & James [21] and from the
other side on the dimension reduction for static linear elastic plates in [17], we
shall be here concerned with the evolutive situation instead. In particular, we are
interested in a slow quasistatic evolution of such materials under the combined
action of conservative and dissipative forces. We indeed assume that the change
of magnetization implies dissipation while no dissipation is associated with elastic
variables. The evolution is driven by a Dirichlet boundary condition and/or by
an external magnetic field. Changes of external conditions are considered to be
slow enough so that inertial effects can be neglected and the system is always in
equilibrium so that its evolution is quasistatic.

The focus of the paper is on deriving a quasistatic evolution theory for magnetoe-
lastic plates. After considering the above-mentioned dissipative evolution problem
for the bulk, three-dimensional material, we address the plate evolution by means
of a dimension reduction argument. In particular, we assume that the reference
configuration of the body is thin in one dimension and we pass to the limit with
respect to it. Our specific choice for the scaling entails that in the limit one obtains
a Kirchhoff-Love quasistatic evolution plate model for magnetoelastic materials.
Moreover, we are able to deal with thickness-dependent change of the anisotropic
magnetic behavior of the sample, both at the static and the evolutive level.

The novelty of the paper is indeed twofold. From the one hand, we advance
the first quasistatic evolution model for magnetoelastic plates and prove the exis-
tence of suitable variational solutions. In particular, the emergence of the so-called
magnetic anisotropic behavior is emphasized. Secondly, by deriving such a model
by dimension reduction, we provide a novel evolutive Γ-convergence result in the
magnetoelastic context. This consists in combining some slightly refined version of
the already available static thin-film-limit theory within the general frame of the
evolutive Γ-convergence analysis for rate-independent systems from [34]. We shall
observe that, as already in [21], the magnetostatic energy contribution which is
usually difficult to evaluate in micromagnetics reduces in our model to calculating
the square of the third component of the magnetization. This makes the model
attractive from the point of view of numerics. Moreover, its rigorous derivation via
variational convergence is linked to the behavior of bulk models in the case when
the domain thickness decreases. Namely, our main result, Theorem 4.4, additionally
states that solutions to evolutionary problems for domains with vanishing thickness
converge to solutions of the limiting problem.

Apart from the magnetoelastic setting, dimension reduction via Γ-convergence
in the quasistatic evolutive setting has already attracted some attention. Liero &
Mielke derive in [28, 32] an elastoplastic plate theory in presence of linear kinematic
hardening. A different theory is then obtained by an alternative scaling choice by
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Liero & Roche [29]. The perfectly-plastic case has then be considered by Davoli
& Mora [13] and Davoli [11, 12], also in the frame of finite plasticity. Babadjian
obtained in [2] via dimension reduction the existence of a quasistatic evolution for
a free crack in an elastic brittle thin film. Dimension reduction in a delamination
context is addressed in [18, 19] whereas an application to shape-memory thin films
is described in [3].

The plan of the paper is as follows. We start by describing the bulk model in
the static three-dimensional situation in Section 2. Then, the corresponding static
plate micromagnetic and magnetoelastic limits are discussed in Section 3. Even-
tually, Section 4 focuses on quasistatic evolution situations both in the bulk (Sub-
section 4.1) and in the thin-limit case (Subsection 4.2, respectively). In particular,
Subsection 4.2 contains our main convergence result, i.e. Theorem 4.4.

2. Description of the static bulk model. Let us start by specifying the mod-
elization in the three-dimensional setting, by following closely the discussion in
[7, 15]. The plate model will then be derived in Section 4 by means of a rigorous
dimension reduction procedure. We assume to have fixed an orthonormal basis
{e1, e2, e3} of R3 and to be given a thin magnetic body with reference configuration
Ωh := {(x1, x2) ∈ S; 0 < x3 < h}. Here, S ⊂ R2 is a bounded Lipschitz domain
in the {e1, e2}-plane and h > 0 represents the small thickness of the specimen,
eventually bound to go to 0.

2.1. Micromagnetics. The magnetization of the body is described by m̄ : Ωh →
R3 subject to the saturation constraint

|m̄(x)| = msat for a.e. x ∈ Ωh,

where the saturation magnetization msat > 0 is assumed to be constant. The
micromagnetic energy of the film is classically defined as [7, 15, 27]

Ēmag
h (t, m̄) :=

1

|S|h

∫
Ωh

(
α|∇m̄(x)|2+ϕ̄h(x, m̄(x))+

1

2
m̄(x) · ∇ξ̄

)
dx

−
∫

Ωh

H̄(x) · m̄(x)dx. (1)

The stray field ∇ξ̄ is related to the magnetization m̄ via the Maxwell equation

∇ · (−µ0∇ξ̄ + m̄χΩh
) = 0 in R3

where µ0 is the vacuum permeability and χΩh
is the characteristic function of the

domain Ωh, namely χΩh
= 1 on Ωh and χΩh

= 0 elsewhere in R3.
The first term in the integral in (1) is the exchange energy, penalizing indeed

spatial changes of the magnetization.
The (thickness-dependent) magnetic potential ϕ̄h : Ωh × msatS

2 → [0,∞) de-
scribes the magnetic anisotropy of the material. In particular, for all thicknesses
h > 0 and x ∈ Ωh it is an even function vanishing precisely at the set {±si; |si| =
msat}Ni=1 for some si = si(x), where N = 1 for uniaxial magnets and N = 3 or
N = 4 for cubic magnets. The lines through ±si are called easy axes of the magnet.
The space dependence in ϕ̄h is intended to model the polycrystalline texture of the
medium and we assume ϕ̄h to be a normal integrand [38, Sec. 14.D]. Namely, we ask
ϕ̄h to be L × B-measurable, where L and B represent the σ-algebras of Lebesgue-
measurable sets in Ωh and Borel-measurable subsets in msatS

2, respectively, and
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we require

m 7→ ϕ̄h(x,m) to be lower semicontinuous, for a.e. x ∈ Ωh.

This particularly entails that the anisotropic energy term is lower semicontinuous
with respect to the L2 topology.

Following the classical theory by Néel [36], we allow the magnetic anisotropy
of the medium to depend on the sample thickness. It is indeed observed that
many material systems develop a very strong magnetic anisotropy in the off-plane
direction as h→ 0, see [8, 44], for instance. This effect is at the basis of the so-called
perpendicular recording technology, see the review [37].

The term containing ∇ξ is the so-called stray-field energy and represents long-
range dipolar self-interactions favoring indeed the formation of a solenoidal magnetic
field. In particular, ξ is the magnetostatic potential. Eventually, the last term in the
right-hand side of (1) is the Zeeman energy, namely the work done by the external
magnetic field H̄ ∈ L1(Ωh;R3). We anticipate that in Section 4 the external field
will depend on time and drive the quasistatic evolution of the plate.

An application of the Direct Method of the Calculus of Variations, see e.g. [25],
ensures that for every h > 0, the micromagnetic energy Ēmag

h admits a minimizer
in the set

Mh := {m̄ ∈W 1,2(Ωh;R3) : |m̄| = msat a.e.}.

2.2. Magnetomechanics. The medium will be subject to nonhomogeneous time-
dependent Dirichlet boundary conditions on some distinguished part Γh := ω×(0, h)
of the boundary ∂S × (0, h) where ω ⊂ ∂S is of positive surface measure. In order
to prescribe these conditions we assume to be given ūDir

h ∈W 1,2(Ωh;R3) and let

ū+ ūDir
h : Ωh → R3

be the displacement of the specimen from its reference configuration. We classically
denote by ε(ū) the symmetrized gradient ε(ū) := (∇ū+∇>ū)/2. Within the small
deformation realm, we linearly decompose the strain of the material as

ε(ū+ūDir
h ) = εelas + εmag(m̄).

Here, εelas is the elastic part of the strain. In particular, εelas = C−1σ, where C is
the elasticity tensor (symmetric, positive definite) and σ is the stress experienced
by the material. On the other hand, εmag(m̄) is the stress-free strain corresponding
to the magnetization m̄. In particular, we could choose

εmag(m̄) := m̄⊗ m̄− m2
sat

3
I,

where I is the identity matrix in R3×3. Note that εmag is a symmetric, continuous,
even, and deviatoric (as |m̄| = msat) tensor-valued mapping of m̄. The specific form
of εmag is here chosen for definiteness only. In fact, other forms of εmag can also be
covered by our model as long as they enjoy the mentioned properties.

The elastic energy of the medium is classically described by the quadratic form

Ēelas
h (t, ū, m̄) :=

1

2|S|h

∫
Ωh

Cεelas:εelas dx

=
1

2|S|h

∫
Ωh

C
(
ε(ū+ūDir

h )− εmag(m̄)
)
:
(
ε(ū+ūDir

h )− εmag(m̄)
)

dx.
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Given the magnetization m̄, the elastic equilibrium problem consists in finding ū
minimizing the elastic energy Ēelas

h on the set of admissible displacements

Uh := {u ∈W 1,2(Ωh;R3) : u = 0 on Γh}.

This problem has clearly a unique solution which depends linearly on both ε(ūDir
h )

and εmag(m̄). Note that, in particular, ū+ ūDir
h = ūDir

h on Γh.
The total magnetoelastic energy of the specimen results from the sum of the

micromagnetic and the elastic energy and reads [7, 15]

Ēh(ū, m̄) := Ēmag
h (m̄) + Ēelas

h (ū, m̄).

See [16, 24] for some discussion in the more involved finite-strain case as well as
[43] for the inclusion of second order strain-gradient terms. It is a rather standard
matter to check that the total energy admits minimizers (ū, m̄) in the set Uh×Mh.
These correspond to a variational solution of the magnetoelastic system

∇·σ = 0 in Ωh, (2a)

C(ε(ū+ūDir
h )− εmag(m̄)) = σ in Ωh, (2b)

−α∆m̄+∇m̄ϕ̄h(x, m̄) +
1

2
∇ξ̄ = H̄ in Ωh, (2c)

∇ · (−µ0∇ξ̄ + m̄χΩh
) = 0 in R3, (2d)

α∂νm̄ = 0 on ∂Ωh, (2e)

ū = 0 on Γh (2f)

where we have denoted by ν the outer unit normal to ∂Ωh.

3. Static thin-film/plate limits. We shall preliminarily record here some dimen-
sion reduction analysis in the static situation of Section 2. Our aim is to investigate
the limit h→ 0, corresponding indeed to the situation of a very thin structure in the
e3 direction. The aim of the section is to present some corresponding Γ-convergence
analysis. We discuss the micromagnetic and the magnetoelastic limit separately.

3.1. Micromagnetic limit. We shall prove the convergence of minimizers of Ēmag
h

to minimizers of some limiting energy Emag
0 as h→ 0. Our argument corresponds to

an extension of the analysis by Gioia & James [21], who investigated the case of a
thickness- and space-independent magnetic potential ϕ̄ in absence of external field,
i.e. H̄ = 0. We shall set the result within the classical Γ-convergence frame [6, 9].
Considering the standard rescaling with Zh := diag(1, 1, 1/h) and the mapping
x 7→ Zhx, we associate to m̄ : Ωh → R3 a magnetization m : Ω := Ω1 → R3, to
ξ̄ : R3 → R the rescaled magnetostatic potential ξ : R3 → R, to H̄ : Ωh → R3 the
external field H : Ω→ R3, and to ϕ̄h : Ωh×msatS

2 → [0,∞) the rescaled magnetic
potential ϕh : Ω×msatS

2 → [0,∞) defined as

m(Zhx) := m̄(x), H(Zhx) := H̄(x), ϕh(Zhx,m) := ϕ̄h(x,m),

and ξ(Zhy) := ξ̄(y) ∀x ∈ Ωh, y ∈ R3, m ∈ msatS
2.

Note that the rescaled potential ϕh is still a normal integrand. Correspondingly,
we define the set M :=M1. By using the summation convention we can express

∇m̄(x) = m,i (Zhx)⊗ ei +
1

h
m,3 (Zhx)⊗ e3 where i = 1, 2.
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Moreover, we define the planar components of the magnetization and of the gradi-
ents as

mp := miei = (m1,m2), ∇pm := m,i⊗ei = (m,1 ,m,2 ),

∇pξ := ξ,i ei = (ξ,1 , ξ,2 ).

By exploiting this rescaling and notation, we can equivalently write the energy
Ēmag
h (m̄) in terms of m as Ēmag

h (m̄) = Emag
h (m) where

Emag
h (m) :=

α

|S|

∫
Ω

(
|∇pm(z)|2 +

1

h2
|m,3 (z)|2

)
dz

+
1

|S|

∫
Ω

(
ϕh(z,m(z))−H(z) ·m(z) +

1

2

(
∇pξ(z) ·mp(z) +

1

h
ξ,3 (z)m3(z)

))
dz

where the relationship between the magnetization and the stray field is given by
the Maxwell equation in the whole space

∇p · (−∇pξ +mpχΩ) +
1

h

∂

∂z3

(
− 1

h
ξ,3 +m3χΩ

)
= 0. (3)

Moreover, m will be required to satisfy the saturation constraint |m| = msat a.e. in
Ω. The following result can be found in [21, Prop. 4.1].

Lemma 3.1. Let m̂hχΩ → m̃χΩ in L2(R3;R3) as h → 0, let |m̂h| = msat a.e. in

Ω and let ξ̂h be the solution to (3) corresponding to m̂hχΩ. Then, we have that

‖∇ξ̂h‖L2(R3;R3) → 0 and ‖h−1ξ̂h,3 − m̃,3 ‖L2(R3) → 0. Moreover,

lim
h→0

1

2

∫
Ω

(
∇pξ̂h(z) · (m̂h)p(z) +

1

h
ξ̂h,3(z) m̂h3(z)

)
dz =

1

2

∫
Ω

(m̃3(z))2 dz. (4)

The next result describes the limiting micromagnetic energy. It can be basically
found in [21, Thm. 4.1] although for H = 0. The extension to H 6= 0 is straightfor-
ward since the Zeeman term is linear in the magnetization. We shall use the notation

Ĥ(z1, z2) :=
∫ 1

0
H(z1, z2, s)ds for (z1, z2) ∈ S (note however that in most applica-

tions the external field can be considered to be constant in Ω). With respect to [21],
we present here a rephrasing of the result in terms of Γ-convergence of the micromag-
netic energies [6, 9]. In particular, we need to be postulating some limiting behavior
of the sequence ϕh. We may assume that there exists ϕ0 : Ω × msatS

2 → [0,∞)
such that

ϕ0(z,m) = lim
h→0

ϕh(z,m) ∀(z,m) ∈ Ω×msatS
2,

ϕ0(z,m) ≤ lim inf
h→0

ϕh(z,mh) ∀z ∈ Ω, ∀mh ∈ msatS
2, mh → m.

Along with these provisions, the anisotropic magnetic potentials Φh : L2(Ω) →
[0,∞) defined by

Φh(m) =

∫
Ω

ϕh(z,m(z))dz

pointwise converge to the corresponding limit Φ0 defined on the integrand ϕ0 and,
additionally, Φ0 ≤ Γ–liminf Φh with respect to the strong topology of L2. In par-
ticular, this entails the Γ-convergence Φh → Φ0 in terms of the strong topology of
L2.

Let us now provide a specific example of a possible choice for ϕh by assuming
the decomposition

ϕh(z,m) = f(h)ϕp(zp,mp) + ϕ3(z,m) (5)
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where ϕp : S × {m ∈ R2 | |m| ≤ msat} → [0,∞) and ϕ3 : Ω×msatS
2 → [0,∞) are

continuous and f : (0, 1)→ [0,∞) decreases. Under suitable coercivity assumptions
on ϕp, the first term in the above right-hand side penalizes the planar components
of m. This would ideally correspond to the observed behavior of some ultrathin
films showing a very strong magnetic anisotropy in the off-plane direction [8, 44].
The magnetic potentials ϕh converge pointwise and monotonically to

ϕ0(z,m) = f(0+)ϕp(zp,mp) + ϕ3(z,m)

where the term f(0+)ϕp has to be intended as the constraint {ϕp = 0} in case
f(0+) =∞.

Proposition 3.2 (Γ-convergence of the micromagnetic energies). Emag
h Γ-converges

strongly in L2 to Emag
0 given by

Emag
0 (m) :=


Emag
p (m) :=

1

|S|

∫
S

(
α|∇pm|2 + ϕ0(z,m)− Ĥ ·m+

1

2
m2

3

)
dz1dz2

if m ∈W 1,2(Ω;R3), |m| = msat, and m,3 = 0,

+∞ otherwise.

Proof. The existence of a recovery sequence follows by pointwise convergence. Let
m ∈M with m,3 = 0. Then, the constant sequence mh = m satisfies

lim
h→0

Emag
h (m) = Emag

0 (m)

due to Lemma 3.1. If on the contrary m,3 6= 0 then Emag
h (m)→∞.

Let now mh ∈ M converge strongly in L2 to m ∈ M. As we are interested in
checking that lim infhE

mag
h (mh) ≥ Emag

0 (m) we may assume with no loss of gen-
erality that lim infhE

mag
h (mh) < ∞ or even that Emag

h (mh) is uniformly bounded.
This entails in particular that m,3 = 0. It is hence sufficient to use (4) in order to
get the liminf inequality.

3.2. Magnetoelastic limit. Let us here consider the plate limit for the magnetoe-
lastic problem. We shall rescale the magnetoelastic energy Ēelas

h (ū, m̄) and obtain
a magnetoelastic Kirchhoff-Love plate theory. In particular, for x ∈ Ωh we let

ū(x) =: Zhu(Zhx) = Zhu(x1, x2, x3/h)

so that u : Ω→ R3. Correspondingly, we define the set U := U1. It follows that, for
i, j = 1, 2,

εh(u) := Zhε(ū)Zh =

 ε(u)ij
1

h
ε(u)i3

1

h
ε(u)i3

1

h2
ε(u)33

 .

Analogously the scaling for εmag will be

εmag
h (m) := Zhε

mag(m̄(Zh))Zh,

so that, for i, j = 1, 2,

εmag
h (m) :=

 (εmag(m))ij
1

h
(εmag(m))i3

1

h
(εmag(m))i3

1

h2
(εmag(m))33

 .

As to boundary conditions, we consider

uDir ∈ K := {u ∈W 1,2(Ω;R3) : ε(u)i3 = 0 for i = 1, 2, 3} (6)
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and set (analogously to the choice for u) ūDir
h (x) := Zhu

Dir(Zhx) for x ∈ Ωh. The
space K in (6) represents the admissible displacements for Kirchhoff-Love plates.
In particular, u ∈ K entails

u1,3 + u3,1 = u2,3 + u3,2 = u3,3 = 0.

Namely u3 is constant in direction e3 and u1, u2 are affine in direction e3.
We shall define the energy Eelas

h on the rescaled domain Ω via Eelas
h (u,m) =

Ēelas
h (ū, m̄). In particular, defining

Q := {(u,m) ∈ U ×M : ε(u)i3 = εmag(m)i3 for i = 1, 2, 3} ,

we have Eelas
h : U ×M→ R ∪ {+∞} satisfies

Eelast
h (u,m) :=


1

2|S|

∫
Ω

C
(
εh(u+uDir)−εmag

h (m)
)
:
(
εh(u+uDir)−εmag

h (m)
)

dz

if (u,m) ∈ Q,
+∞ otherwise.

Then, Eelas
h admits a minimizer in Q. Moreover, the component u of such mini-

mizer depends linearly on the component m. In particular, given m, the displace-
ment u is uniquely determined.

In order to discuss the limiting case h→ 0, by following [6] or [17] we define, for
i, j, k, ` = 1, 2, the limiting elasticity tensor C0 as

C0
ijk` := Cijk` −

Cij33Ck`33

C3333
. (7)

For all A ∈ R2×2 we let the quadratic form Q : R2×2 → [0,∞) be defined as

Q(A) := min
a∈R2×1,b∈R

C
(

A a
a> b

)
:

(
A a
a> b

)
.

One readily checks that the minimum is achieved at

a = 0 and b = −Cij33Aij
C3333

.

In particular, we have that Q(A) = C0A:A for all A ∈ R2×2 and that Q is uniformly
convex on R2×2. Let us use the notation εp ∈ R2×2 in order to indicate the planar
block of the matrix ε ∈ R3×3, namely (εp)ij = (ε)ij for i, j = 1, 2. We have the
following.

Proposition 3.3 (Γ-convergence of the magnetoelastic energies). For all uDir ∈ K
we have that Eelas

h Γ-converges to Eelast
0 with respect to the weak topology of W 1,2

where

Eelast
0 (u,m) :=


Eelas
p (u,m) :=

1

2|S|

∫
Ω

Q
(
εp(u)+εp(u

Dir(t))−εmag
p (m)

)
dz

if (u,m) ∈ Q,
+∞ otherwise.

Proof. Let (uh,mh)→ (u,m) weakly in W 1,2 and assume with no loss of generality
that lim infh→0E

elas
h (uh,mh) <∞ or even, possibly extracting but not relabelling,

that Eelas
h (uh,mh) are uniformly bounded. Then, since uDir ∈ K, the limit (u,m)

belongs necessarily to Q. Hence, the definition of Q and its lower semicontinuity
imply that lim infh→0E

elas
h (uh,mh) ≥ Eelas

p (u,m).
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On the other hand, consider (u,m) ∈ Q. Define b ∈ L2(Ω) via

b := −Cij33(ε(u+uDir)ij − εmag(m)ij)

C3333
(8)

and a sequence {ψh}h>0 ⊂ C∞0 (Ω) such that ψh → b in L2(Ω) and h∇ψh → 0 in
L2(Ω;R3). Let φh be such that φh,3 := ψh in Ω. Following [17, Lemma 4.2], define
for h > 0 and i=1,2,3,

ũhi :=

{
ui for i = 1, 2,

ui + h2φh for i = 3.

Hence,

εh(ũh+uDir)− εmag
h (m)

=

 ε(u+uDir)p−εmag(m)p
(ε(u+uDir)i3−εmag(m)i3)

h
+
h

2

∂φh
∂xi

(ε(u+uDir)3i−εmag(m)3i)

h
+
h

2

∂φh
∂xi

ψh

 .

As uDir ∈ K, we have ε(u+uDir)i3 − εmag(m)i3 = 0. In particular, the terms
with factor 1/h vanish. Then, passing to the limit for h → 0 we readily get that
Eelas
h (ũh,m)→ Eelas

p (u,m). In particular, (ũh,m) is a recovery sequence for (u,m).

The rescaled total magnetoelastic energy Eh is defined on the domain Ω via
Eh(u,m) = Ēh(ū, m̄). In particular, we have

Eh(u,m) = Emag
h (m) + Eelas

h (u,m).

4. Quasistatic evolution. Let us now turn to the analysis of the quasistatic evo-
lution case. The aim here is to introduce and analyze a rate-independent model for
a magnetoelastic Kirchhoff-Love plate. We obtain this by dimension reduction, by
passing to the limit in h > 0 for a three-dimensional magnetoelastic evolution model.
The three-dimensional model is not new as it has been introduced and discussed
by Mielke & Roub́ıček in [31, 33], following also ideas from Visintin [46, 47].
The reader is additionally referred to [39, 40] for an extension of this model to the
discussion of microstructure evolution via Young measures and to [4, 5, 41, 42] for
magnetic shape-memory alloys and their thermodynamics. We detail in Subsec-
tion 4.1 the quasistatic evolution problem for the three-dimensional specimen and
discuss in Subsection 4.2 the evolutive limit constituing the plate model.

4.1. Quasistatic evolution in the bulk. By possibly assuming the Dirichlet
datum ūDir

h and/or the external field H to change with time, the minimizers (ū, m̄)
of Ēh evolve as well. In order to prescribe a suitable evolution law, we postulate
magnetic dissipation. In particular, by assuming that the changes in the data are
so slow that inertial effects can be neglected, we assume that the (time-dependent)
state of the system t 7→ (ū(t), m̄(t)) solves relations (2) on [0, T ] (and in a suitable
variational sense, see below) where however the static relation (2c) is replaced by
the rate-independent inclusion

∂ψ(m̄t)− α∆m̄+∇m̄ϕ̄h(x, m̄) +
1

2
∇ξ̄ 3 H̄ in Ωh × (0, T ).

The symbol ∂ above indicates the subdifferential in the sense of convex analysis
and ψ(m̄t) measures the infinitesimal dissipation involved in the process. As the
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thickness h decreases, an additional magnetic anisotropy effect arises. While bulk
materials h = 1 show isotropic dissipation, in the limit h→ 0 anisotropic dissipation
can be observed [20, 22, 1]. In particular, in some regimes the dissipation tends to
be larger for processes involving off-planar magnetizations. We shall take this into
account by choosing

ψ(m̄t) = Rp|m̄p,t|+R3(h)|m̄3,t|.

Here, Rp > 0 is an energetic yield limit for evolution in the plane [23] which we
assume to be independent of the film thickness, for simplicity. On the other hand,
the function h 7→ R3(h) > 0 models anisotropic effects in the e3 direction which are
observed to be thickness-dependent [45]. We shall here limit ourselves in assuming
that the right limit R3(0+) exists and is finite. Note nonetheless that the case
R3(0+) = ∞, imposing indeed m̄3,t = 0, could be considered as well. The latter
equation corresponds to the postulate that the energy released by changing the
state of the system from (ū1, m̄1) to (ū2, m̄2) is given by the simple form

D̄h(m̄1, m̄2) :=
1

|S|h

∫
Ωh

(
Rp|m̄1

p−m̄2
p|+R3(h)|m̄1

3−m̄2
3|
)

dx.

Note that the dissipation D̄h is positively 1-homogeneous and, correspondingly, the
evolution will be rate-independent. In particular, energy will be dissipated by purely
hysteretic losses.

For the sake of later convenience, let us reformulate the problem in the fixed
reference configuration Ω. This amounts in considering the energies Emag

h , Eelas
h ,

and Eh (here assumed to be depending on time as well, without introducing new
notation) and the dissipation Dh(m1,m2) = D̄h(m̄1, m̄2) so that

Dh(m1,m2) =
1

|S|

∫
Ω

(
Rp|m1

p−m2
p|+R3(h)|m1

3−m2
3|
)

dx.

Assume to be given time-dependent boundary datum t ∈ [0, T ] 7→ ūDir(t) ∈
W 1,2(Ω,R3) and external field t ∈ [0, T ] 7→ H(t) ∈ L1(Ω;R3). We are interested
in proving the existence of a quasistatic evolution t ∈ [0, T ] 7→ (uh(t),mh(t)) ∈ Q
in the form of the so-called energetic formulation [35]. Given some suitable initial
datum (u0,m0) ∈ Q we define it as follows.

Definition 4.1 (Energetic solution in the bulk). An energetic solution of the qua-
sistatic evolution in the bulk is a trajectory t ∈ [0, T ] 7→ (uh(t),mh(t)) ∈ Q such
that (uh(0),mh(0)) = (u0,m0) and, for every t ∈ [0, T ],

Eh(t, uh(t),mh(t)) ≤ Eh(t, û, m̂) +Dh(mh(t), m̂) ∀ (û, m̂) ∈ Q (S)

Eh(t, uh(t),mh(t)) + DissDh
(mh, [0, t])

= Eh(0, u0,m0) +

∫ t

0

∂tEh(s, uh(s),mh(s))ds (E)

where DissDh
(mh, [0, t]) is the total dissipation on [0, t] defined by

DissDh
(mh, [0, t]) := sup

{
N∑
i=1

Dh(mh(ti),mh(ti−1))

}
, (9)

the supremum being taken over all partitions {0 = t0 < t1 < . . . < tN = t} of [0, t].
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The two conditions (S)-(E) in the definition of energetic solution have an imme-
diate mechanical interpretation. Condition (S) is a global stability criterion: Tran-
sitions from the actual state (u(t),m(t)) to some possible competitor state (û, m̂)
is not energetically favored in the sense that the energy gain is compensated by the
dissipation cost. For later notational convenience, we define the set of stable states
at time t ∈ [0, T ] as

Sh(t) :=
{

(uh,mh) ∈ Q : Eh(t, uh,mh) ≤ Eh(t, û, m̂)+Dh(mh, m̂), ∀ (û, m̂) ∈ Q
}

so that condition (S) equivalently reads (uh(t),mh(t)) ∈ Sh(t) for all t ∈ [0, T ]. The
scalar equation (E) is nothing but energy conservation: It expresses the balance
between current and dissipated energy (left-hand side) and initial energy plus work
of external actions (right-hand side).

Let us close this section by recording an existence result for quasistatic evolutions
in three dimensions.

Theorem 4.2 (Existence for the quasistatic evolution in the bulk). Let h > 0.
Assume to be given H ∈ C1([0, T ];L1(Ω;R3)), uDir

h ∈ C1([0, T ];W 1,2(Ω;R3)), and
(u0,m0) ∈ Sh(0). Then, there exists an energetic solution (uh,mh) for the qua-
sistatic evolution problem.

We shall not report here a proof of Theorem 4.2 as it may be readily obtained in
the frame of the by now classical existence theory for energetic solutions by Mielke
& Theil [30, 35]. Indeed, it is sufficient to point out that Eh has bounded (hence
weakly compact) sublevels in Q, that Dh is continuous with respect to the same
topology, and that the power ∂tEh is well behaved in order to apply, for instance,
[30, Thm. 5.2].

4.2. Quasistatic evolution of the magnetoelastic plate. Let us now come to
the description of the magnetoelastic plate, which results in a Kirchhoff-Love plate
model. We shall derive this by taking the limit h → 0 in the three-dimensional
evolution model. The state of the material will be described by the pair

(u,m) ∈ Q̂ := {(u,m) ∈ Q such that m,3 = 0}

= {(u,m) ∈W 1,2
0 (Ω,R3)×W 1,2(Ω,R3) such that

εi3(u) = εmag(m)i3 for i = 1, 2, 3, |m| = msat, m,3 = 0 a.e.}

and its statics will correspond to the minimization of the thin-limit energies of
Section 3. In the following, the boundary datum and the external field are time-
dependent and will be driving the quasistatic evolution of the medium. Corre-
spondingly, we will indicate time-dependence in the total energy of the medium as

E0(t, u,m) = Emag
0 (t,m) + Eelas

0 (t, u,m). Note that E0(t, ·) is finite on Q̂.
As for the dissipation, for all m1,m2 ∈ M which are hence constant in the

direction e3, we define

D0(m1,m2) :=
1

|S|

∫
S

(
Rp|m1

p(z)−m2
p(z)|+R3(0+)|m1

3−m2
3|
)

dz. (10)

Owing to these definitions, the quasistatic evolution problem for the magnetoe-
lastic plate can be reformulated in terms of a rate-independent evolution driven by
the potentials (E0, D0). As before, we shall be interested in energetic solutions.
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Definition 4.3 (Energetic solution for the plate). An energetic solution of the qua-
sistatic evolution for the magnetoelastic plate is a trajectory t ∈ [0, T ] 7→ (u(t),m(t))

∈ Q̂ such that (u(0),m(0)) = (u0,m0) and, for every t ∈ [0, T ],

E0(t, u(t),m(t)) ≤ E0(t, û, m̂) +D0(m(t), m̂) ∀ (û, m̂) ∈ Q̂ (S2)

E0(t, u(t),m(t)) + DissD0
(m, [0, t])

= E0(0, u0,m0) +

∫ t

0

∂tE0(s, u(s),m(s))ds (E2)

where DissD0
(m, [0, t]) is the total dissipation on [0, t] defined analogously to DissDh

,
but starting from the dissipation D0.

Let us denote by S0(t) the set of stable states at time t, namely of pairs (u,m) ∈ Q̂
fulfilling (S2).

We shall now prove that energetic solutions to the quasistatic evolution problem
for the magnetoelastic Kirchhoff-Love plate exist. Indeed, our result is stronger, as
we prove that sequences of solution of the bulk model admit subsequences which
converge to energetic solution of the plate model. In particular, we provide an
approximation result based on dimension reduction.

Theorem 4.4 (Convergence to the plate). Let uDir ∈ C1([0, T ];W 1,2(Ω;R3), H ∈
C1([0, T ];L1(R3)), (u0,m0) ∈ S0(0), Eh(0, u0,m0) → E0(0, u0,m0),
and {(uh,mh)}h>0 ⊂ Qh be a sequence of energetic solutions of the quasistatic
evolution in three dimensions, i.e. solving (S)-(E). Then, for some not relabeled
subsequence we have that (uh,mh) ⇀ (u,m) in W 1,2(Ω;R3) ×W 1,2(Ω;R3) where
(u,m) is an energetic solution for the plate, i.e. solving(S2)-(E2).

In order to show that an energetic solution of the bulk material converges to
an energetic solution to a plate we apply the abstract strategy introduced in [34].
We shall not provide here a detailed proof, but rather comment on two crucial
points of the argument. The first of these points concerns functional convergence.
In particular, we shall establish a specific evolutive Γ-convergence notion, adapted
to rate-independent evolutions. Indeed, the theory relies on the verification of two
separate Γ–liminf inequalities

E0 ≤ Γ–liminf
h→0

Eh, D0 ≤ Γ–liminf
h→0

Dh (11)

as well as on a mutual recovery sequence condition. The Γ–liminf inequality for Eh
follows by easily adapting the results of Section 3 to the present time-dependent
case. On the other hand, the Γ–liminf inequality for Dh is immediate as R3(h) →
R3(0+) ≥ 0. The following lemma entails the existence of a mutual recovery se-
quence.

Lemma 4.5 (Mutual recovery sequence). Let (th, uh,mh) ⇀ (t, u,m) in [0, T ]×Q,

and (û, m̂) ∈ Q̂. Then, there exist (ûh, m̂h) ⇀ (û, m̂) such that

lim sup
h→0

(Eh(th, ûh, m̂h) +Dh(mh, m̂h)) ≤ E0(t, û, m̂) +D0(m, m̂). (12)

Proof. For all h > 0, we choose m̂h := m̂ and ûh as in the proof of Proposition 3.3.
The claim then follows by the continuous convergence of Dh to D0 with respect to
the strong L2-convergence of its arguments.
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A second crucial point for the possible application of the abstract argument of
[34] consists in the convergence proof of the power of the energy functionals. We
shall argue here in the same spirit of [17].

Lemma 4.6. Let uDir ∈ C1([0, T ];W 1,2(Ω;R3)) and H ∈ C1([0, T ];L1(R3)). Let
(t, u,m) ∈ (0, T )×Q and assume that there is a sequence (th, uh,mh) ∈ (0, T )×Q
such that (uh,mh) ∈ Sh(th) and th → t, uh ⇀ u and mh ⇀ m in W 1,2(Ω;R3) ×
W 1,2(Ω;R3). Then, we have the convergence of the energies and the corresponding
powers

Eh(th, uh,mh)→ E0(t, u,m),

∂tEh(th, uh,mh)→ ∂tE0(t, u,m).

Proof. Let us first show the convergence of the energies. The inequality

lim inf
h→0

Eh(th, uh,mh) ≥ E0(t, u,m)

follows from the already checked Γ-convergence of the functionals, i.e. Proposi-
tions 3.2 and 3.3. To check for the other inequality we use Lemma 4.5 and stability.
Indeed, by choosing û := u, m̂ := m and letting (ûh, m̂h) be the corresponding
sequences from Lemma 4.5 we have

lim sup
h→0

Eh(th, uh,mh) ≤ lim sup
h→0

(Eh(th, ûh, m̂h) +Dh(mh, m̂h))

≤ E0(t, û, m̂) +D0(m,m) = E0(t, u,m),

where the first inequality follows from the stability (uh,mh) ∈ Sh(th).
Let us now compute the power of Eh as

∂tEh(th, uh,mh) =

∫
Ωh

C(ε(uh)+ε(uDir(th))−εmag(mh)) : ε(u̇Dir(th)) dx

−
∫

Ωh

Ḣ(th) ·mh dx.

An analogous expression holds for ∂tE0(t, u,m). The convergence of the first term
in the expression of ∂tEh(th, uh,mh) can be proved as in [17] while the convergence
of the second term is immediate by linearity.

Given the Γ-convergence of the functionals (Section 3) and the powers (Lemma
4.6) and the existence of a mutual recovery sequence (Lemma 4.5), it suffices to
remark that Eh is coercive with respect to the weak topology of W 1,2(Ω;R3) ×
W 1,2(Ω;R3) in order to obtain Theorem 4.4 by applying the abstract theorem [34,
Thm 3.1].

Before closing this discussion let us explicitly note that the developed technologies
would allow also to deduce additional dimension reduction results. In particular,
by neglecting mechanical effects, one could consider the possibility of deducing
a rate-independent model for the quasistatic evolution of a thin-film driven by
micromagnetic energy. This would constitute an evolutive counterpart to the static
analysis in [21].
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