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Abstract

Achieving good quality Ohmic contacts to van der Waals materials is a challenge,

since at the interface between metal and van der Waals material, different conditions

can occur, ranging from the presence of a large energy barrier between the two materi-

als to the metallization of the layered material below the contacts. In black phosphorus

(bP), a further challenge is its high reactivity to oxygen and moisture, since the pres-

ence of uncontrolled oxidation can substantially change the behavior of the contacts. In

this study, we investigate the influence of the metal used for the contacts to bP against

the variability between different flakes and different samples, using three of the most

used metals as contacts: Chromium, Titanium, and Nickel. Using the transfer length

method, from an analysis of ten devices, both at room temperature and at low temper-

ature, Ni results to be the best metal for Ohmic contacts to bP, providing the lowest
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contact resistance and minimum scattering between different devices. Moreover, we

investigate the gate dependence of the current-voltage characteristics of these devices.

In the accumulation regime, we observe good linearity for all metals investigated.

1 Introduction

Ohmic contact engineering for van der Waals materials represents a challenge in boosting

the performance of any device based on a two-dimensional material. This opens new fields

of investigation, since at the interface between a metal and a van der Waals semiconductor,

many different conditions could apply, ranging from the presence of a thick tunneling barrier

to metallization of the van der Waals material below the contacts, which could dramatically

modify device performance.1,2 With graphene, many strategies have been proposed, from

creating defects by oxygen plasma to improve the adhesion with the metal,3,4 to the engi-

neering of one-dimensional contacts at the edge of encapsulated flakes.5 On the other hand,

in transition metal dichalcogenides, a local phase transition between the semiconducting and

the metallic phase was shown to greatly improve contact resistance,6–9 as did bias anneal-

ing.10 Moreover, a local p–type doping induced by an oxygen plasma on MoS2 has been

demonstrated to induce ambipolar behavior,11 and the optimization of the contacts on these

materials is still improving as demonstrated by the very recent achievement of ultraclean

interfaces between transition metal dichalcogenides and In/Au contacts.12

Black phosphorus (bP) is a layered semiconductor,13 which has been widely studied in

the last few years because of the possibility to exfoliate it to very thin layers, even down

to the monolayer, called phosphorene. Few-layer black phosphorus attracted great interest

in the scientific community since its demonstration in 2014,14 because of the direct band

gap, tunable by layer number from 0.3 eV in the bulk to approximately 2 eV for the mono-

layer.15,16 This feature, together with a carrier mobility which reaches up to 45000 cm2/(Vs)

for encapsulated few-layer bP at cryogenic temperatures,17 is very interesting among van

der Waals materials, since it places bP between graphene with its semimetallic behavior and
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the high band gap transition metal dichalcogenides. Moreover, bP has a peculiar crystal

structure, puckered-in plane, with a strong crystalline anisotropy between the armchair and

the zig-zag direction. This morphological anisotropy in the plane induces a strong anisotropy

of the optical and thermal transport properties,20,21 as well as of the electronic properties,

observed by magnetotransport experiments.18,19

The high reactivity of bP in humid air, which is much more relevant for thin layers,22 has

so far been the major drawback for device applications of this material. In particular, the

combined effect of oxygen and water, also in very small concentrations, is very disruptive for

bP.23,24 P atoms react with oxygen forming phosphorus oxides that are hygroscopic, thus the

flakes gradually hydrolyze and dissolve.14 Moreover, this process is accelerated by light,22

especially in the UV spectral region.25

Concerning contact resistance in bP, theoretical efforts have been made in modeling both

monolayer and multilayer bP in terms of work function alignment26,27 and by complementary

band calculations with quantum transport simulations for monolayer bP.28

In a metal-semiconductor interface, the work function is generally the most relevant pa-

rameter to take into account to evaluate current injection, since the most common interface

configuration is the formation of a Schottky barrier between the metal and the semicon-

ductor.29 In this case, the better the alignment of the work function of the metal with the

valence band (for holes) or conduction band (for electrons) of the semiconductor, the more

the contact will be Ohmic, with a linear current-voltage (I − V ) characteristics. When the

alignment is poor, the carriers have to overcome a potential barrier to be injected into the

semiconductor. This process can happen by thermionic emission or by tunneling, depending

on bias and temperature, and both mechanisms lead to a deviation from linearity in the I−V

curves (i.e. non-Ohmic contacts), with a flat low-bias trend with almost no current and a

steep current increase above a critical bias voltage value. In the Schottky-Mott approxima-

tion,29 the Schottky barrier height (SBH) for electrons (Φn) is given as Φn = Φm−χ, where

Φm is the work function of the metal and χ the electron affinity of the semiconductor. The
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SBH for holes (Φp) is defined as Φp = Eg − (Φm − χ), with Eg the semiconductor band gap.

Since the charge transport in bP is dominated by holes, because of its intrinsic p-doping,13

the more relevant SBH for bP is Φp.

Despite the interest in this topic, experimentally, up to now, just few studies on the

contact resistance to bP were reported.15,15,30–33 Among them, a big focus is on the transition

between unipolar and ambipolar behavior in bP.15,31 Even if several metals were inspected,

it is difficult to extract a consistent picture, given also the differences in sample fabrication

techniques among the various studies, but most of all because of the high reactivity of bP,

whose uncontrolled oxidation, hard to prevent, introduces a large uncertainty in the observed

behavior. One approach to address this issue is to extract as much information as possible

from the same device, for example the contact resistance for different flake thicknesses using

a stepped flake,31 or by depositing contacts of two different metals on the same bP channel.34

Our approach is the opposite, making several devices for each metal, since our aim is to

investigate whether the influence of the metal chosen for the contacts is robust against inho-

mogeneities between different samples and against residual oxidation, which could possibly

occur during fabrication.

Here, we examine three contact metals, Titanium, Chromium, and Nickel, with different

work functions: ΦNi ≈ 5.0 eV,34 ΦCr ≈ 4.5 eV,35 and ΦT i ≈ 4.3 eV,1 which are thus expected

to produce different band alignments with bP (χbP ≈ 4.4 eV).36 The three metals used in this

study were chosen not only for their different work functions but also for their technological

relevance, since they have a good adhesion to SiO2/Si, the most common substrate for device

fabrication, and they are frequently used as sticking layer for gold electrodes. We perform a

systematic study of contact resistance using the transfer length method, and we crosscheck

our results for consistency with two–probe and four–probe electrical transport measurements.

Moreover, we study the gate dependence of the source-drain current and of the resistance of

bP flakes and discuss the possible influence of contact resistance.
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2 Results and Discussion

2.1 Device geometry and sample preparation

The transfer length method (TLM) is one of the most frequently used methods to evaluate

contact resistance.37 It consists in measuring the two-terminal resistance (R2) for various

contact distances (Fig. 1 (a)). The resistance measured in two–probe configuration is the

series resistance of the two contacts and the channel. Assuming that all contacts between

the metal and the bP flake of the device have the same resistance RC , R2 can be expressed

as a function of the distance d between the contacts, as R2 = 2 · RC + (d/W ) · RS, where

(d/W ) · RS is the resistance of the bP channel, RS the sheet resistance of the flake, and W

its average width. We can thus extract RC and RS from a linear fit of R2 vs. d. In order

to compare flakes of different width, we have to normalize the contact resistance RC to the

flake width W , as shown in Fig. 1(a).

In our device geometry, shown in Fig. 1(a), we realize several (n) equidistant contacts at

distance d1. We measure (n− 1) two–probe resistances from contacts at distance d1, (n− 2)

two–probe resistances for contacts at distance 2d1, and so on, up to a single measurement

for the two outermost contacts.

Our aim is to investigate whether a general trend in contact resistance to bP is observed

despite the scattering induced by possible residual oxidation and inhomogeneities. Therefore,

the bP flakes used for this experiment, despite being from the same source, were selected

from different crystals of different batches. Two different exfoliation protocols, one in a glove

box and one in a glove bag, are used. bP is exfoliated on standard p-type Si wafers with

300 nm of SiO2. The samples are then immediately coated with a bilayer composed of a

methyl methacrylate methacryclic acid copolymer layer and a poly (methyl methacrylate)

layer ( (MMA(8.5)MAA)/PMMA ) which acts both as a protective layer and as a resist for

electron beam lithography (EBL). For the devices, elongated bP flakes were chosen, which

showed a regular shape and an optical contrast typical of flakes of few tens of nanometers
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thickness. Several parallel contacts were designed on the flakes by EBL, at nominal distances

d1 ranging from 600 nm to 1 µm, depending on flake length L (Fig. 1(a)). Overall, 10 devices

were realized and characterized, both at room temperature and at low temperature.

d= n*d1

W

d1 d1

(a)
(b)

(c) (d)
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Figure 1: (a) Schematics of the devices for transfer length method. Length (L) and width
(W ) of the bP flake are indicated. d1 is the distance between neighboring contacts, while
we label the general distance between two contacts as d. (b) Optical microscopy image of
device 10. The scale bar is 10 µm. (c) AFM image of the same device shown in (b). The
scale bar is 1.6 µm. (d) Profile along the line indicated in (c) to measure the flake thickness,
which is (21± 4) nm. The red dotted lines indicate the average substrate and flake level.

After the EBL step, we performed a mild oxygen plasma. This step allows to obtain

more stable contacts for two reasons: first of all, it removes the organic residuals of the EBL

resist after development, and furthermore, it introduces in a controlled way a thin oxide layer

on the bP flake, which makes the samples more homogeneous and increases the quality of

the interface.38 Oxygen plasma in bP treatment has indeed already found some applications,
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since phosphorus oxides have been observed to be a good dielectric when used in combination

with alumina,38 and moreover, a controlled thinning of the flake can be achieved with a mild

oxygen plasma,39 as well.

The metals are thermally evaporated onto the samples, which then undergo a lift-off

process. Again a bilayer of (MMA(8.5)MAA)/PMMA is spun onto the chips to prevent

degradation of the flakes during measurements. An optical microscopy image of a typical

device is shown in Fig. 1(b). Further details on the individual processes performed for device

fabrication and measurements are given in the Methods section.

To measure the geometrical parameters of the flakes, after the electrical transport mea-

surements, we removed the protective layer to perform atomic force microscopy (AFM)

measurements. One example is shown in Fig. 1(c). This process was performed as a last

characterization step, since an AFM measurement in air degrades the flakes. These mea-

surements allowed to precisely evaluate the width W and length L of the bP flakes and to

measure the distances d on each flake. The scattering in d with respect to the nominal value

resulted smaller than 5% for all devices. Furthermore, we extracted flake thickness from

cross-sections such as the one shown in Fig. 1(d). The thickness of the individual flakes is

in the range 15 − 40 nm, which coincides with the thickness range found in literature on

bP contacts.26,31 All flakes can be considered to be in the same thickness range for what

concerns band alignment. The geometrical dimensions of the individual flakes are presented

in the Supporting Information (Table S1).

2.2 Contact resistance

The devices were measured at room temperature and at low temperature (4.2 K). As a

standard for the analysis, we used a bias voltage in the ±1 mV range, which is the one

typically used in experiments. In order to evaluate R2, we acquired a full current–voltage

(I−V ) curve for each pair of contacts and extracted the two–probe resistances from linear fits

of these curves. Examples of I − V characteristics are shown in the Supporting Information
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in Fig. S1. We found that the I − V behavior of all devices is linear in this bias range,

independent of contact metal. The linear behavior of the I − V curves demonstrates the

good quality of the contacts. Furthermore, it is crucial for the correct evaluation of the

two–probe resistance R2.

Plots of R2 vs. d for three representative devices, one for each metal, are presented to-

gether with linear fits in Fig. 2 both for room temperature (panels (a,b)) and low temperature

(panels (c,d)). The linear trend expected by TLM is indeed observed, and the scattering of

the resistance values for the same distance d is very small, as visible from the error bars,

which are often barely visible in the graph. From the slope of the linear fits, the sheet resis-

tance RS is obtained, while the intercept is equal to 2RC . To better inspect this region of

interest, a zoom-in at d close to 0 µm is shown in Figs. 2(b,d).

We then calculated RC ·W and averaged the results (RC ·W ) for all devices which had

contacts of the same metal, in order to rule out as much as possible device-dependent effects

and to obtain the general trend related just to the metal bP layer contact. These results

are presented in Table 1. Two different errors are evaluated on the aggregate data: the

propagated error on the average, labeled as avg. error, which is related to the experimental

errors during the measurements and the scattering of the data on the single device, see Fig. 2.

The other relevant uncertainty is the standard error, labeled in the table as std. error, which

is the standard deviation of the distribution of contact resistances of different devices with

the same contact metal divided by
√
N , where N is the number of devices. This latter value

allows an evaluation of the scattering between different devices with the same metal. Further

information on the evaluation of uncertainties is presented in Section 2 of the Supplementary

Information.

Figure 2 shows that contact resistance at low temperature is higher than at room tem-

perature, which suggests a contribution of bP to RC for all three metals. This trend is also

clearly visible from the contact resistance data presented in Table 1. At room temperature,

RC ·W = 135 Ω µm is obtained for Ni, which is among the lowest previously reported
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Figure 2: Transfer length method: average two–probe resistance R2 at room temperature
(a) and at low temperature (c) as a function of contact distance d. The solid lines in (a)
and (c) are the results of the linear fit procedure. Outside the range of fitting, the same
linear function is plotted using dashed lines. A zoom–in showing the intercepts at d = 0,
corresponding to 2RC , is shown in (b) and (d) for room temperature and low temperature,
respectively. Ni: device 7, Ti: device 5, Cr: device 2.
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contact resistances in the literature for bP40–42 and well within the 2017 target for silicon

transistors in the International Technology Roadmap for Semiconductors (ITRS).43 Ti has

a normalized contact resistance which is slightly higher (∼ 200 Ω µm), but still much lower

than values reported in literature for this metal,44 while the highest result is obtained for Cr

with RC ·W (TLM) ∼ 800 Ω µm. Also at low temperature, chromium with ∼ 2400 Ω µm is

the metal that shows the highest contact resistance, followed by Ti with 740 Ω µm. Ni with

430 Ω µm confirms to be the metal with the best performance, and also in this case RC ·W

of Ni is more than a factor five smaller than for Cr. Moreover, with the lowest scattering

of the results, Ni contacts show the most consistent performance among the three metals

investigated.

To obtain another independent evaluation of contact resistance, we compared four–probe

and two–probe measurements (R2 vs R4). For this purpose, the outermost contacts were

used as source and drain, while all other contact combinations were used for the four–probe

resistance measurements (R4). Four–probe resistance measures just the contribution of the

bP channel, R4 = RS · d/W . We compare this value with the corresponding two–probe

resistance R2 = 2 · RC + RS · d/W = 2 · RC + R4, measured using the same inner contacts

as for the four–probe measurement. We can thus evaluate RC as RC = (R2 − R4)/2. This

method allows to eliminate the influence of any possible inhomogeneity of the bP channel,

because the very same region of the channel is probed in both measurements. In these

measurements, which are summarized in Table 1, Ni shows again the best performance, with

specific contact resistivity values which are consistent with those obtained by TLM. Also for

Ti, a good agreement between the two methods is obtained, especially at low temperature,

while for Cr comparatively large variations are observed.

Table 1 shows that the standard error is typically larger than the average error. This is

expected because the standard error describes the scattering between the different devices

and includes therefore the variation of the characteristics of the specific flakes, which were

either intentionally allowed to vary (flake thickness or processing) or will otherwise have
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Table 1: Average of the normalized contact resistance RC ·W obtained from the transfer
length method (TLM) measurements and from the comparison between two–probe and four–
probe resistances (R2 vs R4), both at room temperature and at 4.2 K, for each of the three
metals investigated. Both the propagated error on the average (avg. error) and the standard
error (std. error) are displayed. *: The standard error is missing because these measurements
are from a single device.

Room T Low T (4.2 K)

metal method RC ·W avg. error std. error RC ·W avg. error std. error
Ω µm Ω µm Ω µm Ω µ Ω µm Ω µm

Cr TLM 797 64 253 2428 198 1377
R2 vs R4 444 165 0.2 1353 240 408

Ti TLM 217 88 163 740 209 282
R2 vs R4 484 56 -* 912 225 382

Ni TLM 135 13 64 432 30 208
R2 vs R4 138 25 75 448 64 213

an influence on contact resistance, for instance the crystallographic orientation of the flakes

(which we did not control).

Among the metals investigated, in the Schottky-Mott model only Ni has a negative energy

barrier for hole conduction (Φp,Ni = −0.3 eV). On the other hand, for the case of Cr and Ti,

formation of a barrier is predicted by the model, with Φp,Cr = 0.2 eV and Φp,T i = 0.4 eV.

Thus, Ti has the worst work function alignment.1,26 Still, the performance of the Cr contacts

is more moderate, both in terms of contact resistance and for what concerns the scattering

from device to device. Therefore, the Schottky-Mott rule does not capture the full physics

occurring at the interface. However, it is well known that Fermi level pinning37 can occur,

which leads to a deviation from the ideal trend.45 The presence of Fermi level pinning has

already been suggested and studied theoretically for few–layer bP,46 and it has been as well

investigated experimentally.32 What is observed for bP32 (and what is generally observed

in semiconductors) is a combination of Schottky–Mott barrier and Fermi level pinning. The

configuration of the surface states in the semiconductor is very important in determining

Fermi level pinning.47,48 Since in our sample processing we introduced an oxygen plasma step,

this could have modified the surface state density, changing the conditions at the interface.

The same process might even have created a thin insulating tunnelling barrier of POx which
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could weaken the band matching condition. In addition to this, inhomogeneities at the

interface can play a crucial role for Fermi level pinning.48,49 A theoretical prediction suggests a

more defected growth of Cr on bP surfaces with respect to Ni. From energetic considerations,

it appears that a three–dimensional island growth of Cr on bP is favourable, while for Ni a

two–dimensional growth is predicted.50 This could be relevant, since defects, interface dipole

moments, and the chemistry at the interface can produce significant deviations from the

simple Schottky-Mott model.48 Moreover, independent theoretical studies on monolayer bP

suggest that at the interface with Cr, non–trivial effects occur, leading to a better transport

for electrons than for holes.28

Table 2 gives the values of sheet resistance RS obtained from the slope of the linear fits in

Fig. 2. Besides, we obtain an independent estimate of sheet resistance from the four–probe

measurements, since RS = R4 ·W/d. Data obtained with TLM and R2vR4 methods display

both at room and low temperature a very good consistency for all three metals investigated.

At room temperature, devices from all three metals have similar sheet resistance. At low

temperature, instead, the sheet resistance for Cr–contacted samples increases much more

than for the other two metals, reaching 18 kΩ, which is further evidence for an interfacial

reaction between Cr and bP.

Table 2: Average sheet resistance for all three metals under study. Only the larger between
avg. error and std. error is shown in the table for clarity.

metal method Room T, Rs [kΩ ] Low T (4.2 K), Rs [kΩ]
Cr TLM 7.5± 1.4 17.3± 8.0

R2 vs R4 6.5± 0.7 18.0± 9.0
Ti TLM 7.0± 1.5 9.3± 2.0

R2 vs R4 7.0± 1.4 9.8± 2.6
Ni TLM 4.9± 1.5 5.8± 1.0

R2 vs R4 4.8± 1.5 5.7± 0.9

To summarize, Ni provides the best contacts to bP, not only for its lower RC ·W both

at room and at low temperature, but also for the lower average error and standard error of

the Ni contacts, and for the consistency between TLM and R2 vs R4. This underlines the
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good homogeneity of Ni contacts to bP. Moreover, the contact resistances obtained compare

favorably to what is observed for bP and other 2D semiconductors51 and are not far from

the quantum limit.9

2.3 Gate dependence

Generally the ±1 mV range is suitable for performing transport measurements, since higher

voltages could produce self heating in the proximity of contacts due to current crowding.33

Nevertheless, at low temperature we inspected a wider bias voltage range, namely ±100 mV,

to search for nonlinearities, which are an indication of a Schottky contact to bP. A typical

I − V curve for a device of each metal is shown in Fig. 3(a). To quantitatively evaluate the

linearity of the I − V curves, we performed a linear fit of each curve and used the adjusted

r2 of the fit as an indicator of the linearity. As can be seen in Fig. 3(a), with no gate bias

applied (Vg = 0 V), all curves are linear, with an adjusted r2 ≈ 0.99 or higher.

Source–drain current vs. gate voltage measurements are shown in Fig. 3(b). These mea-

surements clearly show that all samples display a strong unipolar p-type behavior, indepen-

dent of the contact metal used. Several factors could contribute to this effect, such as flake

thickness, since we realized our FETs with bP multilayers in the 15 nm to 40 nm thickness

range, or the 300 nm thickness of the SiO2 used as a gate dielectric, which could be too

thick to efficiently gate bP into the electron region.15,34 Another factor which could play a

role is the oxygen plasma procedure that we use, since, as suggested by some preliminary

evidence,31 oxygen exposure could increase the p–type doping of bP. However, a systematic

investigation of the link between oxygen exposure and p–type doping is still missing.

Figure 3(b) shows that for positive gate voltage above 40 V, one device (with Ti contacts)

reaches the depletion regime, highlighted with a more appropriate scale in the inset to

Fig. 3(b), and shows a hysteresis there. The hysteresis in bP FETs on SiO2 has been

previously observed in literature and related to trap states at the interface.52 A similar

behavior was found for another device (with Ni contacts), which underlines that this effect is
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Figure 3: (a) Two–probe current–voltage characteristics in the ±100 mV bias range for three
specific devices, one for each of the selected metals (Ni, red curve, device 7; Cr, blue curve,
device 3; and Ti, green curve, device 6). (b) Current versus gate voltage for the same devices.
Vsd = 100 mV. The inset shows a zoom of the measurement relative to the Ti–contacted
device, which displays the presence of a hysteresis in the depletion regime. (c) Adjusted r2

of the linear fits of all current-voltage measurements acquired at different gate voltages. All
measurements taken at T = 4.2 K.
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not related to the contact metal type. Indeed, measurements provided in the Supplementary

Information (Fig. S2) clearly show that only when the depletion regime is reached, the I−V

characteristics in these devices becomes non–linear.

The adjusted r2 of linear fits to current-voltage measurements at various gate voltages

are displayed in Fig. 3(c). While in the accumulation regime all contacts show a linear trend

(adjusted r2 ≈ 1), the adjusted r2 drops when a device reaches the depletion regime, here

r2 < 0.8 for Vg > 40 V for the device with Ti contacts. A similar deterioration of contact

quality in the depletion regime has already been observed in bP.53

3 Conclusions

In this work, we presented a study of contact resistance in exfoliated black phosphorus devices

with thickness 15−40 nm, in a transfer length method configuration. Three different metals,

Titanium, Chromium, and Nickel were used, and measurements were performed both at room

temperature and at liquid Helium temperature. In order to evaluate how robust the observed

trends are, we presented aggregate data from 10 devices and used two different exfoliation

protocols for bP.

Both at room temperature and at low temperature, contacts from all three metals show

linear I − V curves in the ±1 mV regime. Devices contacted with Cr display the high-

est contact resistances and the largest scattering of the data. The anomalous behavior of

Cr–contacted devices can be related to a more defective growth mechanism of Cr on bP, con-

sistent with theoretical studies.50 The best contacts are achieved with Ni. Thus, Nickel is

the best performing contact metal for low temperature electrical transport experiments with

bP. This trend is confirmed by the comparison between two–probe and four–probe resistance

measurements.

In all samples we observed a strong unipolar p-type behavior. We observe a linear

behavior for all three metals in the ±100 mV bias voltage regime, when the samples are not
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in the depletion regime. Non-linearities appear just when the depletion regime is reached

and Isd approaches zero, as previously already observed in bP FETs.53

4 Methods

4.1 Materials

In our experiments, we used bP crystals prepared according to a published procedure,54

wherein high-purity red phosphorus (> 99.99%), tin (> 99.999%), and gold (> 99.99%) are

heated in a muffle oven with a SnI4 catalyst. The solid product was placed in a quartz tube,

subjected to several evacuation-purge cycles with N2 gas, and then sealed under vacuum.

The evacuated quartz tube was heated at 4.2 ◦C/min to 406 ◦C, where it remained for

2 hours. The tube was then heated at 2.2 ◦C/min to 650 ◦C and held at this temperature

for 3 days. Finally, the tube was cooled to room temperature at 0.1 ◦C/min. The product

is crystalline bP with a typical size of some mm.

4.2 Device fabrication

Substrates of Boron-doped Si, with 300 nm thermal SiO2, were pre-patterned by optical

lithography with a grid of markers to allow flakes identification. Bonding pads were included

in this lithography step. For device fabrication, the commercial MMA(8.5)MAA copolymer

(EL13) and PMMA (A4), both from MicroChem, were used as a positive resist for electron

beam lithography. EBL was performed with a Zeiss UltraPlus Scanning Electron Microscope

(SEM), equipped with an interferometric stage for better alignment, and with a Raith tool

for EBL. An acceleration voltage of 20 kV and a dose of 350 µC/cm2 were used. Two different

apertures were employed, namely 10 µm and 30 µm/60 µm, corresponding to currents of

33 pA and 190 pA/560 pA, for the active area of the device and for the gold paths to the

bonding pads, respectively. Having a lower current for the exposure of the active area of

the device allowed to have a precise patterning of the device, while the part exposed with
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higher current was optimized for fast exposure time. The development was performed in

AR 600-56, a commercial developer from Allresist GmbH, based on 4-Methylpentan-2-one

diluted in IPA.

Oxygen plasma was performed in a Sistec reactive ion etching system, with a flux of 40

standard cubic centimeters per minute (sccm) and a power of 10 W for 1 minute, after a

cycle of chamber cleaning to reduce at best any contamination.

Metal evaporation was performed in a Sistec multi-crucible thermal evaporator equipped

with a rotating carousel, in order to have the sample aligned with the metal crucible. We

evaporated 10 nm of the selected metal, with an evaporation rate of 0.4 Å/s for Nickel,

0.3 Å/s for Chromium, and 3 Å/s for Titanium. An overlayer of 100 nm gold was then

evaporated at 1.5 Å/s. The pressure in the evaporator chamber was around 10−6 mbar before

evaporation, and increased slightly during metal evaporation. After metal evaporation the

samples underwent a 15 minutes lift-off in hot acetone.

The same two resists used for fabrication were used as protective layer, to avoid device

aging between measurements and, through a second electron beam lithography step, holes

were opened on top of the bonding pads, to connect the samples with the chip carriers on

which they were mounted.

4.3 Measurement setup

For electrical transport measurements, the samples were bonded to a 16 pin dual in line

chip carrier using Au wire. The transport properties were measured in DC or AC under

vacuum (p < 10−4 mbar) in a custom–made insert, equipped with a diode for temperature

measurement. The leakage current though the gate was measured during Vg loops and always

found to be negligible.

DC measurements were mainly used for current-voltage measurements and two–probe

gate sweeps. These measurements were performed using a DC voltage source with a slow

sweep rate, while the current was measured with a DL current preamplifier and an Agilent
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34410A digital multimeter. Four–probe measurements were mainly performed in AC using

Stanford Research SR830 lock-in amplifiers, at a frequency of 17 Hz with a 10 MΩ resistance

in series to the sample.

Atomic force microscopy (AFM) measurements were performed with a Bruker Dimension

Icon AFM, in peak force mode. Data analysis was performed with the WSxM software.55
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Supplementary Information to Ohmic contact engineer-

ing in few-layer black Phosphorus field effect transistors

S1 Current versus Voltage Measurements
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Figure S1: Examples of current-voltage sweeps at room temperature (left column) and at low
temperature (right column), for contacts at different distances, for each of the three metals
investigated. Top row: Cr, panels (a,b), device 2; center row: Ti, panels (c,d), device 5;
bottom row: Ni, panels (e,f), device 7.
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S2 Evaluation of Uncertainties

Since we want to evaluate how robust the contact resistance is against several variability

factors, a careful analysis of the scattering of our data has to be made, to determine if

and where a scattering is introduced in the results. After acquiring the raw R2 data for

all combinations of contacts present on each device, the two–probe resistances of all pairs

of contacts with same d are averaged, and the standard error is calculated. A standard

deviation equal to the average of all standard deviations obtained for the same device is

attributed to those contacts for which only a single measurement is available. These error

bars are the ones reported in the two–probe resistance versus distance plots in Fig. 2 of the

main text, from which we obtain the individual contact resistance values.

Since we have more than one device for each metal under investigation, in order to extract

the aggregate data for each metal, we evaluate two different errors on the average, related

to different uncertainty sources.

First of all, we propagate the errors ∆(RC · W ) on the individual RC · W values, as

1
N

√∑
(∆(RC ·W ))2, with N the total number of devices made with that metal. This error,

that we call average error (avg. error), provides information on the uncertainty of RC ·W

in the single devices, but it does not contain information on the scattering between different

devices.

To evaluate the scattering between the different devices with the same contact metal, we

calculate the standard error (std. error) on the distribution as 1√
N

√∑
(RC ·W −RC ·W )2,

where RC ·W is the average normalized contact resistance for devices made using contacts

of the same metal. We give the standard error of the distribution and not the standard

deviation for a better comparison with the average error.

Similarly, in the evaluation of RC from the comparison between two–probe and four–

probe measurements, discussed in the main text, we first evaluate the scattering of the data

in the single device, and then we calculate RC ·W , its average error and its standard error.

For the sheet resistance RS, we evaluate the errors using the same procedure.
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For the evaluation of RC , RC ·W and RS, the dimensions of the flake and of the contacts

play a role: width and length of the flakes, as well as contacts distances are obtained from

AFM images.

S3 Geometrical Dimensions of the Devices

Table S1: Flake thickness t, flake width W , number of contacts, and d1 for each of the
measured devices.

device metal thickness t width W number of d1
# [nm] [µm] contacts [µm]
1 Cr 19± 3 1.63± 0.09 4 1.021± 0.017
2 Cr 40± 3 1.58± 0.11 5 1.011± 0.008
3 Cr 30± 5 2.02± 0.07 6 0.622± 0.01
4 Ti 15± 3 1.08± 0.02 4 0.827± 0.004
5 Ti 15± 4 1.25± 0.03 5 0.604± 0.006
6 Ti 29± 4 1.03± 0.05 4 0.805± 0.008
7 Ni 26± 3 0.85± 0.02 5 0.629± 0.012
8 Ni 29± 5 0.87± 0.07 4 0.621± 0.007
9 Ni 23± 3 1.01± 0.10 6 0.705± 0.010
10 Ni 21± 4 0.88± 0.04 5 0.711± 0.005

S4 Additional Information on Gate Dependence

To provide further evidence that carrier concentration is a key element to observe a linear

trend in the current-voltage traces, we show in Fig. S2 two devices with contacts from

the same metal (Ni), which display a different modulation of the current by gate voltage,

device 7 and device 8, as labeled in Table S1. At negative gate voltage, when the devices

are in the accumulation regime, both devices show a linear current-voltage characteristics,

see Figs. S2(a) and (b), while in the depletion regime (Figs. S2(c) and (d)), device 8 has a

strongly nonlinear I − V characteristics, with a maximum source-drain current more than

one order of magnitude smaller than device 7, which shows a linear I−V characteristics. The

Isd vs. Vg curve, shown in Fig. S2(e), clearly shows the differences between these two devices.
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The on-off ratio, defined as the maximum current obtained in the accumulation regime

divided by the minimum current obtained in the depletion regime, is ≈ 10 for device 7 and

≈ 340 for device 8. The trend of all I − V curves at different gate voltage is summarized by

the values of the adjusted-r2 shown in Fig. S2(f). For Vg > 40 V, a decrease is observed for

device 8. This confirms that reaching the depletion regime results in non-linearities in the

current-voltage characteristics.
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Figure S2: Current-voltage characteristics of two different devices with Nickel contacts at
back gate voltage (a,b) +80 V and (c,d) −80 V. Data from device 7 is also shown in Fig. 3
of the main text. (e) Source-drain current as a function of gate voltage for the two devices,
which clearly show a difference in modulation. Vsd = 1 mV. The inset shows the same data
on a logarithmic scale. (f) Adjusted r2 of linear fits of all current-voltage measurements
acquired at different gate voltage. All measurements at T = 4.2 K.
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